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ABSTRACT

Multi-objective optimization problems in the real world often in-
volve a decision maker who has certain preferences for the objective
functions. When such preferences can be expressed as a reference
point, the goal of optimization changes from generating a complete
set of Pareto-optimal solutions to generating a small set of non-
dominated solutions close to the reference point. Reference-point
based optimization algorithms are used for this purpose. The prefer-
ences of the decision maker in the objective space can be interpreted
as knowledge in the decision space. Extracting this knowledge it-
eratively from the solutions generated during optimization, and
feeding it back into the optimization algorithm can in principle
improve convergence towards the reference point. Since the knowl-
edge is extracted during runtime, this approach is termed as online
knowledge-driven optimization. In this paper a recent knowledge
discovery technique called flexible pattern mining is used to extract
explicit rules that are used to generate new solutions in R-NSGA-IL
The performance of the proposed FPM-R-NSGA-II is demonstrated
on 3, 5 and 10 objective DTLZ problems. In addition to converging
to a set of preferred solutions, FPM-R-NSGA-II also converges to a
set of explicit rules which describe the decision maker’s preferences
in the decision space.
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1 INTRODUCTION

Many real-world optimization problems involve multiple conflicting
objectives and therefore lead to multiple Pareto-optimal solutions.
Mathematically, a multi-objective optimization problem (MOOP) is
defined as:

Minimize : F(x) = {fl(x), fa(x), ...,fM(x)}

Subject to:x € S

where F(x) is a set of M objective functions, x is a vector of n
variables representing a solution and § is the feasible region of
the search space. The search space may be constrained, but the
feasible region S must be non-empty. Given that the Pareto-optimal
solutions are available, the task of a decision maker (DM) is to
choose one (or a few) solution(s) for practical implementation. Due
to their population-based nature, Multi-Objective Evolutionary
Algorithms (MOEAs) are often used for solving MOOPs. In many
cases, however, the DM has some a priori preferences which can be
supplied to the optimization algorithm. One of the most common
ways of expressing preferences is to provide a reference-point. The
goal of reference-point based algorithms is to generate only a small
set of solutions close to the reference point provided by the DM,
thus saving the computational expense of finding all Pareto-optimal
solutions.

In this preliminary study, an exploration of how such reference-
point based algorithms can be improved through knowledge-driven
optimization is conducted.

1.1 Knowledge Discovery in MOO

There is a growing interest in discovering knowledge through the
analysis of solutions generated from MOO. With the motivation to
supply the DM with an understanding of the relationships between
the decision space and the objective space. Such an analysis may
reveal both the impact certain variables have in the objective space,
and also what causes a solution to be Pareto-optimal. An early
example this kind of analysis can be found in [5] where the authors
propose innovization (innovation through optimization) as a manual
approach to finding relationships in the variables from the Pareto-
optimal set of solutions. In [1], a thorough review of different ways
to extract knowledge from MOO solutions is offered.

Knowledge from MOO solutions can be represented in many dif-
ferent ways and there are many data mining methods and machine
learning techniques available for knowledge discovery. Different
knowledge representations can broadly be categorized into two
types, implicit and explicit. Implicit representations lack formal no-
tation and the knowledge cannot easily be transferred or processed
automatically. Explicit representations on the other hand have a
standard form that can easily be interpreted, such as the if-then
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statements produced by association rule mining, or different meth-
ods of descriptive statistics. Given the standard notation of explicit
knowledge, it can be stored in a knowledge base and retrieved for
future application, or used programmatically in an algorithm.

2 KNOWLEDGE-DRIVEN OPTIMIZATION

Knowledge-Driven Optimization (KDO) is the application of knowl-
edge discovery techniques on MOO solutions with the aim of using
the discovered knowledge to enhance the current or future opti-
mization runs [1]. The former would be achieved through online
KDO by applying knowledge discovery techniques during a cur-
rently executing optimization run, and the latter through offline
KDO by applying knowledge discovery techniques on the solutions
obtained from a completed optimization run.

2.1 Offline KDO

In Multi-Criteria Decision Making (MCDM), a-posteriori methods
allow the DM to analyze a complete set of solutions that represent
the Pareto-optimal front. Solutions are usually analyzed using scat-
ter plots, and parallel coordinate plots. However, the knowledge
obtained through such graphical methods is implicit and cannot
be used effectively in future optimization tasks of a similar nature.
Instead, if explicit knowledge can be extracted from the solutions,
it can be stored in a knowledge base for future use. On one hand,
the extracted knowledge provides the DM a greater insight into
the solutions and reveals the relationship between the decision
space and the objective space. On the other hand, the extracted
knowledge can also be used for implementing offline KDO algo-
rithms. An offline KDO algorithm would utilize an expert system
to search for appropriate rules in the knowledge base and use them
to either redefine a future optimization scenario or alter the search
behaviour of the MOEA. The expert system would employ several
criteria to select the rules from the knowledge base. These criteria
may include, details about MOOP formulation such as objectives,
constraints and variables and their bounds, the type of MOEA used
and its parameter settings, the region of preference, etc.

2.2 Online KDO

Online KDO aims to use knowledge discovery techniques online,
i.e during an optimization run to extract knowledge concerning
the good or preferred solutions, and apply it to direct the search
towards better or more preferred solutions.

The idea of online KDO is not entirely new. The Learnable Evo-
lution Model (LEM) proposed in [10] uses rules to guide solutions
towards better regions of the search space in the context of single
objective optimization. LEM alternates between a machine learn-
ing mode and a regular evolutionary mode. Another technique
that has received some attention in the literature is the Estimation
of Distribution Algorithm (EDA) [8]. It explores the search space
by sampling new solutions from probabilistic models built from
promising solutions.

Online KDO can be achieved with implicit or explicit knowledge.
However, using an explicit representation has the additional advan-
tage of evolving human-interpretable knowledge along with faster
convergence.
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2.3 Handling Different Variable Types in KDO

In order to apply KDO, an appropriate form for representing explicit
knowledge should be chosen. This choice is governed by the types of
variables involved. MOOPs generally involve two types of variables:
(i) continuous variables, which can take any real value between
their bounds, and (ii) discrete variables, which can take a countable
number of values. Discrete variables are further categorized as:
(a) integers, (b) practically discrete, (c) ordinal categorical, and (d)
nominal categorical. Continuous and integer variables do not need
any introduction. Practically discrete variables can only take a value
from a predefined set of real numbers. Categorical variables are
those for which the numerical value has no significance, but only a
programmatic convenience. Ordinal categorical variables can take
values which have an implicit ordering among them. For example, a
variable representing a temperature setting of {Low, Medium, High}
is ordinal. Categorical variables with no implicit ordering are called
nominal variables. An example is a variable representing machine
types {Machine A, Machine B, Machine C}. Association rules is a
form of explicit knowledge that can be used for all the above variable
types. Hence, they are used in the KDO algorithm described in the
next section.

3 PROPOSED KDO ALGORITHM

A recent method for extracting rules from a MOO datasets was
introduced in [2]. The method, Flexible Pattern Mining (FPM) is
based on the popular a priori algorithm which is used for sequential
pattern mining (SPM). The main difference between them is that
while SPM only finds rules where variables take certain values,
eg. {x; = c}, FPM extends the a priori algorithm to also extract
rules where a variable can take a range of values, eg. {x; < ¢1}
or {x; > cz}. By supplying a set of selected solutions and a set of
unselected solutions, FPM is able to generate rules that distinguish
the former from the latter, ensuring that a minimum percentage of
solutions in the selected set are covered. This percentage is referred
to as the significance, sig of the extracted rule. Originally, FPM was
proposed to only generate up to three significant rules per variable,
ie. x; < ¢, xj > c¢2 and x; c3. In this paper, FPM has been
modified to generate a set of all significant rules pertaining to a
variable. Given the set of significant rules, distributions over the
variables in the selected set of solutions can be generated and later
sampled.

FPM can be used for both online and offline KDO. The general
framework for applying FPM in online KDO can be defined as:

(1) choose a selected and unselected set of solutions from the
current generation,

(2) perform FPM to extract rules based on the selected and uns-
elected sets of solutions.

(3) generate a new generation of solutions using the extracted
rules.

The knowledge discovery technique can be modular and inter-
changeable, and resides outside the actual optimization algorithm,

In this paper, online KDO is used to modify the popular R-NSGA-
11 [6] algorithm through rule-based mutation described in the next
section. R-NSGA-II is a preference based algorithm that extends the
well known NSGA-II [4] algorithm to incorporate the preferences
of the DM through the specification of reference points. R-NSGA-II
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modifies the selection operator of regular NSGA-II to converge on
the Pareto-optimal front, near the supplied reference points.

3.1 Rule-Based Mutation

The proposed approach, FPM-R-NSGA-II, modifies the mutation
operator of R-NSGA-II by generating a sample based on a distribu-
tion generated from the FPM rules that describe all optimization
variables.

The mutated value is obtained using an empirical probability
distribution constructed from the rules extracted by FPM. Consider
the rules:

(1) x1 <0.1,sig = 0.1

(2) x1 <0.3,sig = 0.6

(3) x1 < 0.6,sig = 0.7

(4) x1 <0.9,sig =0.9

(5) x1 < 1.0,sig = 1.0
The first rule indicates that 10% of the selected set of solutions had
a value of x1 less than 0.1, and the second rule indicates that 60%
of the selected set had a value of x; less than 0.3, from which we
can derive that 50% of the selected set had a value between 0.1 and
0.3. The empirical distribution constructed from the given rules is
shown in Figure 1. This distribution is sampled to find the mutated
value of x7.
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Figure 1: A probability distribution generated from the five
rules mentioned above.

FPM generates rules of both less than < and greater than >
type. However, to generate the above distribution, all rules must
have the same sign. Therefore, any rules of > type are converted to
< by modifying the significance as 1 — sig.

3.2 Experimental Setup

In this study, the mean convergence rates of the two algorithms, R-
NSGA-II and FPM-R-NSGA-II are analyzed and compared through
the use of convergence plots. While many performance metrics
have been proposed for comparing MOEAs, only a few exist for
comparing reference-point based algorithms. In this paper, the
recently proposed Expanding Hypercube-metric (EH-metric) [3] is
used to compare the algorithms.

The EH-metric is calculated by expanding a hypercube with
the reference point at its centre. The hypercube expands until all
non-dominated solutions generated by an algorithm are enclosed.
The EH-metric is defined as the area under the curve generated
by plotting the size of a hypercube against the number of unique
solutions it envelops as it expands. The greater this area, the better
performing the algorithm is. The size of the hypercube represents
convergence to the reference point, while the number of unique

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

solutions represents diversity. The main advantage of EH-metric
is that it combines the two main aspects of trade-off solutions, i.e.
convergence and diversity, into a single metric. Thus, it is sim-
ilar in principle to the hypervolume metric. Unlike many other
reference-point based performance metrics, as for instance R-metric
[9], EH-metric has no user-specified parameters and does not rely
on hypervolume or inverted generational distance to calculate the
performance of a dataset.

The test problems considered in the study are DTLZ1-4 from
the DTLZ suite of scalable MOOPs [7]. Problems with 3, 5 and 10
objectives are considered. Each experiment was replicated 11 times
for all test cases.

R-NSGA-II used simulated binary crossover (SBX) and polynomial
mutation with the parameters for crossover probability p, set to 0.9
and crossover distribution index 7. set to 10, mutation probability
Ppm set to 1/n where n is the number of variables and the mutation
distribution index 7, set to 20. R-NSGA-II also has a parameter €
to control the spread of solutions around the reference point, € was
set to 0.002. The population size N was set to 100 individuals and
to terminate the runs an evaluation budget of 100 X N X M was
used, where M is the number of objectives in the problem.

FPM-R-NSGA-II uses the same values for parameters shared with
R-NSGA-II. The minimum significance for FPM was set to 0.5, and
the selected set is defined to be the k-nearest neighbours of the
reference point chosen from the non-dominated solutions of the
current generation. All remaining non-dominated solutions form
the the unselected set. The value of k is set to half the size of the
current non-dominated set. All parameters remain unchanged for
all experiments.

4 RESULTS AND DISCUSSION

The convergence plots for the 3, 5 and 10 objective cases are shown
in Figures 2, 3 and 4 respectively.
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Figure 2: Convergence plots for DTLZ1-4 for 3 objectives.
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Figure 3: Convergence plots for DTLZ1-4 for 5 objectives.
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Figure 4: Convergence plots for DTLZ1-4 for 10 objectives.

In the 3-objective cases FPM-NSGA-II is able to converge faster
than R-NSGA-II in the for DTLZ1 and 3. For DTLZ3, FPM-R-NSGA-
II converges much faster then R-NSGA-II, and for DTLZ1 the con-
vergence for FPM-R-NSGA-II is faster, but the difference is much
smaller. For DTLZ2 and 4 both algorithms behave similarly, with
R-NSGA-II being more consistent for DTLZ2 while the variance for
FPM-R-NSGA-II is higher. For the 5-objective cases, the results look
similar to the 3-objective cases. On DTLZ1 and 3, FPM-R-NSGA-II
converges faster than R-NSGA-II. However the difference between
the algorithms is smaller, for DTLZ1 the algorithms have similar
convergence rates. The variance for FPM-R-NSGA-II among the
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runs in the case of DTLZ2 is higher than before. For 10-objective
cases, FPM-R-NSGA-II behaves similarly to R-NSGA-II for DTLZ1
and 2, while performing much worse in the cases of DTLZ3 and 4.
FPM-R-NSGA-II even fails to converge close to the reference point
in these cases.

The results suggest that FPM-R-NSGA-II can perform better than
R-NSGA-II in some cases, especially on lower objective problems.
While performing similar in others, and performing the worst in
higher objective problems, even worse than the original R-NSGA-IL

5 CONCLUSIONS AND FUTURE WORK

Although online KDO has received some focus in the literature, the
most popular method of online KDO is with the use of EDAs. In this
paper, an online KDO approach that uses FPM to build a probability
distribution which is sampled to replace the mutation operator
from R-NSGA-II is introduced. The experimental results suggest
that the new approach is able to converge faster than R-NSGA-II
on some of the considered test problems, and behaves similarly on
some others, while also performing poorly in some cases. However
the study did not take into account how much computation time
could have be saved by terminating the runs once convergence had
been achieved. The relatively higher computational cost of FPM-R-
NSGA-II is balanced by the fact that in addition to convergence to
the reference point, the algorithm also generates rules that conform
to preferred solutions. The three parameters that affect the proposed
approach are, the minimum required significance and the value
of k for choosing k-nearest neighbours as the selected set from
non-dominated solutions. The impact of these parameters on the
performance of the algorithm will be considered in future studies.
Understanding why FPM-R-NSGA-II behaves much worse than
R-NSGA-II on some of the higher objective cases is also important
for the future development of FPM based online KDO algorithms.
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