
Dynamic Compartmental Models for Algorithm Analysis and
Population Size Estimation

Hugo Monzón
Shinshu University
Nagano, Japan

hugo91@gmail.com

Hernán Aguirre
Shinshu University
Nagano, Japan

ahernan@shinshu-u.ac.jp

Sébastien Verel
Univ. Littoral Cote d’Opale

Calais, France
verel@lisic.univ-littoral.fr

Arnaud Liefooghe
Univ. Lille, CNRS, CRIStAL
Inria Lille – Nord Europe

Lille, France
arnaud.liefooghe@univ-lille1.fr

Bilel Derbel
Univ. Lille, CNRS, CRIStAL
Inria Lille – Nord Europe

Lille, France
bilel.derbel@univ-lille1.fr

Kiyoshi Tanaka
Shinshu University
Nagano, Japan

ktanaka@shinshu-u.ac.jp

ABSTRACT
Dynamic Compartmental Models (DCM) can be used to study the
population dynamics of Multi- and Many-objective Optimization
Evolutionary Algorithms (MOEAs). These models track the compo-
sition of the instantaneous population by grouping them in com-
partments and capture their behavior in a set of values, creating a
compact representation for analysis and comparison of algorithms.
Furthermore, the use of DCMs is not limited to analysis, by creat-
ing models of the same algorithm with different configurations is
possible to extract new models by interpolation, and use them to
explore fine-grained configurations lying between the ones used
as a base. We illustrate the use of the model on some Multi- and
Many-objective algorithms, run on enumerable MNK-Landscapes
instances with 6 objectives for the analysis, and 5 objectives when
used as a tool to do configuration.
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1 INTRODUCTION
In recent years Multi- andMany-objective Evolutionary Algorithms
(MOEAs) have become established tools to solve optimization prob-
lems in several areas [2]. However, until now their use and develop-
ment lacks a deeper understanding of their dynamics, what makes
them successful sometimes, and what makes them fail. Modeling is
a powerful tool that could improve this situation, capturing MOEAs
properties in parameters that ease their analysis and could lead
towards improvements or new algorithms. Predictions obtained
could serve for algorithm selection or exploring configurations.

Dynamic Compartmental Models (DCMs) [5], are linear models
inspired in epidemiological compartmental models [3]. Similarly
to the way these models track the health status of individuals in a
population, DCMs do the same using the non-domination status
of solutions to capture the dynamics of MOEAs. In these models,
it is assumed that a MOEA population can be split into two or
more non-overlapping groups by some set of rules based on Pareto
dominance. The population size always remain constant, while
group sizes variate in a linear manner and the model tracks these
changes. By doing so, given the compartments composition at any
time t , the model can estimate how they will change in time t + 1
and so on.

The key element of the model is that translates algorithm dy-
namics’ in terms of compartments and parameters which can be
used for analysis or configuration of algorithms as we will show
in this work. For analysis we can look at the relationship between
compartments and the parameters, using them to draw conclusions
on the algorithm behavior during different stages of the search
process. For configuration, we present a methodology that allows
sampling the algorithm’s configuration space through the models.
Each model and its parameters are linked to an algorithm and its
configuration. We propose to interpolate the model’s parameters
to obtain models that represent configurations that lie in between
the ones used as samples. To illustrate this concept, here we focus
only on population size.

2 DYNAMIC COMPARTMENTAL MODELS
In this paper we will focus on a three compartmental DCM. The
population is split into three non-overlapping groups or compart-
ments. At each generation t , the values xt , yt and zt represent the
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proportion of the population that belongs to each compartment,
while fulfilling at all times xt + yt + zt = 1. If we were to repre-
sent the DCM in a time discrete manner, we would arrive at the
following equation system.


xt+1 = (1 − (α + β))xt + ᾱyt + β̄zt

yt+1 = αxt + (1 − (ᾱ + γ ))yt + γ̄zt

zt+1 = βxt + γyt + (1 − (β̄ + γ̄ ))zt

xt + yt + zt = 1

(1)

where α and β are coefficients that represent the loss in xt which
becomes a gain for yt and zt , respectively. ᾱ and γ represent the
loss in yt which becomes a gain for xt and zt , respectively. Finally,
β̄ and γ̄ represent the loss in zt .

In this work, we will use a DCM able to track performance by
following the discovery of new Pareto Optimal solutions. The first
rule separates solutions in two groups, the ones belonging to the
Pareto Optimal (PO) set and the ones that do not. For the second
rule, we take the first group and check when a solution appeared in
the current generation. Solutions only found in this and only this
generation belongs to the first compartment: PO Absolutely new
(POA). Solutions that have appeared in any generation counting
from the initial one to t − 1 belong to the second compartment:
PO Not new (PON). Finally, the third compartment contains all the
solutions that are not part of the PO set: Not PO (NPO).

Having determined what solutions each compartment will track,
we need to find a set of parameters that minimizes the difference
between the values produced by the modelDestimated and the actual
measured values Dmeasured that comes from the algorithms runs.
One easy way is to turn it into an optimization problem where we
want to minimize 1

n
∑n
i=1(Destimated − Dmeasured)

2 in other words
the mean square error mse. We solve this problem by using the
Covariance Matrix Adaptation Evolutionary Strategy [4] (CMA-
ES), a single-objective numerical optimizer.

3 ALGORITHMS AND TEST PROBLEM
The algorithms selected are four representatives Multi- and Many-
objective optimization algorithms. The Non-dominated Sorting Ge-
netic Algorithm-II (NSGA-II), Adaptive ϵ-Sampling ϵ-Hood (AϵSϵH),
Indicator Based EA (IBEA) with the hypervolume (HV) indicator,
and MOEA based on Decomposition (MOEA/D).

MNK-landscapes [1], a multi-objective test problem generator, is
used in all experiments. The parameter K controls the ruggedness
of the landscape, M is the number of objectives, and N the number
of variables. The instances used here have K = 1 bit, N = 20 bits
and M = 6, for the analysis example and M = 5 objectives for the
population estimation example.

All algorithms were run 30 times, with population size 200 and
given 100 generations for the 6 objective instance. As for the 5
objective instance, population size ranges from 150 to 750 in 50
increments, and the number of generations depends on the as-
signed budget of Function Evaluations (FE) and can be calculated as
GenMax = FE/Pop. The maximum number of FE was set to 10000
simulating a limited budget equivalent to 1% of the whole search
space (220 total possible values).

4 ALGORITHM ANALYSIS WITH DCMS
4.1 Quality of the found models
Following the procedure described in Section 2, create a model
for each algorithm on the problem instance with 6 objectives. We
conducted a visual inspection of the model estimation against the
measured data. For this, we take the compartments counts on the
initial generation for each of the runs and use the model to estimate
how they change from generation 1 to 100. Figure 1 to 3 shows the
estimation for the POA, PON and NPO compartments in red, while
in black is the measured values from the algorithms runs. From the
plots we can see that the models are capturing the changes in each
compartment for all algorithms, following the mean of all the runs.

4.2 Interpretation of the DCM parameters
Parameters in DCM relate two compartments, and in order to prop-
erly interpret them, we need to know that they encapsulate ac-
cording to the equations. Let us focus α and consider the DCM
model with the following compartments: POA, PON, NPO. Here
this parameter relates the number of POA and PON solutions. If we
were to expand the first two equations of the system (1).

POAt+1 = POAt − αPOAt + · · ·

PONt+1 = PONt + αPOAt + · · · .

Note that the values of POA and PON at time t+1 change in opposite
directions, both proportionally to POA at time t by αPOAt . Hence,
a loss in one compartment becomes gain in the other. However,
α can take positive or negative values. Thus, when α > 0, the
model tells us that the number of POA solutions reduces with time
proportionally to its previous value and the same amount increases
in PON. On the other hand, when α < 0, the model says that the
number of POA solutions increases proportionally to its previous
value and the same amount reduces in PON. In the above example,
α > 0 can be interpreted as negative feedback of POA on itself,
whereas α < 0 a positive feedback of POA on itself.

As an example, we are going to concentrate on two algorithms,
AϵSϵH and MOEA/D. We write the equations with the proper set of
parameters for each algorithm and simplify them to show how the
compartment depends on itself and the two other compartments.
This allows us to understand better the overall dynamics of the
DCMs. In the following, consider the equations marked with A as
the ones for AϵSϵH and withM the ones for MOEA/D.

POAA
t+1 = 0.5967POAA

t + 0.0489PONA
t + 0.0768NPOA

t

POAM
t+1 = 0.9621POAM

t − 0.0288PONM
t + 0.0319NPOM

t

PONA
t+1 = 0.9287PONA

t + 0.5305POAA
t − 0.0061NPOA

t

PONM
t+1 = 0.9684PONM

t + 0.0001POAM
t + 0.0292NPOM

t

NPOA
t+1 = 0.9293NPOA

t − 0.1272POAA
t + 0.0224PONA

t

NPOM
t+1 = 0.9389NPOM

t + 0.0378POAM
t + 0.0604PONM

t

In 6 objectives, even random sampling is able to find some PO
solutions, so it is expected to find some of them in the initial popu-
lation. According to the data, there are some PO solutions, so for
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our model they will be absolutely new since it is the initial popula-
tion, being them less than 1%, PON is 0 since there are no previous
generations, and the remaining ones are NPO.

We notice that AϵSϵH seems to retain more than 53% of POA
solutions as PON solutions, as indicated by the coefficient value
of the POAt component in the PON equation, while for MOEA/D
this value is very small, less than 0.01%. Thus MOEA/D is dropping
substantially more solutions than AϵSϵH. However, note also in
POA equations that POAt coefficient is 0.59 for AϵSϵH and 0.96 for
MOEA/D, which indicates that MOEA/D finds many more Pareto
absolutely new solutions than AϵSϵH. It is worth noting that POA
solutions in this instance are found mostly from previous POA
solutions, rather than from PON or NPO solutions. Note that the
analysis done here through the parameters can also be done by
inspecting the plots in Figures 1-3.

5 ESTIMATION OF POPULATION SIZES
5.1 Using splines to interpolate models
Our models are composed of six parameters (α , β ,γ , ᾱ , β̄ , γ̄ ), which
are linked to a particular combination of population size, algorithm
and problem, so for different configurations we would have other
set of parameters. We could then interpolate the values in the space
of parameters, and discover this way other configurations, however
for this work we only focus on the population size. In order to
interpolate the models, we make a spline for each parameter, taking
as data points the pair population size and parameter value.

The first step is selecting a range to explore and some sample
population sizes on the range. We run the algorithms to generate
the data to construct the models. Next, we fit the models to the data
and get the parameters. With this data, we now create splines for
each parameter. Finally, we use the splines to explore the range,
generating models in between population sizes used as samples.

Here for our example, the problem was a 5 objective MNK-
Landscape instance, and we decided to explore the range {150, 750}
with {150, 350, 550, 750} as sample points. We created then, new
points every 50, exploring 3 new population sizes between the
ones we actually had to run the algorithm. We pay the full cost of
creating four models, and obtain nine more very cheaply.

5.2 Selecting Population Size under a Budget
To do selection, we consider the number of Accumulated PO (Acc.
PO) solutions obtained by the algorithm with a budget of 10000 FE.
We obtain this value by accumulating the estimated POA count from
the model associated with each population size. For verification,
we analyze the estimated Acc. PO at the end of the budget from
fitted models and interpolated models, and compare then with the
actual measured values that we obtain running the algorithm. We
want to see if the models will allow us to discover which interval
between the sampled population shows promise.

Figure 4 shows on the left for sample population sizes, the av-
erage number of Acc. PO solutions at the end of 10000 FE for 30
runs of the algorithm. This sample population sizes were used as
knots for the spline. On the center we include a similar plot with
values produced by the fitted models in red, while the ones from
interpolated models are in black. Finally on the right side we have
now the measured values for all population sizes in the range. Red
ones represent the population sizes in the range used as knots for

the spline, and the ones in blue the interpolation ones. We use this
plot to check against the trends found by the models. In all plots
the error bars show the 95% confidence interval for each mean.

Looking at Figure 4 left and center plots, we can visually com-
pare the fitted model estimation to the measured values for the
population sizes used as knots. We see that for all sizes except 150
the fitted model gets very close to the measured average, in the
particular case of 750 is even a little higher. Nevertheless, as we
will see, even with an underestimating model as a knot, the trend
is still correctly replicated.

Now we shift the focus to the center and right figures, mainly
the estimations of our models obtained through interpolation. We
clearly see the influence of our first knot, 150, pulling down the esti-
mations of the interpolatedmodels between [150, 350]. Nevertheless
in this section the growing trend is still correctly maintained when
compared to the plot on the right with all the measured results.

Moving to the next interval of [350, 550], we find that our models
estimations get closer to the measured results, and also follows the
trend detecting that 400 and 500 obtain better values than 450.
Finally in the last interval of [550, 750], the trend is not correctly
replicated, as 700 places a bit higher than 650, which according to
the right side of the figure should be below. Since the fitted model
of 750 actually overestimates a little in this part, it seems to pull
the interval making 700 seem a better option. However, the relative
position of the knots points is still correct, as two of them place
higher than 750 as it should be, and neither of the group is higher
than the knot on left, 550.

Summarizing, if we were to trust only the model results, the
information obtained from the interpolated models will guide us
towards choosing a population size for our budget better than the
one used in our sampling. If we partially trust the model, it still will
guide us to a region worth exploring in detail.

6 CONCLUSION
In this work we presented some possible uses of Dynamic Compart-
mental Models, with an example as an analysis tool and also a small
step forward towards algorithm configuration with an example that
estimates population size given a budget. The key in both exam-
ples is the ability of parameters to capture the complex dynamics
in a numerical way which opens many possibilities, specially for
algorithm configuration.

In future works, we would like to propose new sets of rules that
does not involve PO solutions, to be able to test the DCMs on real
world problems and test the limits of this new tool.
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Figure 1: Model estimation vs measured PO Absolutely new data.

Figure 2: Model estimation vs measured PO Not new data.

Figure 3: Model estimation vs measured Non PO data.

Figure 4: [Budget: 10000 FE] Average Accumulated PO over population size. Left: Sampled population sizes used as knots for
the spline. Center:Model estimation for the knots and interpolated population sizes. Right:Measured values for all population
sizes.
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