
Solving Complex Problems with
Coevolutionary Algorithms

Krzysztof Krawiec1, Malcolm Heywood2
1Poznan University of Technology, Poland

2Dalhousie University, Canada

krawiec@cs.put.poznan.pl, mheywood@cs.dal.ca

http://gecco-2019.sigevo.org/

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the Owner/Author(s).

Copyright is held by the owner/author(s).
GECCO ’19 Companion, July 13 – 17, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07
https://doi.org/10.1145/3319619.3323384

Instructors
!  Krzysztof Krawiec is a Professor of Computer Science at Poznan University

of Technology, Poland. His primary research areas are genetic programming
and coevolutionary algorithms (CoEAs), with applications in program
synthesis, modeling, image analysis, and games. Dr. Krawiec co--chaired the
European Conference on Genetic Programming in 2013 and 2014, the ACM
GECCO GP track in 2015 and 2016, and is an associate editor of Genetic
Programming and Evolvable Machines journal. His work in the area of CoEAs
includes problem decomposition using cooperative coevolution, discovery of
underlying objectives in test-based problems, learning strategies for Othello
using competitive CoEAs, and solving other test-based problems.

!  Malcolm Heywood is a Professor of Computer Science at Dalhousie
University, Canada. His research investigates the utility of coevolutionary
methods under non-stationary environments (e.g., streaming data and
financial applications), and uses coevolution to facilitate the discovery of
agents for reinforcement learning tasks in games such as the Atari Learning
Environment, VizDoom and Dota 2. Dr. Heywood is a member of the editorial
board for Genetic Programming and Evolvable Machines (Springer). He was a
track co-chair for the GECCO GP track in 2014 and a co-chair for European
Conference on Genetic Programming in 2015 and 2016.

July 2019 2Solving complex problems with coevolutionary algorithms

3

Agenda
!  I. Introduction
!  II. Competitive coevolution

!  Core concepts
!  One-population competitive coevolution
!  Two-population competitive coevolution
!  Advanced topics

!  III. Cooperative coevolution
!  Core concepts
!  Case study: Evolving arbitrary sized teams
!  Case study: Non-stationary streams
!  Case study: Diversity maintenance and policy reuse
!  Case study: Multi-task learning under Arcade Learning Environment
!  Case study: Combining Competitive and Cooperative coevolution

!  IV. Closing remarks
July 2019 3Solving complex problems with coevolutionary algorithms

I. Introduction

July 2019 4Solving complex problems with coevolutionary algorithms

975

Canonical assumptions made by EA

! An absolute measure of fitness is available and computable.

!  ‘Complete’ definition of task / environment

! Solutions are (more or less) monolithic.

!  Each individual encodes a complete solution to a problem

!  Tasks are not explicitly decomposed.

! Coevolutionary algorithms (CoEA) revise these assumptions.

July 2019 5Solving complex problems with coevolutionary algorithms

What is a coevolutionary algorithm?

! A variant of EC where fitness function mandates the
individuals to engage into direct interactions.

! Fitness cannot be computed for isolated individuals.

! Formally:

! Evolutionary algorithm (EA): f: X � E

! Coevolutionary algorithm (CoEA): f: X1×X2×...×Xn � E,
where E is an evaluation codomain (typically R)

! Interaction = a tuple from X1×X2×...×Xn

July 2019 6Solving complex problems with coevolutionary algorithms

EA vs. CoEA

EA
Absolute measure of fitness f available

and computable for each individual
separately.

CoEA
Search gradient can be obtained only
by letting individuals interact. Exact

fitness may be not computable.

July 2019 7Solving complex problems with coevolutionary algorithms

Consequences

! Individuals' performances depend on each other (fitness is contextual)

! The solution of a problem can be:

! An element of Xi (as in an EA)

! Typical for competitive CoEA (with exceptions)

! Key questions: What to evolve against? Who is the best teacher?

! A combination of elements from Xis

! Typical for cooperative CoEA (with exceptions)

! Key questions: How to encourage cooperation? Divide and conquer.

! Pertains to so-called solution concepts, see later

! Remember: individual ≠ solution

July 2019 8Solving complex problems with coevolutionary algorithms

976

What is it good for?

!  CoEAs lend themselves conveniently to a few classes of problems of
theoretical and practical interest.

!  Competitive CoEAs: test-based problems, games, interactive domains

! Example: individual=game strategy, fitness=expected game
outcome

!  Cooperative CoEAs: problem decomposition, modularity, credit assignment

! Example: individual=a rule in a classifier, fitness=overall
accuracy of the classifier

!  Class of problems: co-search, co-optimization, generalized optimization
(Wolpert and Macready 2005)

July 2019 9Solving complex problems with coevolutionary algorithms

Other characteristics of CoEAs

! Operate under incomplete information (uncertainty)

!  Focus on evaluation and interaction schemes (less so on
search operators)

!  Individuals often maintained in several populations.

! Biological analogs:

! No global, static fitness function in Nature

! Nature does not optimize for anything; EAs do.

!  Individual's fitness results from its interactions with environment,
including other individuals of the same species

July 2019 10Solving complex problems with coevolutionary algorithms

Measuring progress:  
Subjective vs. objective fitness

! Subjective fitness: f calculated using the currently
available elements of Xis (a sample)
! Typically those available in the current population,

! Example: average game outcome against the opponents from
the current population

! Objective fitness: f calculated with the elements chosen
in a principled manner.  
Examples:
! Average game outcome against all possible opponents

! Game outcome against a human-crafted opponent.

July 2019 11Solving complex problems with coevolutionary algorithms

II.1. Competitive coevolution

July 2019 12Solving complex problems with coevolutionary algorithms

977

Class of problems tackled by competitive
CoEAs

!  Interactive domains
!  Sets of individuals (entities*)

!  Interaction function (payoff
function)  
g: X1×X2×...×Xn � R

!  When n=2, the second argument is
an opponent.

!  Note: g alone does not define the
search goal.

!  What is the solution to the
problem?

(*) Sometimes, but not always, identified with
candidate solutions

!  Solution concept (cf. Ficici 2004,
Popovici et al. 2012):
!  Criterion specifying whether a

potential solution
!  is better than another solution  

(in co-optimization),
!  is solution to a problem (in

co-search)

!  Most popular SC: Maximization of
Expected Utility (MEU):  
fo(x1) = E[g(x1,x2)]
!  A.k.a. generalization performance

(Chong et al. 2008)

!  Competitive CoEAs realize
knowledge-free approach to
solving problems posed in
interactive domains.

July 2019 13Solving complex problems with coevolutionary algorithms

Subjective fitness

!  Challenge: calculation of fo is often computationally infeasible.
!  Example: game of Othello: game tree complexity 1058

!  Number of unique strategies typically much higher

!  Solutions:
!  1. Fix the set of opponents.

!  For instance, well-performing known opponents (e.g., handcrafted by humans)

!  Strong bias, limited generalization

!  2. Draw the opponents at random
!  What is the 'right' distribution of opponents?

!  Drawing uniformly in the genotypic space does not result in desired (e.g., uniform)
distribution of skills/capabilities

!  3. Competitive coevolution

July 2019 14Solving complex problems with coevolutionary algorithms

Example: Game of Othello

!  Two-player, perfect-information, turn-
based, zero-sum game
!  Still unsolved
!  Sudden changes of game state

possible
!  Strategy = candidate solution
!  Competitive CoEA approach:

!  Evolve board evaluation function b()
!  Use it in one-ply search: simulate all

legal single moves from the current
state and choose the one that
maximizes b.

!  Popular representations of board
evaluation functions: weighted piece
counter and n-tuples

July 2019 15Solving complex problems with coevolutionary algorithms

Weighted Piece Counter (WPC)

!  Single linear neuron with 64
weights: b(s) = Σi wisi

!  Top: handcrafted Othello WPC
board evaluation function
(standard WPC heuristics)

!  Bottom: a function evolved using
one-population competitive
CoEA, hybridized with temporal
difference learning (TDL)
(Szubert, Jaśkowski, Krawiec
2009)

July 2019 16Solving complex problems with coevolutionary algorithms

978

N-tuple networks  
(Browning 1959, Lucas 1997)

!  Combinatorial network with lookup
tables holding all combinations for
(usually randomly selected)
subsets of (usually adjacent)
board locations

!  3n weights for a single n-tuple for
tri-state boards (for Othello: empty,
black, white)

!  Top: 3-tuple and 4-tuple for base-3
numbers (white, empty, black):
!  2*32 + 0*31 + 1*30 = 19
!  1*33 + 0*32 + 2*31 + 1*30 = 34

!  Bottom: Examples of CTDL co-
evolved n-tuples (Szubert,
Jaśkowski, Krawiec, 2013)

July 2019 17Solving complex problems with coevolutionary algorithms

One-population competitive CoEA

!  The simplest setup to approach MEU problems.

!  Applicable when X1 = X2 = ... = Xn = X

!  E.g. symmetric games

!  Usually: fs(x) = Σx’∈X’ g(x,x’), where X’ is a sample drawn from current population P

!  Interaction = single game (symmetric games) or two games (asymmetric games)

!  Interaction schemes:

!  Round-robin: n(n-1)/2 interactions (X’ = P \ {x})

!  k-random opponents: kn interactions (|X’| = k)

!  Single-elimination tournament (SET): n interactions

!  Pair the individuals at random. Winners pass to the next stage. Fitness is the stage reached in
the tournament.

July 2019 18Solving complex problems with coevolutionary algorithms

Highlights of one-pop competitive CoEAs

!  Iterated Prisoner’s Dilemma (Axelrod 1987)
! Backgammon (Pollack & Blair 1998)
! Checkers (Samuel 1959, Fogel 2002)
! NERO, Blackjack, Pong, Small-board Go, Tetris, …

July 2019 19Solving complex problems with coevolutionary algorithms

Fitnessless Coevolution for Ant Wars  
(Jaśkowski, Krawiec, Wieloch 2008)

!  FC: Pick k individuals at random. Run a SET on them and return the winner.

!  Evolved the winner of the Ant Wars GECCO'08 contest
!  Two-player partially observable game

!  Agents (ants) see only a 5x5 fragment of the toroidal 11x11 board

!  The goal: collect more food pellets than the opponent.

!  Strategy representation: stateful GP program (intra-game memory)

July 2019 20Solving complex problems with coevolutionary algorithms

979

Example: Ant Wars

Complex behaviors emerged: systematic search, rational
choice of trajectories, …

July 2019 21Solving complex problems with coevolutionary algorithms

Example: Ant Wars

… memorizing locations of food pellets, opponent avoidance,
pseudo-suicide, …

! Online demo: http://www.cs.put.poznan.pl/kkrawiec/antwars/
July 2019 22Solving complex problems with coevolutionary algorithms

Digression: Importance of transitivity

!  Fitnessless Coevolution is not equivalent to fitness-driven one-population
coevolution if there are cycles in interactions in between individuals (Jaśkowski,
Krawiec, Wieloch 2008)

!  Example: Tic-tac-toe strategies A, B, C: place a mark in the numbered locations
if free, otherwise in the location marked by asterisk (*)

!  A beats B, and B beats C. But A does not beat C, just the opposite.
!  Tic-tac-toe is intransitive.
!  No scalar fitness function can model this (can realize only complete orders).

July 2019 23Solving complex problems with coevolutionary algorithms

One-pop competitive CoEAs as self-
learning

!  Individuals create search gradient for
each other.

!  A form of (population-level) self-learning

!  Can be seen as an analog to self-play in
RL (individual-level)

!  Q: Is this sufficient to guarantee
progress?

!  A: No.  
Coevolutionary pathologies are
lurking out there.

July 2019 24Solving complex problems with coevolutionary algorithms

980

Coevolutionary pathologies

!  Cycling: evolution keeps rediscovering the same solutions

!  Particularly likely if game is intransitive.

!  Disengagement: opponents are either trivial or way too difficult to beat.

!  Overspecialization (focusing): mastering the skills of beating some
opponents while neglecting the others.

!  Forgetting: opponents defeated in the past turn out to be difficult again.

!  See review and rigorous analysis in (Ficici 2004)

!  Main causes:

!  No access to objective fitness

!  Population responsible for both search and providing search gradient for itself

July 2019 25Solving complex problems with coevolutionary algorithms

Coevolutionary archive competitive
CoEAs (one-population)

Archive = a container storing well-
performing individuals, maintained
alongside the population.

!  Provides long-term memory
!  Builds search gradient
!  Prevents some pathologies
!  Maintains diversity and progress

Archives help maintaining historic
progress (Miconi 2009)

!  Not necessarily progress in the
global, objective sense.

How it works:
!  Search algorithm submits some

individuals to the archive
!  Archive accepts some of them
!  Individuals in population interact with

peers and archival individuals
!  Outcomes of interactions augment

the fitness
!  Simplest archive: best-so-far

individual
!  Hall of fame (Rosin & Belew, 1997)

!  Stores all best-of-generation individuals
found so far

!  Population members play against each
other and against the opponents from
HoF

July 2019 26Solving complex problems with coevolutionary algorithms

II.2. Two-population competitive
CoEAs

July 2019 27Solving complex problems with coevolutionary algorithms 28

Two-population competitive CoEAs

!  One-pop competitive CoEA: Population responsible for both searching
for good solutions and providing search gradient for itself.

! Why not separate these functions?

!  Two-pop competitive CoEAs: maintain separate populations of:

! candidate solutions S ⊂ X1 – intended to solve the problem

!  tests T ⊂ X2 – provide only search gradient for the individuals in S

!  Applicable in symmetric (X1 = X2) and asymmetric setting (X1 ≠ X2)

July 2019 28Solving complex problems with coevolutionary algorithms

981

Two-population competitive CoEA

!  Typical interaction scheme: all-to-all
!  S and T co-evolve in parallel
!  No transfer of individuals between S and T

July 2019 29Solving complex problems with coevolutionary algorithms

How to evaluate the tests?

!  Individuals in S rewarded for performing (aim at maximizing EU).

!  How to reward the tests in T? Maximize EU as well?

!  Pathologies likely

!  Tests should be neither too easy nor to hard for the individuals in S

!  Idea: reward tests for informing, e.g.:

!  Distinctions: for every pair  
of distinguished solutions

!  Informativeness: for unique  
partitioning of S

!  Hybrids (e.g., with EU)

July 2019 30Solving complex problems with coevolutionary algorithms

Test-based problems

!  With two populations, the tests can be conceptually different from
candidate solutions.

!  Test-based problem (S, T, G, Q) (Popovici et al., 2012)
! G – payoff matrix
! Q – solution quality function

!  Examples:
!  Asymmetric games (strategies vs. opponents)

!  E.g., tic-tac-toe, Othello,
!  Control problems (controllers vs. initial conditions)

!  Pole balancing, car control, etc.
!  Learning from examples (hypotheses vs. examples)
!  Program synthesis with GP (programs vs. tests)
!  In general: co-optimization and co-search

!  Also applicable in symmetric settings

July 2019 31Solving complex problems with coevolutionary algorithms

Pareto-coevolution 
(Ficici and Pollack, 2001; Noble and Watson, 2001)

!  Each test considered as a separate objective.
!  Transforms a test-based problem into a multiobjective

optimization problem (or many-objective one).
!  Example:

! s1 solves both tests t1 and t2
! s2 solves only t2
! s3 solves only t1
! s1 dominates both s2 and s3

!  Problem: large number of tests (and thus objectives).
!  Sparse dominance relation.

July 2019 32Solving complex problems with coevolutionary algorithms

982

Coevolutionary archives  
(two-pop)

!  General scheme: individuals are submitted to archive and get
accepted or rejected by it.

!  Separate archives for solutions and tests

July 2019 33Solving complex problems with coevolutionary algorithms 34

Coevolutionary archive algorithms  
(two-pop)

!  Iterated Pareto-Coevolutionary Archive, IPCA (de Jong 2004)
!  A new solution s is added to Sar if no s’ ∈ Sar dominates s. In that case:

!  All s” ∈ Sar dominated by s are removed from Sar

!  The test t that made it possible for s to be added to Sar is added to Tar

!  Guarantees monotonous progress
!  Unlimited-size archive
!  Tests provide for distinctions between individuals

!  Layered Pareto-Coevolutionary Algorithm, LAPCA (de Jong 2004)
!  Merges the current archive and the submitted elements and builds a Pareto ranking of

solutions
!  The first k layers of the ranking remain in Sar, the remaining ones are discarded
!  Tar keeps the tests that support Pareto dominance in Sar

!  No guarantee of monotonous progress, but (somehow) controllable size

!  IPCA and LAPCA perform well only on small, usually artificial problems.

July 2019 34Solving complex problems with coevolutionary algorithms

Solving complex problems with coevolutionary algorithms 35

Coevolutionary archives

!  Maintaining archives can be costly
!  Many interactions required to check if a solution should be added

!  Mitigation: MaxSolve (De Jong 2005), for MEU solution concept
!  Keep in Sar up to n solutions that solve the most tests (at least one), and in Tar all

tests that a solved by at least one s ∈ Sar
!  [Behaviorally] duplicate tests are discarded
!  Monotonic: will not miss solutions that increase the number of solved tests

!  When overhead of maintaining an archive counted in, non-archived
algorithms can be equally efficient.

!  Other types of archives (Jaśkowski & Krawiec 2010)
!  Related concepts: ideal evaluation and complete evaluation set  

(E. de Jong and Pollack 2004)
!  The set of tests that preserves dominance relation between the solutions in S
!  Determining the minimal complete evaluation set is NP hard (Jaśkowski &

Krawiec 2011)

July 2019 35

II.3. Advanced topics in
competitive coevolution

(selection)

July 2019 36Solving complex problems with coevolutionary algorithms

983

Coordinate systems

! An interaction matrix defines a dominance relation
! Dominance relation defines a partial order in the set of

individuals ⇒ partially ordered set, poset

! A poset can be 'stretched' along multiple dimensions
(underlying dimensions).

! Dimensions form a coordinate system (Bucci et al. 2004):
! Axis = ordered list of tests (the most popular formulation)

July 2019 37Solving complex problems with coevolutionary algorithms

Coordinate system: an example
•  The game: Nim-1-3

–  Players in turns take sticks from two piles of size 1 and 3.
•  Total of 144 strategies,

–  but only 6 behaviorally unique for the first player (S), and 9 for the
second player (T).

•  Minimal coordinate system
–  Some tests not needed to reproduce the dominance relation

•  Game dimension: 2

July 2019 38Solving complex problems with coevolutionary algorithms

Coordinate systems: some results

!  Can accelerate convergence and/or guarantee progress: Dimension
Extraction Coevolutionary Algorithm, DECA (de Jong and Bucci 2006)

!  Reveal the internal structure of a problem and relate to problem
difficulty

!  Hypothesis: dimensionality of coordinate system is a yardstick of
problem difficulty

!  The set of all tests forms the complete evaluation set (de Jong &
Pollack 2004)

!  Game dimension = width of the poset (Jaśkowski & Krawiec 2011)

!  The number of underlying objectives for an abstract problem seems
to be limited by a logarithm of the number of tests.

July 2019 39Solving complex problems with coevolutionary algorithms Solving complex problems with coevolutionary algorithms 40

Problems with exact coordinate systems

!  Problem dimension may be
underestimated when only
samples of S and T are used.

!  Finding minimal CS for a
problem is NP-hard (Jaśkowski
& Krawiec 2011)

!  Heuristics exist but
overestimate the number of
dimensions

!  Nontrivial test-based problems
have very high dimensionality

!  Q: Can we efficiently
‘approximate’ the underlying
dimensions?

July 2019 40

984

Heuristic discovery of underlying objectives

!  Idea:

! Construct efficiently approximate underlying objectives from the
information available at the given stage of search process

! Use the derived objectives in multiobjective EA setting

!  Derived objectives rather than underlying objectives

! Approximate (do not reproduce the original dominance)

! Transient (depend on the current populations)

!  Technical means: clustering of tests

July 2019 41Solving complex problems with coevolutionary algorithms

Heuristic discovery of underlying objectives  
(Krawiec & Liskowski 2015, Liskowski & Krawiec 2016)

Upside: denser dominance relation. Downside: ‘false positive’ dominance possible

July 2019 42Solving complex problems with coevolutionary algorithms

Solving complex problems with coevolutionary algorithms 43

Heuristic discovery of underlying objectives

! Results for 9-choice iterated prisoner’s dilemma, IPD (MEU)
! k-MEANS: k objectives derived using k-means clustering algorithm

! k-RAND: objectives built by random partitioning of tests into k objectives

! Applied also in non-coevolutionary setting with GP, with k adjusted automatically
(Krawiec & Liskowski 2015). Better than GP and RAND, comparable to IFS.

July 2019 43 Solving complex problems with coevolutionary algorithms 44

Heuristic discovery of underlying objectives  
(Liskowski & Krawiec 2016)

July 2019 44

985

Genetic Programming: Program
synthesis as a test-based problem

!  In GP, programs are evaluated by confronting them with (a sample of) tests
!  S = population of candidate programs
!  T = population of tests (fitness cases)

!  Simple variant: Pairwise Comparison of Hypotheses (Krawiec 2001)
!  Fully-fledged coevolutionary approach: (Arcuri & Yao 2014)

!  Synthesis from formal specification (precondition + postcondition)
!  Co-evolving sets of unit tests in T alongside with programs in S
!  Strongly-typed GP
!  Tested on nontrivial benchmarks: MaxValue, AllEqual, TriangleClassification, Swap,

Order, Sorting and Media
!  Better than random sampling of tests (particularly when using specialized sub-

populations corresponding to parts of formal specification)
!  Related: collecting test cases from program verification in spec-based GP

(Krawiec, Bladek, Swan 2017)

July 2019 45Solving complex problems with coevolutionary algorithms

Genetic Programming: Alternative
definitions of underlying objectives

!  Non-negative matrix factorization (NMF) allows decomposing the interaction matrix G
into a pair of matrices W, H, where the columns of W can be interpreted as
underlying (derived) objectives: DOF (Liskowski, Krawiec 2016)

!  Empirical evidence for DOF outperforming standard GP
!  NMF can be applied also to sparse matrices: SFIMX (Liskowski, Krawiec 2016):

1)  Perform only a fraction of interactions in G.
2)  Use NMF to restore the complete G and so define a surrogate fitness.

•  Related: Neural Estimation of Interaction Outcomes (Liskowski, Krawiec, Wieloch
2018)

July 2019 Solving complex problems with coevolutionary algorithms 46

Solving complex problems with coevolutionary algorithms 47

Hybridization with RL

!  CoEAs are generate-and-test techniques (like EA)
!  In contrast, gradient-based methods provide ‘directed’ corrections/updates of

parameters
!  Can be more efficient in high-dimensional problems
!  Complementary: CoEAs learn slower than TDL but eventually outperform it (Lucas &

Runarsson 2006)

!  Coevolutionary Temporal Difference Learning, CTDL (Krawiec & Szubert
2011, Szubert et al. 2013)
!  Interleave one-population coevolution (with round-robin) with TD(0)
!  CoEA picks the ‘right’ opponents, TDL tunes the solutions in a self-play mode
!  CoEA modifies the topology of n-tuples. TDL only affects the weights.

!  A form of memetic algorithm (genetic local search) (Moscato 1989): individuals’
interactions with the environment influence their genotypes (Lamarckian
evolution).

!  Related to: adversary reinforcement learning

July 2019 47 Solving complex problems with coevolutionary algorithms 48

Hybridization with RL

! Othello, n-tuples (Szubert, Jaśkowski,
Krawiec 2013)

! Compared also to ETDL= EA+TD(0)

! Othello Evaluation Function League

! Ranked according to average performance
against standard heuristic WPC
(handcrafted strategy; moves partially
randomized) (as of 2011)

! http://algoval.essex.ac.uk:8080/othello/html/
Othello.html

! ETDL better on predefined opponent
(heuristic WPC)

! CTDL produces more versatile players

July 2019 48

986

Coevolutionary shaping

!  Shaping = key concept in behavioral psychology (Skinner 1938)

!  Expose the learner to a series of training episodes of gradually increasing
difficulty.

!  Motivation: Tasks can be too difficult to learn autonomously.

!  Example: To train a pigeon to strike a ball, first reward looking at it, then approaching
it, and only then striking the ball with the beak.

!  Used with success in Reinforcement Learning, e.g. pole balancing (Selfridge
1986)

!  Simplified version of tasks generated by relaxing/parameterizing the original one

!  E.g. change the length of the pole, increase the mass, etc.

!  Related to: incremental evolution, staged evolution, environmental
complexification

!  Requires human intervention (decide how to relax the tasks, order them, etc.)

July 2019 49Solving complex problems with coevolutionary algorithms

Coevolutionary shaping

Bottom line: Coevolutionary shaping works as well as manual shaping,
but requires less parameter tuning (Szubert 2014, Szubert et al. 2013)

July 2019 50Solving complex problems with coevolutionary algorithms

Competitive Coevolution:  
Key take-home messages

! A competitive CoEA can guide itself towards the optimum, even
though it does not have access to objective fitness.
! However, this can be ineffective due to pathologies.

! Archives (and populations of tests in two-pop coevolution) form long-
term memory and accumulate knowledge about a problem.

! Coordinate systems and underlying objectives are examples
of alternative search drivers.
! Aim at widening the ‘evaluation bottleneck’ and making search

algorithm better-informed.

! CoEAs are particularly effective for adversarial problems.
! Many problems of practical interests can be posed in this way.

July 2019 51Solving complex problems with coevolutionary algorithms

Not covered in this tutorial
! Measuring and visualizing progress (e.g., CIAO plots)

! Artificial problems: number games. Strategies represented as vectors of n elements.

! Compare-on-all: A solution wins if it is better on all elements

! Compare-on-one: a test picks a dimension at random; the solution wins if it’s greater on that dimension

! Other solution concepts (Ficici 2004, Poppovici et al. 2011)

! Simultaneous maximization of all outcomes, Nash equilibrium, Pareto-optimal set, Algorithms: (Ficici 2004)
and review in (de Jong 2005)

! Deciding upon the final outcome of a CoEA: “output mechanism” (Popovici and Winston 2015)

! Random Sampling Evolutionary Algorithm (Chong et al. 2008) - no true coevolution, but hard to
beat using competitive CoEAs.

! Coevolutionary free lunches (Wolpert & Macready 2005; Service and Tauritz 2008; Popovici
and Winston 2015)

! Hybridization with CMA-ES (Jaśkowski & Szubert, 2015)

! In-depth analysis of relations between test-based co-optimization and supervised learning
(Popovici, 2017)

July 2019 52Solving complex problems with coevolutionary algorithms

987

III. Cooperative Coevolution

July 2019 53Solving complex problems with coevolutionary algorithms

Cooperative Coevolution

! Answers the question:
! How to encourage collaboration?

! Metaphor:
! Divide and conquer!

! Why (is it useful?): Promoting modularity / reuse
! additional clarity in: (relative to a monolithic solution)

! credit assignment
!  search space projected into multiple smaller search spaces
!  agents do not need to solve all the task

! solution transparency
! capacity to react to changes (Simon’s parable of the two watch makers)

!  Fitness: who to credit for what?
! generalist pathology:

! individuals rewarded for maximizing the number of collaborations
! stable / mediocre solutions rather than optimal solutions

July 2019 54Solving complex problems with coevolutionary algorithms

A Metaphor…

! “species [individuals] represent solution components.
Each individual forms a part of a complete solution but
need not represent anything meaningful on its own. The
components are evolved by measuring their contribution
to complete solutions and recombining those that are
most beneficial to solving the task.” [Gomez et al., (2008)]

! Central questions
! How to:

! How to compose a candidate solution (team)
! Distinguish between credit to the team versus that to team

members
! Learn context
! Maintain diversity
! Continuously adapt/complexify

July 2019 55Solving complex problems with coevolutionary algorithms

Cooperative Coevolution for complex
systems : Some milestones

!  Neural Networks
!  Moriarty, Miikkulainen (1998)
!  Potter & de Jong (2000)
!  Gomez et al. (2008)

!  Genetic Programming
!  Krzystof & Bhanu (2006, 2007)
!  Thomason & Soule (2007), Rubini et al.

(2009)
!  Lichodzijewski & Heywood (2008)
!  Wu & Banzhaf (2011)

!  Formulating fitness functions
!  Panait et al. (2006, 2008)
!  Agogino & Tumar (2008), Knudson &

Tumar (2010)
!  Non-stationary tasks

!  Agogino & Tumar (2008)
!  Vahdat et al, (2015)

!  Heterogeneity versus homogeneity
!  Agogino & Tumar (2008)
!  Waibel et al. (2009)
!  Gomes et al. (2018)

!  Diversity maintenance
!  Lichodzijewski et al. (2011)
!  Doucette et al. (2012)
!  Kelly & Heywood (2014, 2018a)
!  Gomes et al. (2014, 2017)

!  Reinforcement Learning (RL)
!  Luke et al. (1997)
!  Moriarty & Miikkulainen (1998)
!  Gomez et al. (2008)
!  Agogino & Tumar (2008)
!  Knudson & Tumar (2010)
!  Rubini et al. (2009)
!  Doucette et al. (2012)

!  Visual Reinforcement Learning
!  Kelly & Heywood (2017a,17b, 18b)
!  Smith & Heywood (2018, 19)

!  External memory for Coop. Coev.
!  Smith & Heywood (2019a, 19b)

July 2019 56Solving complex problems with coevolutionary algorithms

988

Cooperative Coevolution: An architecture  
(Potter & De Jong, 2000)

P1 P2 Pn

g1 g2 gn

Task domain

Candidate
Solution

Prior decomposition of the solution into ‘n’ independent populations (species)

July 2019 57Solving complex problems with coevolutionary algorithms

Biased and Lenient cooperation 
(Panait et al., 2006), (Panait et al., 2008)

Biased cooperation
! Consider team versus

individual fitness
!  Individuals receive avg. of

fitness from teams
! Promotes generalists
! Hitchhiking

! Recommend defining
individual fitness as
! an *optimal* team of

collaborators
! Not clear how an *optimal*

collaborator set is found in
the general case

Lenient cooperation
!  Individual fitness

! MAXi in team (teami fitness)

! Hitchhicking still exists

!  Is hitchhiking all negative?
! Enables individuals to find

their niche
! Provides a memory of

previous / alternative
policies

July 2019 58Solving complex problems with coevolutionary algorithms

Coevolving a cascade network  
(Potter & De Jong, 2000)

x0

x1

+

w0

w1

w2

y1

-1

+ y2

w0

w1

w2

-1

+ y3

w0

w1

w2

-1

w3

w3

w4

Individual
from pop #1

Individual
from pop #2

Individual
from pop #3

July 2019 59Solving complex problems with coevolutionary algorithms

SANE with blueprints  
 (Moriarty & Miikkulainen, 1998)

Blueprint population
(neural networks)

Weight population
(weights & connections)

Fixed	length	
Prior	topology	

July 2019 60Solving complex problems with coevolutionary algorithms

989

Difference evaluation functions  
(Agogino & Tumar, 2008), (Knudson & Tumar, 2010),  

(Codly & Tumar, 2012)
!  Global fitness

!  Performance of entire collective
!  Difficult to identify the contribution

from each agent
!  Local fitness

!  Performance of single agent
!  Difficult to encourage non-

overlapping collective behaviours
!  Difference evaluation function

(Di)
!  Explicitly estimate value added by

agent ‘i’
!  Global fitness needs to be locally

‘decomposable’
!  Agents assigned w.r.t. physical

locality to distributed sub-tasks
!  Form of ‘spatial embedding’

!  Di formulation
!  Di = G(s) – G(s-i + Ci)

!  G(s)
!  G(") is the global evaluation function
!  ‘s’ state of the system

!  s-i
!  States for which agent ‘i’ have no

contribution
!  Ci

!  Default vector of constants
!  Observations

!  In the worst case s-i is empty
!  Agent ‘i’ impacts on all states

!  Di directly expresses the impact of
agent ‘i’ not present

!  Limited by capacity to design
appropriate `difference’ expression

July 2019 61Solving complex problems with coevolutionary algorithms

See also ‘Factored Evolutionary Algorithms’ (Strasser et al., 2017)

Cooperative Synapse NeuroEvolution 
(Gomez et al., 2008)

! Select Parents
! NNs (say, top 25%)

! Variation
! 75% children

! Sort Pi w.r.t. f(wij)
! Pi : f(wi1) > f(wi2) >…

f(wiβ)
! Stochastic permutation

of Pi content
! Pi : f(wi1) f(wi2) … f(wiβ)

Wa1	

Wa2	

Wa3	

Waβ	

Wb1	

Wb2	

Wb3	

Wbβ	

Wc1	

Wc2	

Wc3	

Wcβ	

Pa																							Pb																				Pc	

NN1	

NN2	

NN3	

NNβ	

July 2019 62Solving complex problems with coevolutionary algorithms

Orthogonal evolution of (GP) teams (1)  
(Thomason & Soule, 2007), (Rubini et al., 2009)

! Motivation
! Team selection:

! Good cooperation
! Poor individual fitness

! Island (individual)
selection:
! Poor cooperation
! Strong individual fitness

! OET1 (OET2)
! Select w.r.t individuals

(teams)
! Replace w.r.t. teams

(individuals)
GP (individuals)

capable of
performing role ‘i’

Team ‘j’

Fixed number of team members

July 2019 63Solving complex problems with coevolutionary algorithms

Orthogonal evolution of (GP) teams (2)  
(Thomason & Soule, 2007), (Rubini et al., 2009)

OET1
! Team = NULL
! Select best individual per

role
! Create 2 such teams
! Apply variation operators
! Evaluate fitness
! Replace worst teams

OET2
! Select 2 best teams
! Apply variation operators
! Evaluate fitness
! Award fitness to

individuals in same team
! Replace weakest

individuals

July 2019 64Solving complex problems with coevolutionary algorithms

990

Level of Decomposition 
(Krawiec & Bhanu, 2005), (Krawiec & Bhanu, 2007)

P1	 Pn	

Synthesize	ONE	
genotype	

GP	

Define	Feature	
Vector	(FV)	

Classific-
aHon	

P1	 Pn	

Define	FV1	

Classific-
aHon	

GP1	 GPn	

Define	FVn	

Synthesize	
Feature	Vector	

Classif-
ier(1)	

Classif-
ier(n)	

Vote	

P1	 Pn	

Define	FV1	

GP1	 GPn	

Define	FVn	

July 2019 65Solving complex problems with coevolutionary algorithms

Agent Similarity/Diversity Ratio 
(Gomes et al. 2018)

July 2019 Solving complex problems with coevolutionary algorithms 66

Agent:	A2	
Policy:	a1,	a2,	…	a50	

Agent:	A1,	A3,	A4	
Policy:	b1,	b2,	…	b50	

Coevolving a 5 agent team using 2 populations

(A1, b7), (A2, a4), (A3,
b7), (A4, b7)

Compose & evaluate a team Pop.1 Pop.2

Splitting (w.r.t. Pop. 1)
Agent:	A3,	A4	

Policy:	b1,	b2,	…	b50	

Agent:	A1	
Policy:	b1,	b2,	…	b50	

Pop.2b Pop.2a

Merge (w.r.t. Pop. 1 & 2a) Agent:	A1,	A2	
Policy:	a1,	…,	a30,	b1	…,	b20	

III.1 Case Study – Evolving
arbitrary sized teams

Symbiosis, diversity maintenance, and separating
action from context

July 2019 67Solving complex problems with coevolutionary algorithms

Abstract Model of Symbiosis  
(Maynard Smith, 1991)

E
co

lo
gi

ca
l c

oe
xi

st
en

ce

Different subsets
of individuals

coexist

Compartmentalization
of the subsets

Synchronized
replication

Increasing organism complexity

July 2019 68Solving complex problems with coevolutionary algorithms

991

Symbiotic Bid-Based GP (SBB)  
(Lichodzijewski & Heywood, 2008, 2010)

Host	(Team)	PopulaHon	
Fixed	size	

Symbiont	(Program)	Pop.	
Dynamic	size	

Between Team:
Diversity

Maintenance

Within Team:
Program

Cooperation

Bid-based GP
(context)

July 2019 69Solving complex problems with coevolutionary algorithms

Achieving Symbiont Context 
Bid-based GP

Action Bid

Scalar Program

Instruction
Set

Single ‘atomic’
Action

Bid-based	GP	
individual	

July 2019 70Solving complex problems with coevolutionary algorithms

Team (Host) Fitness

! Outcome vector, G(!)
! Point (p(k)) to Team/Host (h(i)) Outcome

G(h(i), p(k)) = Domain specific reward on training case p(k)

! Inter Host Diversity Maintenance
! Fitness sharing (see also behavioural and novelty

measures)

benefit significantly from the capacity to build hierarchical
policies.

2. SYMBIOTIC BID-BASED GP
The generic architecture for SBB explicitly enforces sym-

biosis by separating host and symbiont into independent
populations [13]. Each host represents a candidate solution
in the form of a set of symbionts existing independently in
the symbiont population. Performance is measured relative
to the interaction between training scenarios (points) and
host. A breeder model of evolution is assumed, thus a fixed
number of hosts and points are deleted/ introduced at each
generation. The respective properties of symbiont and host
population are developed below. Note that space precludes a
complete description of the algorithm [13]; instead we draw
the reader’s attention to the specific major di�erences in-
troduced here for applying SBB to the temporal di�erence
domain i.e., constructing policy trees. Interested readers are
referred to online resources for further details [10, 11].

2.1 Representation and execution

2.1.1 Symbiont Population
Members of the symbiont population assume a Bid-Based

GP representation [12]. As such, each symbiont, sym, is
represented as a tuple ⌃a, p⌥; where a is an action as se-
lected from the set of atomic actions associated with the
task domain and p is the corresponding symbiont’s program.
Without loss of generality, a linear representation is assumed
[3]. Execution of a symbiont’s program results in a corre-
sponding real-valued outcome in the output register, R[0].
In order to encourage a common bidding range from the out-
set, this is mapped to the unit interval through the sigmoid
operator, or sym(bid) = (1+exp(�R[0]))�1. The linear rep-
resentation leads to programs being defined by a simple reg-
ister addressing language of the form: 1) Two argument in-
structions, or R[x] := R[x]⌃op2⌥R[y]; op2 ⌅ {+,�,÷,⇥}; 2)
Single argument instructions, or R[x] := ⌃op1⌥(R[y]); op1 ⌅
{cos, ln, exp}; 3) A conditional statement of the form “IF
(R[x] < R[y]) THEN (R[x] := �R[x]). In addition, R[y] can
be either a register reference or index a state variable.

2.1.2 Host Population
Symbionts are explicitly limited to deploying a single ac-

tion. Thus a host needs to identify relevant subsets of sym-
bionts that are capable of collaborating or lateral task de-
composition . To do so, each host indexes a subset [2, ..., �]
of the symbionts currently existing in the symbiont popula-
tion. Fitness evaluation is only performed for hosts, sym-
bionts do not have a fitness. Thus, for each host, hi, fitness
is evaluated with respect to a set of initial configurations of
the task domain, as defined by individuals from the point
population, pj . For each task initialization, pj , a series of in-
teractions – defining an episode – occur between task’s state
variables and action as suggested by the host presently under
evaluation. Each training episode ends when a task specific
end condition or a computational limit is encountered (see
Section 3).

In the case of SBB, each interaction between task and host
has the following form:

1. Present the state variables from the task domain at
time step ts, or ⇥s(ts);

2. Execute all (symbiont) programs identified by host,
hi, resulting in a matching number of symbiont bids
or ⇧sym ⌅ hi : sym(bid(ts)), where sym(bid(ts)) is
the bid value resulting from execution of a symbiont’s
program (Section 2.1.1);

3. Identify the ‘winning’ symbiont as that with the max-
imum bid from host hi or,
sym⇥ = argsym⇤hi

max(sym(bid(ts)));

4. Present the action from the winning symbiont to the
task domain and update the state variables accordingly
or ⇥s(ts + 1) ⇤ task ⇤ sym⇥(a); where sym⇥(a) is the
action of the winning symbiont identified at Step (3).

Symbionts therefore use bidding to establish the context
for deploying their respective action. The number of sym-
bionts per host and ‘mix’ of actions represented by a host
are both an artifact of evolution. The relative uniqueness
of the distribution of goal satisfaction across the host and
point populations will be discounted under competitive fit-
ness sharing [17], Section 2.2.2. Should a single dominant
policy not emerge then fitness sharing represents the prin-
cipal scheme for developing meta action diversity.

2.2 Selection and Replacement

2.2.1 Point Population
The role of the point population is to define a sample of

initial task configurations with su⇥cient diversity to provide
variation in the behaviours of hosts as measured through the
fitness function. A tabula rasa approach is assumed in which
a simple stochastic sampling heuristic is adopted. At each
generation Pgap points are removed with uniform probabil-
ity and a corresponding number of new points introduced.
The process for initializing / generating points is naturally a
function of the task domain itself and will be detailed within
the context of the Acrobot handstand task (Section 3).

2.2.2 Host Population
As per the point population, a fixed number of hosts,

Hgap, are removed at each generation. Host removal is ap-
plied deterministically with the worst Hgap hosts removed
at each generation. However, assuming a competitive fit-
ness sharing formulation [17] maintains diversity in the host
population. Thus shared fitness, si, of host hi takes the
form:

si =
X

k

G(hi, pk)P
j G(hj , pk)

!3

(1)

where G(hi, pk) is the task dependent reward defining the
quality of policy hi on test point pk (see Section 4).

Naturally, deleting the worst Hgap hosts may result in
some symbionts no longer receiving (host) indexes. Given
that such symbionts must have been associated with the
worst performing hosts, these symbionts are also deleted.
A secondary implication of this is that symbiont population
size will vary whereas the host population size remains fixed.

2.3 Variation Operators
Symbiosis is an explicitly hierarchical coevolutionary pro-

cess. From an exploration/ exploitation perspective it is im-
portant not to disrupt ‘good’ symbiont combinations while

July 2019 71Solving complex problems with coevolutionary algorithms

Asexual Reproduction 
Species independence

July 2019 72Solving complex problems with coevolutionary algorithms

992

Supervised learning
•  Multi-class classification

–  (Lichodzijewski & Heywood, 2008)
•  Monolithic GP versus Teaming GP

–  (Lichodzijewski & Heywood, 2010)
•  Decomposing large attribute spaces

–  (Doucette et al., 2012a)
•  Streaming Classification

–  (Vahdat et al., 2015), (Khanchi et al., 2018)

July 2019 73Solving complex problems with coevolutionary algorithms

III.2 Case Study – Non-stationary
streams

Supporting Evolvability / Plasticity through Cooperative
Coevolution

July 2019 74Solving complex problems with coevolutionary algorithms

Non-stationary Streaming data  
(Vahdat et al., 2015), (Khanchi et al., 2018)

Drift – ‘gradual’ variation
! 150,000 exemplars over

stream
! Window interface

! 500 window locations
! 20 exemplars sampled per

window location
! 10 attributes
! 3 classes

! 16%, 74%, 10%

Shift – ‘sudden’ variation
! 6.5 million exemplars

over stream
! Window interface

! 1,000 window locations
! 20 exemplars sampled per

window location
! 6 attributes
! 5 classes

! 36%, 49%, 6%, 0.5%,
1.5%, 3%, 4%

July 2019 Solving complex problems with coevolutionary algorithms 75

Accumulated multi-class detection rate  
(Vahdat et al., 2015)

July 2019 Solving complex problems with coevolutionary algorithms 76

M
ul

ti-
cla

ss
 D

R

Drift
Modular

Drift
Monolithic

Shift
Modular

Shift
Monolithic

993

Age of champion individual 
During course of stream – Drift

July 2019 Solving complex problems with coevolutionary algorithms 77

(Vahdat et al., 2015)

Age of champion individual 
During course of stream – Shift

July 2019 Solving complex problems with coevolutionary algorithms 78

(Vahdat et al., 2015)

Observations

! Context for the symbiont programs must be evolved
! Bidding mechanism

! Support for problem decomposition
! Mix of symbiont programs per host an evolved trait

! No prior knowledge on the nature of an appropriate
decomposition

! Provides capacity for reacting to change
! Lower ‘age’ of champion

! Easier to switch in / out functional non-functional
symbionts as contexts change

! Application: Botnet detection under label budgets
! See (Khanchi et al., 2018)

July 2019 Solving complex problems with coevolutionary algorithms 79

III.3 Case Study – Diversity
maintenance and Policy reuse

Hierarchical organization of programs, program
abstraction

July 2019 80Solving complex problems with coevolutionary algorithms

994

Motivation – Population fails in task

AccumulaHve	
Performance	across	

populaHon	

Performance	of	
Each	individual	
In	populaHon	

July 2019 81Solving complex problems with coevolutionary algorithms

Evolving a policy tree  
(Doucette et al., 2012b), (Kelly & Heywood 2014, 2015), (Smith et al, 2016)

July 2019 82Solving complex problems with coevolutionary algorithms

Evaluating a policy tree  
(Doucette et al., 2012b), (Kelly & Heywood 2014, 2015, 2018a), (Smith et al, 2016)

July 2019 83Solving complex problems with coevolutionary algorithms

Keepaway soccer  
Task definition (Stone et al, 2005)

State variables
-- takers to keepers
-- ball assumes similar description

Game initial state
-- Stochastically defined
-- Robocup server

July 2019 84Solving complex problems with coevolutionary algorithms

995

Interface to policy learner  
Prior ‘keeper’ decision tree  

Stone et al, (2005)

Teamate with ball
or can get there
faster

Receive
(GetOpen)

Not in
possession In possession

Receive
(GotToBall)

HoldBall, Passk-Then-Receive
(k is another keeper)

July 2019 85Solving complex problems with coevolutionary algorithms

‘Novelty’ style diversity metric  
(Kelly & Heywood, 2014)

! All start states the ‘same’
! Encourage diversity in failure (novelty)

Reward of individual
‘hi’ on game ‘ej’

Distance between current
game (ej) and ‘closest’

historical game (ehist) for
alternate solution (hk)

Reward of
alternate individ.
(hk) in historical

game (ehist)

On Diversity, Teaming, and Hierarchical Policies:
Observations from the Keepaway Soccer task

Stephen Kelly and Malcolm I. Heywood

Faculty of Computer Science,
Dalhousie University, Halifax, NS, Canada

Abstract. The 3-versus-2 Keepaway soccer task represents a widely
used benchmark appropriate for evaluating approaches to reinforcement
learning, multi-agent systems, and evolutionary robotics. To date most
research on this task has been described in terms of developments to
reinforcement learning with function approximation or frameworks for
neuro-evolution. This work performs an initial study using a recently
proposed algorithm for evolving teams of programs hierarchically using
two phases of evolution: one to build a library of candidate meta policies
and a second to learn how to deploy the library consistently. Particular
attention is paid to diversity maintenance, where this has been demon-
strated as a critical component in neuro-evolutionary approaches. A new
formulation is proposed for fitness sharing appropriate to the Keepaway
task. The resulting policies are observed to benefit from the use of diver-
sity and perform significantly better than previously reported. Moreover,
champion individuals evolved and selected under one field size generalize
to multiple field sizes without any additional training.

Keywords: Policy search, Keepaway soccer, Symbiosis, Fitness sharing,
Diversity maintenance

si =
X

j2hhist

G(hi, ej)P

k 6=i(1� dist(ej , ehist))G(hk, ehist)

!
(1)

July 2019 86Solving complex problems with coevolutionary algorithms

Keepaway TRAINING performance  
With / Without diversity

Diversity	

No	Diversity	

(Kelly & Heywood, 2014)

July 2019 87Solving complex problems with coevolutionary algorithms

Keepaway TEST performance  
1000 games, Sampled at intervals of 125 generations

(Kelly & Heywood, 2014)

Diversity	

No	Diversity	

July 2019 88Solving complex problems with coevolutionary algorithms

996

III.4 Case Study – Multi-task
learning under Arcade Learning

Environment
Program ‘connectivity’ organized through an emergent process

Tangled Program Graph representation
Single policies play multiple games

July 2019 89Solving complex problems with coevolutionary algorithms

Tangled Program Graphs  
(Kelly and Heywood, 2017a, 2017b) (Smith and Heywood, 2018, 19a, 19b)

a	 b	

a	 g	 f	

a	 k	 b	

a	 k	

a	a	 g	 f	

b	

B	

July 2019 90Solving complex problems with coevolutionary algorithms

Generation t, all individuals are
single teams, i.e. all actions are atomic

Generation t + 1, 1st instance of a team referencing another team
i.e. at least one action from a team is a pointer to another team

Atomic actions

Playing Multiple Atari game titles  
(Kelly & Heywood, 2017b)

{ }

{ }

{ }
{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }
{ }

{ }

{ }

{ } { }

{ }

{ }{ }

Ms. Pac−Man

Frostbite Centipede

13 0

1

07

1

Example emergent
Tangled Program Tree

July 2019 91Solving complex problems with coevolutionary algorithms

Atomic	
AcHons	

Team	

Non-
atomic	
acHon	

Program	

Animation 
(Kelly and Heywood, 2017a)

! Tutorial on emergent construction of
Tangled Program Graphs
– http://stephenkelly.ca/research_files/skelly-

mheywood-eurogp-2017.pdf
! Solution TPG playing Frostbite title from

Atari Learning Environment
– http://stephenkelly.ca/research_files/TPG-

frostbite-mosaic3.mp4

July 2019 Solving complex problems with coevolutionary algorithms 92

997

III.5 Case Study – Combining
Competitive and Cooperative

coevolution
Evolving `Deep’ policy hierarchies

Select Rubik’s Cube configurations Competitively
Coevolve teams of programs through independent

cycles of evolution

July 2019 93Solving complex problems with coevolutionary algorithms

Learning optimal policies for Rubik’s
Cube state  

(Smith & Heywood, 2017)

GP	Policy	
12	twists	

54	
facelets	

Scrambled Cube Goal: 4th Sub-group

July 2019 94Solving complex problems with coevolutionary algorithms

Co
nt

rib
ut

io
n

of
 C

om
pe

tit
io

n
an

d
Di

ve
rs

ity

Rnd initial policies

No Comp. CoEA, but WITH fitness sharing

Comp. CoEA
No fitness sharing

Comp. CoEA + Fitness sharing

July 2019 95Solving complex problems with coevolutionary algorithms

So
lu

tio
n

Co
m

pl
ex

ity
  

at
 6

-tw
is

t
Levels

Evolved
for up to
5 twist

Levels
Evolved
at 6 twist

Overall solution:
•  62 teams
•  115 programs
•  7185 instructions

July 2019 96Solving complex problems with coevolutionary algorithms

998

Cooperative Coevolution  
Concluding Comments (1 of 2)

!  Highlights
!  Separation of context and action

! Arbitrary team sizes under GP
! Maintaining Diversity significant

! Making diversity metrics ‘task free’?
!  Reuse of previous policies leverages diversity for generalization

!  Strict cycles of reuse: hierarchical policy trees
!  Continuous discovery of modularity: emergent tangled program graphs

!  Solutions generally simpler than monolithic models
!  Real-time execution under modest computational support

!  React to changing environments more effectively

July 2019 97Solving complex problems with coevolutionary algorithms

Cooperative Coevolution  
Concluding Comments (1 of 2)

!  Some open questions (a non exhaustive list!)
!  Credit for collective versus individuals
!  What learning bias are most appropriate for diversity maintenance

!  Task specific metrics
!  E.g., (Nelson et al. 2009)

!  … versus task independent metrics
!  Novelty as an objective (Gomes, Christensen 2013), (Gomes et al., 2016)
!  Compression distance (Gomez, 2009)
!  Connectivity biases (Clune et al., 2013)
!  Intra Team diversity (Kelly, Heywood, 2015), (Gomes et al., 2016)

!  … versus how to ‘present’ diversity
!  Pareto Multi-objective versus switching between multiple diversity metrics (Donieux, Mouret,

2013)
!  Cooperative coevolution and code reuse

!  Supervised learning (Lichodzijewski and Heywood, 2008, 2010), (Jaskowski et al., 2014)
!  Reinforcement learning (Kelly and Heywood, 2014, 2015, 2017a,b), (Didi and Nitschke, 2016), (Smith

and Heywood, 2017, 2018)
!  Specialization versus generalization

!  Heterogeneous versus Homogeneous deployment of policies within teams (Waibel et al., 2009),
(Nitschke et al., 2012)

July 2019 98Solving complex problems with coevolutionary algorithms

Cooperative Coevolution 
Example Benchmark task domains

!  Feature identification to classification
!  K. Krawiec, B. Bhanu (2006, 2007); W. Jaskowski et al., (2014)

!  Constructing hierarchal models for feature extraction and classification
!  Double inverted pendulum / cart pole

!  Gomez et al, (2008)
!  Capacity for solving the task

!  Acrobot
!  Doucette et al, (2012b)

!  Capacity for solving the task / generalization
!  Predator-prey strategies

!  Nitschke et al., (2012); Yong and Miikkulainen (2009); Rawael et al., (2010); Gomes et al., (2016)
!  Task decomposition and collective problem solving

!  Distributed multi-object location
!  Agogino, Tumar (2008); Knudson, Tumar (2010); Colby, Tumar (2012)

!  Task decomposition and (heterogeneous) collective problem solving
!  Keepaway or Half field offense (soccer)

!  Kelly, Heywood (2014, 2015, 2018a), Didi and Nitschke (2016), Gomes et al, (2018)
!  Task decomposition and collective problem solving
!  Capacity for task / generalization through hierarchical code reuse

!  Strategies for solving the Rubik’s Cube
!  Smith et al., (2016), Smith and Heywood (2017)

!  Task decomposition and capacity for task / generalization through hierarchical code reuse
!  General video game playing agents (i.e. Visual reinforcement learning)

!  Arcade Learning Environment - Kelly and Heywood (2017a,17b, 18b))
!  Comparison against Deep Learning Visual RL agents

!  VizDoom FPS - Smith and Heywood (2019a) and Dota 2 Shadow Fiend Bot - Smith and Heywood (2019b)
!  Synchronizing external memory for addressing partially observable state

July 2019 99Solving complex problems with coevolutionary algorithms Solving complex problems with coevolutionary algorithms 100

IV. Closing remarks

July 2019 100

999

Closing remarks

! Coevolutionary algorithms = conceptually interesting
and oftentimes efficient paradigm for solving complex
problems

! Addresses key aspects of computational intelligence:
! What/who to learn from?
! How to drive the search/optimization?
! What is solution to my problem?
! How do I decompose my problem?
! How do I make some entities cooperate?

! Many interesting results,
! … even more open questions!

July 2015 101July 2019 101Solving complex problems with coevolutionary algorithms

Acknowledgements

! The content of this tutorial has benefited from a host of
collaborations over the years including, but not limited to:

John Doucette, Wojciech Jaśkowski, Stephen Kelly, Peter
Lichodzijewski, Paweł Liskowski, Robert Smith, Marcin Szubert,
Ali Vahdat, Bartosz Wieloch

! MIH would like to acknowledge funding for aspects of
research reported on in this tutorial from the NSERC
Discovery and CRD programs (Canada).

! KK would like to acknowledge funding for aspects of
research reported on in this tutorial from the National
Science Centre and National Centre for Research and
Development (Poland, grant 2014/15/B/ST6/05205).

July 2019 102Solving complex problems with coevolutionary algorithms

References  
Competitive Coevolution (1 of 3)

!  A. Arcuri, X. Yao, Co-evolutionary automatic programming for software development, Information Sciences, 259:412-432,
February 2014.

!  R. Axelrod (1987) The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis, editor, Genetic Algorithms in
Simulated Annealing, 32–41. Pitman, London.

!  W.W. Bledsoe, I. Browning (1959) Pattern recognition and reading by machine. In Proc. Eastern Joint Comput. Conf., 225–
232.

!  A. Bucci, J.B. Pollack, E. de Jong (2004) Automated extraction of problem structure. In K. Deb et al. (Eds.), Genetic and
Evolutionary Computation, GECCO-2004, Part I. Lecture Notes in Computer Science, Vol. 3102, 501–512. Berlin: Springer-
Verlag

!  S. Y. Chong, P. Tino, and X. Yao (2008) Measuring generalization performance in coevolutionary learning, IEEE Trans. Evol.
Comput., vol. 12, no. 4, 479–505

!  S.G. Ficici (2004) Solution concepts in coevolutionary algorithms, Ph.D. thesis, Brandeis University, Waltham, MA.
!  S.G. Ficici, J.B. Pollack (2001) Pareto optimality in coevolutionary learning. In J. Kelemen and P. Sosık (Eds.), Advances in

Artificial Life, 6th European Conference, ECAL’01. Lecture Notes in Computer Science, Vol. 2159, 316–325. Berlin: Springer-
Verlag

!  D.B. Fogel (2002) Blondie24: Playing at the Edge of AI, Morgan Kaufmann Publishers Inc., San Francisco, CA.
!  W. Jaśkowski, K. Krawiec and B. Wieloch (2008) Evolving Strategy for a Probabilistic Game of Imperfect Information using

Genetic Programming. Genetic Programming and Evolvable Machines, 9(4):281-294
!  W. Jaśkowski, K. Krawiec (2010) Coordinate System Archive for coevolution. In IEEE Congress on Evolutionary

Computation.
!  W. Jaśkowski, K. Krawiec (2011) How many dimensions in co-optimization. In GECCO (Companion), 829-830.
!  W. Jaśkowski, K.Krawiec (2011) Formal Analysis, Hardness, and Algorithms for Extracting Internal Structure of Test-Based

Problems. Evolutionary Computation, 19(4):639-671.
!  E.D. de Jong (2004) Towards a Bounded Pareto-Coevolution Archive. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 2, 2341– 2348, Portland, Oregon, USA.
!  E.D. de Jong (2004) The Incremental Pareto-Coevolution Archive. In GECCO 2004. Proceedings of the Genetic and

Evolutionary Computation Conference. Part I, 525–536, Springer-Verlag, Lecture Notes in Computer Science Vol. 3102.
!  E.D. de Jong, J.B. Pollack (2004) Ideal evaluation from coevolution. Evolutionary Computation, 12(2):159–192.
!  E. D. de Jong (2004) The MaxSolve algorithm for coevolution, in GECCO 2005: Proceedings of the 2005 conference on

Genetic and evolutionary computation, 2005, 483–489.

July 2019 103Solving complex problems with coevolutionary algorithms

References  
Competitive Coevolution (2 of 3)

!  E.D. de Jong, A. Bucci (2006) DECA: Dimension extracting coevolutionary algorithm. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO 2006, 313–320

!  K. Krawiec, (2001) Pairwise Comparison of Hypotheses in Evolutionary Learning. In Machine Learning. Proceedings of the
Eighteenth International Conference, ICML 2001. Morgan Kaufmann Publishers, 266-273.

!  K. Krawiec, I. Bladek, J. Swan (2017) Counterexample-Driven Genetic Programming, ACM GECCO’17. 953-960
!  K. Krawiec, P. Liskowski (2015) Automatic Derivation of Search Objectives for Test-Based Genetic Programming, in P.

Machado, M. Heywood, J. McDermott (eds.), 18th European Conference on Genetic Programming, Springer
!  K. Krawiec and M. Szubert (2011) Learning N-tuple networks for Othello by coevolutionary gradient search, in Proc. Genetic

Evol. Comput. Conf., ACM 355–362.
!  P. Liskowski, K. Krawiec (2016). Non-negative Matrix Factorization for Unsupervised Derivation of Search Objectives in

Genetic Programming. ACM GECCO'16, 749-756
!  P. Liskowski, K. Krawiec (2016), Surrogate Fitness via Factorization of Interaction Matrix. EuroGP'16, LNCS, Springer. 68-82
!  P. Liskowski, K. Krawiec (2017) Online Discovery of Search Objectives for Test-based Problems. Evolutionary Computation

Journal, MIT Press, 25(3): 375-406.
!  P. Liskowski, K. Krawiec, B. Wieloch (2018), Neural Estimation of Interaction Outcomes, ACM GECCO'18.
!  T. Miconi (2009) Why coevolution doesn’t work: Superiority and progress in coevolution, In: L. Vanneschi, et al. (eds.),

EuroGP 2009, Springer-Verlag, Berlin Heidelberg New York, 49–60.
!  G.A. Monroy, K.O. Stanley, and R. Miikkulainen (2006) Coevolution of neural networks using a layered Pareto archive. In M.

Keijzer et al., editors, GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation,
volume 1, 329–336, Seattle, Washington, USA, 8-12 July 2006. ACM Press.

!  P. Moscato (1989) On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms,
Caltech Concurrent Computation Program C3P Rep., vol. 826.

!  J. Noble, R.A. Watson (2001) Pareto coevolution: Using performance against coevolved opponents in a game as dimensions
for Pareto selection. In L. Spector et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, 493–500.

July 2019 104Solving complex problems with coevolutionary algorithms

1000

References 
Competitive Coevolution (3 of 3)

!  J.B. Pollack, A.D. Blair (1998) Co-evolution in the successful learning of backgammon strategy. Mach. Learn. 32(3), 225–240
!  E. Popovici, A. Bucci, R.P. Wiegand, and E.D. de Jong (2012) Coevolutionary Principles. In Rozenberg, G., Baeck, T., and

Kok, J. N., editors, Handbook of Natural Computing, 987–1033. Springer.
!  E. Popovici, E. Winston (2015) A framework for co-optimization algorithm performance and its application to worst-case

optimization, Theoretical Computer Science, Volume 567, Pages 46-73
!  E. Popovici, Bridging Supervised Learning and Test-Based Co-optimization, JMLR, 18(38):1-39.
!  C.D. Rosin and R. K. Belew (1997) New methods for competitive coevolution, Evolutionary Computation, vol. 5, no. 1, 1–29.
!  A.L. Samuel (1959) Some studies in machine learning using the game of checkers. IBM Journal of Research and

Development, 3(3):211–229.
!  O.G. Selfridge, R.S. Sutton, A.G. Barto (1985) Training and Tracking in Robotics. In Joshi, A. K., editor, Proceedings of the

9th International Joint Conference on Artificial Intelligence, IJCAI, 670–672, Los Angeles, CA. Morgan Kaufmann.
!  T.C. Service, D.R. Tauritz (2008) A no-free-lunch framework for coevolution, in: Proceedings of the Genetic and Evolutionary

Computation Conference, ACM, 371–378.
!  M. Szubert, Coevolutionary (2014) Shaping for Reinforcement Learning, Phd Thesis, Institute of Computing Science, Poznan

University of Technology.
!  M. Szubert, W. Jaśkowski, K. Krawiec (2009) Coevolutionary Temporal Difference Learning for Othello. In IEEE Symposium

on Computational Intelligence and Games. 104-111.
!  M. Szubert, W. Jaśkowski, P. Liskowski, K. Krawiec (2013) Shaping Fitness Function for Evolutionary Learning of Game

Strategies. In Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference,
GECCO ’13, 1149–1156, New York, NY, USA. ACM.

!  M. Szubert, W. Jaśkowski, K. Krawiec (2013) On Scalability, Generalization, and Hybridization of Coevolutionary Learning: A
Case Study for Othello. Computational Intelligence and AI in Games, IEEE Transactions on, 5(3):214-226.

!  B. F. Skinner (1938) The behavior of organisms: An experimental analysis. Appleton-Century.
!  D. Wolpert, W. Macready (2005) Coevolutionary free lunches, IEEE Trans. Evol. Comput. 9: 721–735.

July 2019 105Solving complex problems with coevolutionary algorithms

References 
Cooperative Coevolution (1 of 3)

!  A. K. Agogino, K. Tumar (2008) Efficient evaluation functions for evolving coordination. Evolutionary Computation 16(2):
257–288

!  J. Clune, J.-B. Mouret, H. Lipson (2013) The evolutionary origins of modularity. Proceedings of the Royal Society – B 280
20122863

!  S. Didi, G. Nitschke (2016) Multi-agent behavior based policy transfer. EvoApplications. LNCS 9598: 181—197
!  M. Colby, K. Tumer (2012) Shaping fitness functions for coevolving cooperative multiagent systems. ACM AAMAS 425–432
!  S. Doncieux, J.-B. Mouret (2013) Behavioral diversity with multiple behavioral distances. IEEE CEC 1–8
!  J. Gomes, P. Mariano, A. L. Christensen (2017) Novelty-driven cooperative coevolution. Evolutionary Computation. 25(2):

275-307
!  J. Gomes, A. L. Christensen (2014) Generic behaviour similarity measures for evolutionary swarm robotics. ACM GECCO

199—206
!  J. Gomes, P. Mariano, A. L. Christensen (2018) Dynamic team heterogeneity in cooperative coevolutionary algorithms. IEEE

Transaction on Evolutionary Computation. 22(6): 934-948
!  F. Gomez, J. Schmidhuber, R. Miikkulainen (2008) Accelerated neural evolution through cooperatively coevolved synapses.

Journal of Machine Learning Research 9:937–965
!  F. Gomez (2009) Sustaining diversity using behavioural information distance. ACM GECCO 113–120
!  S. Luke, C. Hohn, J. Farris, G. Jackson, J. Hendler (1997) Coevolving soccer softbot team coordination with genetic

programming. IJCAI. RoboCup Workshop: 214-222
!  W. Jaskowski, K. Krawiec, B. Wieloch (2014) Cross-task code reuse in genetic programming applied to visual learning.

Applied Mathematics and Computer Science 24(1): 183—197
!  M. Knudson, K. Tumar (2010) Coevolution of heterogeneous multi-robot teams. ACM GECCO 127–132
!  K. Krawiec, B. Bhanu (2007) Visual learning by evolutionary and coevolutionary feature synthesis. IEEE Transactions on

Evolutionary Computation 11(5): 635–650
!  K. Krawiec, B. Bhanu (2006) Visual learning by coevolutionary feature synthesis. IEEE Transactions on Systems, Man and

Cybernetics. Prt B. 35: 409–425
!  J. Maynard Smith (1991) A Darwinian view of symbiosis. Chapter 3 in Symbiosis as a source of evolutionary innovation.

(eds) L. Margulis and R. Fester (MIT Press)
July 2019 106Solving complex problems with coevolutionary algorithms

References 
Cooperative Coevolution (2 of 3)

!  D. E. Moriarty, R. Miikkulainen (1998) Forming neural networks through efficient and adaptive coevolution.
Evolutionary Computation 5(4):373–399

!  A. L. Nelson, G. J. Barlow, L. Doitsidis (2009) Fitness functions in evolutionary robotics: A survey and analysis.
Robotics and Autonomous Systems 57: 345–370

!  G. S. Nitschke, A. E. Eiben, M. C. Schut (2012) Evolving team behaviors with specialization. Genetic
Programming and Evolvable Machines 13(4): 493—536

!  L. Panait, S. Luke, R. P. Wiegand (2006) Biasing coevolutionary search for optimal multiagent behaviors. IEEE
Transactions on Evolutionary Computation 10(6): 629–645

!  L. Panait, K. Tuyls, S. Luke (2008) Theoretical advantages of lenient learners: An evolutionary game theoretic
perspective. Journal of Machine Learning Research 9: 423–457

!  M. A. Potter, K. A. De Jong (2000) Cooperative coevolution: An architecture for coevolving coadapted
subcomponents. Evolutionary Computation 8(1): 1–29

!  A. Rawal, P. Rajagoplan, R. Miikkulainen (2010) Constructing competitive and cooperative agent behavior using
coevolution. IEEE CIG 107—114

!  J. Rubini, R. B. Heckendorn, T. Soule (2009) Evolution of team composition in multi-agent systems. ACM GECCO
1067–1072

!  P. Stone, R. Sutton, G. Kuhlmann (2005) Reinforcement learning for RoboCup soccer Keepaway. Adaptive
Behavior 13: 165–188

!  S. Strasser, J. Sheppard, N. Fortier, R. Goodman (2017) Factored Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation. 21(2): 281-293

!  R. Thomason, T. Soule (2007) Novel ways of improving cooperation and performance in ensemble classifiers.
ACM GECCO 1708–1716

!  C. H. Yong and R. Miikkulainen (2009) Coevolution of role-based cooperation in multi-agent systems. IEEE
Transactions on Autonomous Mental Development 1(3): 170—186

!  M. Waibel, L. Keller, D. Floreano (2009) Genetic team composition and level of selection in the evolution of
cooperation. IEEE Transactions on Evolutionary Computation. 13(3):648—660

!  S. Wu, W. Banzhaf (2011) Rethinking multilevel selection in genetic programming. ACM GECCO. 1403 – 1410July 2019 107Solving complex problems with coevolutionary algorithms

References  
Cooperative Coevolution (3 of 3)

!  J.A. Doucette, A. R. McIntyre, P. Lichodzijewski, M. I. Heywood (2012a) Symbiotic coevolutionary genetic programming: A
benchmarking study under large attribute spaces. Genetic programming and Evolvable Machines. 13(1): 71-101

!  J. A. Doucette, P. Lichodzijewski, M. I. Heywood (2012b) Hierarchical task decomposition through symbiosis in reinforcement
learning. ACM GECCO 97–104

!  S. Khanchi, A. Vahdat, M. I. Heywood, A. N. Zincir-Heywood (2018) On Botnet detection with GP under streaming data, label
budgets and class imbalance. Swarm and Evolutionary Computation. 39:123-140

!  S. Kelly, M.I. Heywood (2014) On diversity, teaming, and hierarchical policies: Observations from the Keepaway soccer task.
EuroGP LNCS 8599:75–86

!  S. Kelly, M.I. Heywood (2015) Knowledge transfer from keepaway soccer to half- field offense through program symbiosis:
Building simple programs for a complex task. ACM GECCO. 1143-1150

!  S. Kelly, M.I. Heywood (2017a) Emergent Tangled Graph Representations for Atari game playing agents. EuroGP. LNCS
10196: 64-79

!  S. Kelly, M.I. Heywood (2017b) Multi-task learning in Atari video games with Emergent Tangled Program Graphs. ACM
GECCO. 195-202

!  S. Kelly, M.I. Heywood (2018a) Discovering agent behaviours through code reuse: Examples from half field offense and Ms.
Pac-Man. IEEE Transactions on Games 10(2): 195-208

!  S. Kelly, M.I. Heywood (2018b) Emergent solutions to high-dimensional multitask reinforcement learning. Evolutionary
Computation 26(3): 347-380

!  Lichodzijewski, M. I. Heywood (2008) Managing team-based problem solving with symbiotic bid-based genetic programming.
ACM GECCO 363–370

!  P. Lichodzijewski, M. I. Heywood (2010) Symbiosis, Complexification and Simplicity under GP. ACM GECCO 853–860
!  R. J. Smith, S. Kelly, M. I. Heywood (2016) Discovering Rubik's Cube Subgroups using Coevolutionary GP -- A Five Twist

Experiment. ACM GECCO. 789-796
!  R. J. Smith, M. I. Heywood (2017) Coevolving deep hierarchies of programs to solve complex tasks. ACM GECCO.

1009-1016
!  R. J. Smith, M. I. Heywood (2018) Scaling tangled program graphs to visual reinforcement learning in VizDoom. EuroGP.

LNCS 10781: 135-150
!  R. J. Smith, M. I. Heywood (2019a) Model of external memory for navigation in partially observable visual reinforcement

learning tasks. EuroGP. LNCS 11451
!  R. J. Smith, M. I. Heywood (2019b) Evolving Dota 2 shadow fiend bots using genetic programming with external memory.

ACM GECCO.
!  A. Vahdat, J. Miller, A. McIntyre, M. I. Heywood, N. Zincir-Heywood (2015) Evolving GP classifiers for streaming data tasks

with concept change and label budgets. Handbook of GP Applications. (Springer)
July 2019 108Solving complex problems with coevolutionary algorithms

1001

