
Learning Classifier Systems
From Principles to Modern Systems

Anthony Stein
University of Augsburg

Augsburg, Germany
anthony.stein@informatik.uni-augsburg.de

http://gecco-2019.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3323393

Anthony Stein is a research associate and Ph.D. candidate at the
Department of Computer Science of the University of Augsburg, Germany.
He received his B.Sc. in Business Information Systems from the
University of Applied Sciences in Augsburg in 2012. He then moved to the
University of Augsburg to proceed with his master's degree (M.Sc.) in
computer science with a minor in information economics which he
received in 2014. Within his master's thesis, he dived into the field of
Learning Classifier Systems for the first time. Since then, he is a
passionate follower and contributor of ongoing research in this field. His
research focuses on the applicability of EML techniques in self-learning
adaptive systems which are asked to act in non-stationary (i.e., real world)
environments that facilitate the occurrence of knowledge gaps. Therefore,
in his work he investigates the utilization of interpolation and active
learning methods to change the means of how classifiers are initialized,
insufficiently covered problem space niches are (proactively) filled, or
adequate actions are selected. Since 2017, he is an elected organizing
committee member of the International Workshop on Learning Classifier
Systems (IWLCS) and since 2018 a reviewer for GECCO’s EML track. He
also co-organizes the Workshop Series on Autonomously Learning and
Optimizing Systems (SAOS) for three years now.

Instructor

 A comprehensive introduction to the huge field of LCS

 A review of all existent applications of LCS

 A in-depth comparison of Michigan vs. Pittsburgh LCS

 An introduction to the theory behind LCS
 maybe in the future ;-)

What this tutorial is NOT!

 An attempt to get the audience in touch with LCS

 An illustrative introduction to make the LCS concept graspable

 A `simplification’ to gain an intuition about the overarching learning
framework which LCS provide

 A starting point to further dive into the broad field around LCS

 Therefore it is explicitly noted that…
• we restrict ourselves to Michigan-style LCS
• we see abstracted views of particular technical details
• at the end corresponding references for a `deeper dive’ are given

What this tutorial actually is

747

Course Agenda
 Introduction

• A Brief Definition
• Why LCS?
• Looking Back: LCS History

 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
• Putting it together: A generic LCS
• Bridging the Gap: Approaching XCS
• Why does it learn? XCS Theory in a Nutshell

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

Course Agenda
 Introduction

• A Brief Definition
• Why LCS?
• Looking Back: LCS History

 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
• Putting it together: A generic LCS
• Bridging the Gap: Approaching XCS
• Why does it learn? XCS Theory in a Nutshell

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

Learning Classifier Systems (LCS) comprise a family of flexible, evolutionary,
rule-based machine learning systems which involve a unique tandem of local
learning and global evolutionary optimization of the collective models’ localities.

Introduction
A Brief Definition of Learning Classifier Systems

 Flexible
• Applicability: Have proven successful in a vast variety of domains
• Extensibility: Define more a framework rather than a specific algorithm

 Evolutionary
• Steady-state Niche Genetic Algorithm (GA) at their heart
• Neo-Darwinian Survival-of-the-Fittest Principle: Selection, Recombination, Mutation

Operators
 Rule-based

• Knowledge is represented via IF(condition)-THEN(action) rules (aka `classifiers’)
• Divide-and-Conquer: Rules partition the problem space and solve it collectively

 Machine Learning
• Rules/Classifiers, i.e., their internal parameters are learnt via stochastic gradient-based

algorithms (Widrow-Hoff delta rule, Recursive Least Squares (RLS), etc.)
• Capable of Reinforcement Learning (RL), Supervised Learning (SL) and Unsupervised

Learning (UL) with only minor and straight-forward changes necessary
• Thus, applicable to Sequential Problems, Classification, Regression, Clustering

Introduction
Why Learning Classifier Systems? (1/3)
 Interpretability by design

• Knowledge represented by IF-THEN rules
• Allows for explicit injection of expert knowledge

 Complexity reduction by design
 Online adaptivity to dynamic learning environments
 Inherent pressures toward generalization
 They are very cool ;-)
 Overarching framework

• Nearly any kind of ML algorithm can be integrated
 Comparative studies confirm competitive performance

 Rich body of problem domain and application work in over 40 years
of research!

748

Example Problem
Checkerboard Classification

𝑛 ൌ 2 dimensions
each within ሾ0,1ሿ

𝑛𝑑 ൌ 8 divisions
for each dimension
with alternating field
colors (black/white)

𝑥

Task:
Of which shade is the
field encompassing
the
query point 𝑥?

0 1

1

𝑥 ∈ 0,1 ଶ

Example Problem
Checkerboard Classification

Linearly separable?
 e.g., Linear Model, Perceptron

Non-linearly separable?
 e.g., Multi-layer Perceptron

Problem Space
Partitioning
 LCS!

Introduction
Why Learning Classifier Systems? (2/3)

Investigated Problem Domains
 Adaptive Control (continuous and episodic)
 Uncertain Environments (Noise, Partial Observability)
 Dynamic Environments (Concept Drift/Shift)
 Data Imbalance

• Class Imbalance
• Sparsity regarding payoff

 High Dimensionality / Scalability
• Exploration guidance via expert knowledge
• Transfer Learning approaches
• Dimensionality reduction via Autoencoders

 Complexity of underlying problem
• Heterogeneity, Epistasis
• Obliqueness, Curvature, Modality, etc.

Introduction
Why Learning Classifier Systems? (3/3)

Fields of Real World Application
 Gas-Pipeline Control
 Autonomous Robotics
 Robotic Kinematics
 Motion Control
 Genetics
 Biomedical Knowledge Discovery
 Medical Diagnosis
 Cognitive Modeling
 Traffic Control
 Smart Camera Networks
 Games
 … and many more!

749

 Learning Classifier System
(LCS)
 In retrospect, an odd name.
 There are many machine learning

systems that learn to classify but
are not LCS algorithms.

 E.g. Decision trees

 Also referred to as…
 Rule-Based Machine Learning

(RBML)
 Genetics Based Machine

Learning (GBML)
 Adaptive Agents
 Cognitive Systems
 Production Systems
 Classifier System (CS, CFS)

Introduction
Looking Back: History of LCS*

* Image adapted from [49]

* Adapted from Urbanowicz’s previous tutorials

 LCSs are one of the earliest artificial cognitive systems
– developed by John Holland (1978) [14].
 His work at the University of Michigan introduced and popularized the

genetic algorithm.

 Holland’s Vision: Cognitive System One (CS-1)
 Fundamental concept of classifier rules and matching.
 Combining a credit assignment scheme with rule discovery.
 Function on environment with infrequent payoff/reward.

 The early work was ambitious and broad. This has led to many paths being
taken to develop the concept over the following 40 years.

 CS-1 archetype would later become the basis for `Michigan-style’ LCSs.

1970’s

1980’s

1990’s

2000’s

2010’s

 Genetic algorithms and CS-1 emerge
 Research flourishes, but application success is

limited.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 LCS subtypes appear: Michigan-style vs. Pittsburgh-
style

 Holland adds reinforcement learning to his system.
 Term `Learning Classifier System’ adopted.
 Research follows Holland’s vision with limited success.
 Interest in LCS begins to fade.

 Pittsburgh-style algorithms introduced by Smith
in Learning Systems One (LS-1) [35]

 Booker suggests niche-acting GA (in [M]) [5]
 Holland introduces bucket brigade credit assignment [15]
 Interest in LCS begins to fade due to inherent algorithm complexity and failure

of systems to behave and perform reliably

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 REVOLUTION!
 Simplified LCS algorithm architecture with ZCS
 XCS is born: First reliable and more comprehensible

LCS
 First classification and robotics applications (real-world)

 Wilson revolutionizes LCS algorithms with accuracy-based rule fitness
in his Extended Classifier System (XCS) [60]

 Holmes applies LCS to problems in epidemiology [16]
 Stolzmann introduces Anticipatory Classifier Systems (ACS) [44]

 Frey & Slate present an LCS with predictive accuracy fitness rather than
payoff-based strength [11]

 Riolo introduces CFCS2, setting the scene for Q-learning like methods and
anticipatory LCSs [34]

 Wilson introduces simplified LCS architecture with his Zeroth-level Classifier
System (ZCS), a strength-based system [59]

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

750

1970’s

1980’s

1990’s

2000’s

2010’s

 LCS algorithm specializing in supervised learning and
data mining start appearing

 LCS scalability becomes a central research theme
 Increasing interest in epidemiological and bioinformatics
 Facet-wise theory and applications

 Wilson introduces XCS for function approximation (XCSF) [64]
 Kovacs explores a number of practical and theoretical LCS questions [21,22]
 Bernadó-Mansilla introduce sUpervised Classifier System (UCS) for

supervised learning [4]
 Bull explores LCS theory in simple systems [6]
 Bacardit introduces two Pitt-style LCS systems GAssist and BioHEL with

emphasis on data mining and improved scalability to larger datasets [1,2]
 Holmes introduces EpiXCS for epidemiological learning. Paired with the first

LCS graphical user interface to promote accessibility and ease of use [17]
 Butz introduces first online learning visualization for function approximation
 Lanzi & Loiacono explore computed actions

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 Increased interest in supervised learning applications persists.
 Emphasis on solution interpretability and knowledge discovery.
 Scalability improving – 135-bit multiplexer solved!
 GPU interest for computational parallelization.
 Broadening research interest from American & European to

include Australasian & Asian.

 Franco & Bacardit explored GPU parallelization of LCS for scalability.

 Urbanowicz & Moore introduced statistical and visualization strategies for
knowledge discovery in an LCS [53]. Also explored use of `expert knowledge’
to efficiently guide GA [55], introduced attribute tracking for explicitly
characterizing heterogeneous patterns [54,57].

 Browne and Iqbal explore new concepts in reusing building blocks (i.e., code
fragments) . Solved the 135-bit multiplexer reusing building blocks from
simpler multiplexer problems [19].

 Bacardit successfully applied BioHEL to large-scale bioinformatics problems
also exploring visualization strategies for knowledge discovery [3].

 Urbanowicz introduced ExSTraCS for supervised learning [51,56]. Applied
ExSTraCS to solve the 135-bit multiplexer directly.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

~40 years of LCS research has…
Clarified understanding.

Produced algorithmic descriptions.

Determined 'sweet spots' for run parameters.

Delivered understandable 'out of the box' code.

Demonstrated LCS algorithms to be…
Flexible

Widely applicable

Uniquely functional on particularly complex

problems.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
• Putting it together: A generic LCS
• Bridging the Gap: Approaching XCS
• Why does it learn? XCS Theory in a Nutshell

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

751

Michigan-style LCS
Building Blocks of a Learning Classifier System

Classifier

Environment

Population
Credit Assignment

Genetic Algorithm

Classifier
Classifier

Action Selection

…
LCS or `Adaptive Agent’

Detector Effector
State 𝜎௧ Action 𝑎௧

Reward 𝑟௧

(Compaction)

Classifier 𝑐𝑙
 IF-THEN rule

• Condition c𝑙. 𝐶
• Action 𝑐𝑙. 𝑎

 Condition 𝑐𝑙. 𝐶 encodes
input subspace 𝑐𝑙. 𝐶 ⊆ 𝑋

• Conditions of 𝑐𝑙′𝑠 are not disjoint!

 Rule strength 𝑐𝑙. 𝑠, e.g.,
• Predicted Payoff
• Prediction Accuracy

 Book-keeping parameters
• Experience
• Niche size
• Numerosity
• etc.

Michigan-style LCS
BBs of LCS: Classifier

𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

IF-THEN Book-keepingQuality

* dot-notation denotes reference to parameters of specified classifier 𝑐𝑙

𝑐𝑙 ≔

(0,0) (1,0)

(0,1) (1,1)

`𝑏𝑙𝑢𝑒′

`Mario’ multi-class problem [41]

Ternary Encoded Condition
 Encodes schema within problem’s

input/state space
 For binary input spaces 𝔹

 One bit of input instance covered
by one symbol in the condition

 Symbol from ternary alphabet
Σ ൌ ሼ0,1, #ሽ

• `#’ serves as don’t care / wildcard

 Condition is concatenation of
symbols

• 𝐶 ≔ 𝑐ଵ, … , 𝑐 , 𝑐 ∈ ሼ0,1, #ሽ

 Condition also encodes
chromosome for the GA

 Example Problems:
• k-Multiplexer, Majority-On, Parity, etc.

Michigan-style LCS
BBs of LCS: Classifier’s Condition

0 1 0 1 0 1 0 1
0 1 0 1

0 1

𝑥ଷ
𝑥ଶ
𝑥ଵ

0

1

0
 1

 0

 1

 0

1

0

 1

 0

1

0

 1

𝑥 𝑥 ହ 𝑥 ସ

𝑐𝑙ଵ. 𝐶 ൌ 01#11#
𝑐𝑙ଶ. 𝐶 ൌ ###0##

𝑐𝑙ଷ. 𝐶 ൌ 110101
𝑙 ൌ 6

Interval-based Condition
 Encodes subspace within problem’s

input/state space
 Real-valued input spaces ℝௗ

 One dimension 𝑖 ൌ 1, … , 𝑑 of an input
instance is covered by one interval
predicate in 𝐶

• 𝑖-th interval predicate ሺ𝑙, 𝑢ሻ
• Lower bound 𝑙, upper bound 𝑢

• Ordered vs. unordered Bound
 𝐶 is concatenation of intervals

• 𝐶 ≔ 𝑙ଵ, 𝑢ଵ , … , 𝑙ௗ, 𝑢ௗ , 𝑙, 𝑢 ∈ ℝ
 Each bound is one gene in chromosome
 Example inputs:

• Continuous values e.g., Traffic flows at
intersections, Sensory data

• Nominal (gender, blood group) or ordinal
features (age, salary, etc.)

Michigan-style LCS
BBs of LCS: Classifier’s Condition

𝑥ଵ

𝑥ଶ

0.0 0.5 1.0

1.0

0.5

𝑐𝑙. 𝐶 ൌ ሾሺ0.30, 0.70ሻ, ሺ0.55, 0.95ሻሿ

𝜎௧ ൌ (0.4, 0.75)

interval predicate

for 𝑖 ൌ 1

in
te

rv
al

pr
ed

ic
at

e

fo
r𝑖

ൌ
2

Detector
𝜎௧

752

Michigan-style LCS
BBs of LCS: Classifier’s Condition

Many more condition alphabets
 Hyperellipsoids (e.g., [9])

• Covariance Matrix representation
• Explicit geometric representation

 S-expressions / Code Fragments [19]

 Convex Hulls [27]

 Mixed Discrete-Continuous Attribute
List Knowledge Representation
(ALKR) [2]

 Neural Networks [7], etc.

Source: [19]

Source: [27]
Source: [2]

Discrete Actions
 Depends on the learning task

• Reinforcement Learning: Action
• Classification: Class/Endpoint
• Regression: No action needed!

 Examples:
• Robot navigation: Turn left, right, up, down
• Medical diagnosis: Tumor is benign or malignant
• Traffic light control: Signal plan A, B or C

 Large action spaces 𝐴
• Each rule maintains a single action
• Many rules needed for a complete mapping of

the state-action-space

 Continuous Actions
• Selection turns out difficult
• But: Approaches do exist

Michigan-style LCS
BBs of LCS: Classifier’s Action

Fig. licensed according to CC BY-SA-NC

Effector

𝑎௫

Population ሾ𝑃ሿ
 The set of all rules/classifiers
 Constitutes knowledge base
 Entirety of 𝑐𝑙 ∈ ሾ𝑃ሿ collectively

makes up the global model
 Contains many transient rules
 Contains 𝑛 𝑁 classifiers

• 𝑁 is a critical hyperparameter
• Single classifier can subsume others
 numerosity 𝑐𝑙. 𝑛𝑢𝑚

• Size of ሾ𝑃ሿ is limited s.t.
∑ 𝑐𝑙. 𝑛𝑢𝑚 𝑁∈ሾሿ

 ሾ𝑃ሿ usually starts `tabula rasa’
 Can be initialized a priori

• Randomly
• Expert Knowledge / Default rules

Michigan-style LCS
BBs of LCS: Population

Distillation of ሾ𝑃ሿ
 Not necessary for learning

success!
 Increases inference speed and

comprehensibility of model
 Removes transient rules from ሾ𝑃ሿ

• Smaller collection of `predictive‘ rules

 Different approaches, e.g.,
• Condensation [60]
• Greedy compaction [9]
• Quick Rule Filtering [47]

 Typically applied at the end of
learning or after convergence

 Up to ~90 % smaller size of ሾ𝑃ሿ
 But only marginal increase in

prediction error

Michigan-style LCS
BBs of LCS: Compaction

753

Action Selection
 The actual `inference’ step
 Chooses the action/prediction at each

time step / for each situation
 Aka Policy 𝜋: 𝑆 → 𝐴 (from RL domain)
 More generally referred to as

Performance Component
(1) Classifier Matching determines niche!
(2) Classifier Mixing collective solution!
(3) Action Selection
(4) Action Execution

 Handles Exploration vs. Exploitation
trade-off, e.g.,

• Interleaving random/greedy selection
• 𝜖-greedy policy
• Purely explore and exploit afterwards

Michigan-style LCS
BBs of LCS: Action Selection

* adapted from [39]

Credit Assignment
 Aka Reinforcement Component
 Learning comes into play
 Reward signal from environment

• Immediate reward may be 0
• Delayed payoff goal reached, 1000

 Single-step vs. Multi-step
 Correct / Incorrect Action Selection
 Reward / Punish
 Problem: Long action sequences
 Which classifiers to reinforce /

attenuate?
 Early `stage-setting’ classifiers
 Adapts selected classifiers’ learnable

parameters, i.e., strength 𝑐𝑙. 𝑠
 Updates book-keeping parameters

Michigan-style LCS
BBs of LCS: Credit Assignment

The early algorithm:
(Implicit) Bucket Brigade [15,59]

The modern approach:
Temporal Difference Learning

𝑐𝑙. 𝑠௧ ൌ 𝑐𝑙. 𝑠௧ିଵ 𝛽ሺ𝑟௧ିଵ 𝛾 max

𝑠 െ 𝑐𝑙. 𝑠௧ିଵሻ

Immediate reward 𝑟௧ିଵ +
current max. strength back-up

New estimate – old estimate TD

* Classifiers 𝑐𝑙 that were in ሾ𝐴ሿ of the previous cycle are updated here!

𝑐𝑙. 𝑠௧ ൌ 𝑐𝑙. 𝑠௧ିଵ െ 𝛾𝑐𝑙. 𝑠௧ିଵ
𝛾

|ሾ𝐴ሿ௧|
 𝑐𝑙. 𝑠௧

ೕ∈ሾሿ

Genetic Algorithm
 Aka Discovery Component
 Steady-state Niche GA
 Periodic execution
 Optimizes coverage of the input space
 Usually, only conditions are altered

• However, action mutation exists
 Fitness measure

• Strength 𝑐𝑙. 𝑠 in ZCS and older variants
• Relative accuracy 𝑐𝑙. 𝜅ᇱ in XCS and

descendants (XCSF, UCS, ExSTraCS)
 Hyperparameters

• Mutation rate 𝜇
• Crossover probability 𝜒
• Selection mechanism (Roulette-wheel

vs. Tournament)
• GA activation threshold 𝜃ீ

Michigan-style LCS
BBs of LCS: Genetic Algorithm

Ternary Case

* adapted from [39]

Michigan-style LCS
BBs of LCS: Genetic Algorithm

Genetic Algorithm
 Still, steady-state niche GA
 Still, periodic execution
 Still, optimizes coverage of the input

space
 Same fitness measure
 Additional hyperparameter
 Mutation spread 𝑚

Real-valued case

𝑥ଵ

𝑥ଶ

0.0 0.5 1.0

1.0

0.5

𝑐𝑙ଵ. 𝐶 ൌ ሾሺ0.30, 0.70ሻ, ሺ0.55, 0.95ሻሿ

𝑐𝑙ଶ. 𝐶 ൌ ሾሺ0.40, 0.80ሻ, ሺ0.30, 0.70ሻሿ
𝑐𝑙ଵ. 𝐶 ൌ ሾሺ0.30, 0.70ሻ, ሺ0.30, 0.70ሻሿ

𝑐𝑙ଵ. 𝐶 ൌ ሾሺ0.25, 0.70ሻ, ሺ0.30, 0.80ሻሿ

1st offspring after crossover:

1st offspring after mutation:

754

Michigan-style LCS
Putting all together
 Building blocks are the most basic components of LCS
 Each block can have more than one `color‘
 E.g., for credit assignment:

• Bucket Brigade Algorithm
• Profit Sharing Plan
• Implicit Bucket Brigade
• Q-Learning
• Widrow-Hoff (single-step)
• Linear Least Square
• Recursive Least Square

 Select the most promising block for your problem and put it together

 LCS provide a generic framework, not a single algorithm!

Michigan-style LCS
Putting all together: A Generic LCS

* adapted from [39]

 EXtended Classifier System (XCS) [60]

 Due to Stewart W. Wilson
 `Classifier fitness based on accuracy‘
 Replaces strength 𝑐𝑙. 𝑠 with triplet

• Predicted payoff 𝑐𝑙. 𝑝
• Prediction error 𝑐𝑙. 𝜖
• Fitness 𝑐𝑙. 𝐹

 BBA credit assignment replaced with Q-learning-like update
 Applies niche instead of panmictic GA

• first on ሾ𝑀ሿ later on ሾ𝐴ሿ instead of ሾ𝑃ሿ
 Extension of the Zeroth-level Classifier System (ZCS) [59]

Michigan-style LCS
Bridging the Gap: Approaching XCS

Michigan-style LCS
Extended Classifier System: Overview

* adapted from [39]

755

Extended Classifier System
A quick main loop run-through

Discrete Checkerboard
 What is the situation 𝜎(𝑡)?
 The coordinates of the red boxed

field (10,11)
 Starting horizontally: 𝜎(𝑡)=1011
 What are the possible actions

𝑎∈𝐴?
 `black‘ = 1
 `white‘ = 0
 What payoff can be retrieved?
 1000 for correct action
 0 for wrong action

00

01

10 11

00

01

10

11

XCS Main Loop
Matching

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

Situation σ(t)
Population [P]

Match Set [M]

Single Classifier

matching

00

01

10 11

00

01

10

11

 At each timestep 𝑡 XCS retrieves a binary string on length 𝑛 𝑚
 This string is denoted as 𝜎 𝑡 ∈ 0,1 ା
 Example for discrete CBP (𝑛 ൌ 2, 𝑚 ൌ 2 bits per dimension)

and 𝑡 ൌ 1: 𝜎 1 ൌ 1011
 Each classifier maintains a condition 𝐶
 The conditions are encoded ternary, i.e. 𝐶 ∈ 0,1, # ା

 The # symbol serves as wildcard or `don‘t care‘ operator
 Examples of conditions: (is matching 𝜎ሺ1)?)

• 1#11
• #011
• 01#1

XCS Main Loop
Matching

Matching is the process of
scanning the entire population ሾ𝑃ሿ
for classifiers with a condition that

is `fulfilled‘ by the situation 𝜎 𝑡

XCS Main Loop
Matching: A simple example

* adapted from [39]

756

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

0 1
42.5 16.6

Situation σ(t)
Population [P]

Match Set [M] Prediction Array

Single Classifier

matching

Offspring Classifiers

00

01

10 11

00

01

10

11

XCS Main Loop
System Prediction

The calculation of the system
prediction is the actual `inference‘
step! Here, the local models are

combined (`mixed‘) into a
collective target prediction!

 The system prediction 𝑃ሺ𝑎ሻ is a fitness-weighted sum of predictions
of all classifiers in ሾ𝑀ሿ advocating action 𝑎

𝑃 𝑎 ൌ
∑ 𝑐𝑙. 𝐹 ∗ 𝑐𝑙. 𝑝∈ሾெሿ|.ୀ

∑ 𝑐𝑙. 𝐹∈ሾெሿ|.ୀ

 Especially at this place, the separation of strength and accuracy
becomes apparent!

 For each possible action 𝑎 ∈ 𝐴 there exists one entry within the PA
 If a is not represented in ሾ𝑀ሿ, the PA entry is 𝑛𝑖𝑙

XCS Main Loop
System Prediction

XCS Main Loop
System Prediction: A simple example

* adapted from [39]

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

0 1
42.5 16.6

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 0 43 01 .99
101# : 0 27 24 .03

Reward
= 1000

RL

Single Classifier

matching

00

01

10 11

00

01

10

11

XCS Main Loop
Credit Assignment

757

 𝜖 ← 𝜖 𝛽 𝑃 െ 𝑝 െ 𝜖

 𝑝 ← 𝑝 𝛽ሺ𝑃 െ 𝑝ሻ

 𝐹 ← 𝐹 𝛽 𝜅
ᇱ െ 𝐹 , 𝜅

ᇱ ൌ ೕ.⋅ೕ.௨
∑ .⋅.௨ ∈ሾಲሿ

, 𝜅 ൌ 𝛼 ఢೕ

ఢబ

ି௩

 𝛽 is the learning rate (typically set to 0.2)
 𝛼 (often set to 0.1) and 𝜈 (usually set to 5) control how strong

accuracy decreases when error is higher than 𝜖

 𝜖 defines the targeted error level of the system
 In single-step problems, 𝑃 is set to the immediate reward 𝑟

 Classifier parameters are updated by means of the Widrow-Hoff
(or delta) rule in combination with the moyenne adaptiv modifiée
(MAM) technique

cf. [Butz et al. 2004]

XCS Main Loop
Credit Assignment

XCS Main Loop
Covering

Environment

p ε F
#01# : 1 10 00 .01

1011

#01# : 1 10 00 .01 0 1
nil 10

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#01# : 1 10 00 .01

Reward
= 0

Covering

RL

matching

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

00

01

10 11

00

01

10

11

 Covering is the process of generating at least one novel classifier
that matches the current input 𝜎ሺ𝑡ሻ whenever:
• Match set ሾ𝑀ሿ is empty (i.e. no matching 𝑐𝑙 in [P])
• ሾ𝑀ሿ is poor, i.e. average fitness below a certain threshold
• ሾ𝑀ሿ contains less then 𝜃 distinct actions

 The condition of the covered classifier 𝑐𝑙௩ is initially set to the
current input

 Additionally, each bit is replaced by a # (for generalization
purposes) with probability 𝑃#

 The action is selected equiprobably between actions not present in
ሾ𝑀ሿ

 Values for 𝑝, 𝜖 and 𝐹 are set to predefined initial values
(typically 10.0, 0.0 and 0.01, respectively)

XCS Main Loop
Covering

XCS Main Loop
Covering

Environment

𝜎௧ ൌ 100110

Covering
𝑐𝑙௩. 𝐶 ൌ 1#0#10

𝑐𝑙௩. 𝑎 ൌ randሺ𝐴 \ 𝐴ሻ
𝑐𝑙௩. 𝑝 ൌ 𝑝 ൌ 10
𝑐𝑙௩. 𝜖 ൌ 𝜖 ൌ 0

𝑐𝑙௩. 𝐹 ൌ 𝐹 ൌ 0.01

ሾ𝑃ሿ

ሾ𝑀ሿ

𝑐𝑙௩

if ሺ𝑚𝑛𝑎 ൏ 𝜃ሻ

if 𝑀 ൌൌ 0 OR 𝑚𝑛𝑎 ൏ 𝜃

Calculate PA

else else

Adjust 𝑚𝑛𝑎
and 𝐴

1 0 0 1 1 0

randሾ0,1ሻ 𝑃#

randሾ0,1ሻ 𝑃#

#

* adapted from [39]

758

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

0 1
42.5 16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 0 43 01 .99
101# : 0 27 24 .03

Reward
= 1000

Covering

RL

matching

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

00

01

10 11

00

01

10

11

XCS Main Loop
Genetic Algorithm

 One of the most essential parts of XCS is the incorporated steady-
state niche GA (steady-state: only a small fraction of the population
is replaced)

 It is triggered when the average time over all classifiers in ሾ𝐴ሿ since
the last GA invocation is greater than 𝜃ீ (often set to 12)

• 𝑡 െ 𝑡𝑠ഥ 𝜃ீ, where 𝑡𝑠ഥ ൌ
∑ .௧௦∈ሾಲሿ

|ሾሿ|

 The GA selects two parents from ሾ𝐴ሿ with a probability proportional
to their fitness values (roulette-wheel selection)

• The higher a classifier‘s fitness, the higher the selection chance

 The selected parents are copied to generate two offspring classifiers
𝑐𝑙

ଵ , 𝑐𝑙
ଶ

XCS Main Loop
Genetic Algorithm: Invocation and Selection

 The conditions of both 𝑐𝑙 are crossed with probability 𝜒 ൌ 0.8
(crossover operator)

• One-point crossover: Each offspring classifier‘s condition is split at a certain point and
switched with the other offspring classifier

• n-point crossover: more than one point is determined for switching
• Uniform crossover: Each value is switched with a certain probability (often 0.5)

 Afterward, each bit is flipped with probability 𝜇 ൌ 0.04 to one of the other
allowed alleles (mutation operator)

• E.g. 2nd bit is set to `1‘, mutation can flip this bit to `0‘ or `#‘

XCS Main Loop
Genetic Algorithm: Crossover and Mutation

Environment

p ε F
#011 : 01 43 01 .99
11## : 00 32 13 .09
#0## : 11 14 05 .52
001# : 01 27 24 .03
#0#1 : 11 18 02 .92
1#01 : 10 24 17 .15

…

0011

#011 : 01 43 01 .99
#0## : 11 14 05 .52
001# : 01 27 24 .03
#0#1 : 11 18 02 .92

00 01 10 11
nil 42.5 nil 16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 01 43 01 .99
001# : 01 27 24 .03

Reward

Covering

RL

Single Classifier

matching

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

Previous Action Set
[A]-1

+
max

discount 𝛾
delay = 1

XCS Main Loop
Sequential Problem Solving (Multi-step)

759

 𝑟 may or may not be retrieved in each step
 One has to distinguish immediate reward (𝑟) and total reward or

payoff 𝑟 at the end of a task (e.g. finally food was found)
 Update of classifier attributes is performed on the action set of the

previous timestep 𝑡 െ 1 (𝐴 ିଵ)
 The maximum system prediction 𝑃ሺ𝑎ሻ from the current PA is

discounted by a factor 𝛾 (usually 𝛾 ൌ 0.95)
 Additionally, the immediate reward gained for performing the action

in the previous state (of time step 𝑡 െ 1) 𝑟௧ିଵ
 is added (may be 0)

 This delay allows to retrieve „information from the future“
 In single-step environments 𝑃 ൌ 𝑟

 In multi-step problems 𝑃 ൌ 𝑟௧ିଵ
 𝛾 ∗ max

ୟ
𝑃𝐴 𝑎

XCS Main Loop
Sequential Problem Solving (Multi-step)

 Single-step update of 𝑝:

𝑝 ← 𝑝 𝛽 𝑃 െ 𝑝

 Substituting 𝑃 yields us the multi-step update formula
 Multi-step update of 𝑝:

𝑝 ← 𝑝 𝛽ሺ𝑟௧ିଵ
 𝛾 max

𝑃𝐴ሺ𝑎ሻ െ 𝑝ሻ

 Do you know this update procedure from somewhere?

𝑄ሺ𝑠, 𝑎ሻ ← 𝑄ሺ𝑠, 𝑎ሻ 𝛼ሾ𝑟 𝛾 max

𝑄 𝑠ᇱ, 𝑎 െ 𝑄 𝑠, 𝑎 ሿ

XCS Main Loop
Sequential Problem Solving (Multi-step)

XCS Main Loop
Multi-step Credit Assignment: A sample calculation

𝐴 ିଵ 𝐶 𝑎 𝑝 ϵ 𝐹
𝑐𝑙ଵ 01# 01 700 200 0.8
𝑐𝑙ଷ 010 01 500 500 0.5

𝑃𝐴
00 01 10 11

720 nil 360 nil

max
∈

𝑃𝐴ሺ𝑎ሻ ൌ 720
𝑟 ൌ 1000+0.9 · 720 ൌ 648

discount by 𝛾 immediate reward

refine attributes using
Widrow-Hoff delta rule

e.g. 𝑝 of 𝑐𝑙ଵ:

𝑃 ൌ 1648

Environment

𝑐𝑙ଵ. 𝑝 ← 700 0.2 1000 0.9 max 720,360 െ 700
𝑐𝑙ଵ. 𝑝 ൌ 889.6

* adapted from [39]

Examples for multi-step environments:
 Animat scenarios:

• Agent is seeking food / gold / exit / etc.
• E.g., Woods or Maze scenarios

 Step-wise adjustment of a control variable:
• Pan, Tilt, Zoom in Smart Camera Networks
• Mountain Car
• Inverse Pendulum

 Movement decisions:
• `Move to beacon‘ minigame in StarCraft II LE

XCS Main Loop
Sequential Problem Solving (Multi-step)

760

 One disadvantage of LCS often mentioned is…

“[…] less formal understanding and a
relatively small body of theoretical work […]”

 We should put emphasis on “relatively”
 Sometimes experienced misconception that…

no theory would exists for LCS!

 This is not true!

Michigan-style LCS
XCS Theory in a Nutshell

Michigan-style LCS
XCS Theory: Much formal work already done!

XCS Theory
Hyperparameter derivation
 Parameter bounds (Butz, Stalph)
 Optimal parameters (Nakata et al.)

Facetwise Theory
 Evolutionary Pressures (Butz et al.)
 Solution growth, sustenance
 Effective search

Formalizations (models)
 Simple LCSs (Goldberg, Bull)
 Probabilistic model

(Drugowitsch & Barry)

Learning problem analysis
 Imbalanced domains (Orriols-Puig et al.)
 Complexity of classification problems

(Bernadó-Mansilla et al.)

GA analysis in XCS
 Markov-chain analysis (Bull, Butz)
 Selection pressure (Butz, Orriols-Puig)
 Selection probability (Kovacs et al.)

Hypotheses
 Generalization Hypothesis (Wilson)
 Optimality Hypothesis (Kovacs)
 Theory on Strong Overgenerals (Kovacs)

Convergence and time bounds
 PAC learnability of k-DNF (Butz)
 Domino convergence model (Butz et al.)
 Convergence proofs under simplifications

(Drugowitsch, Wada)

*see [33] for a brief survey

 Facetwise Theory Approach (due to Goldberg [13])
• Proposed to analyze and understand GAs
• Partitioning of a system into its most relevant components
• Analysis in separation
• Afterward, combine and investigate interactions
• Answer questions: What?, How? and When?

 Facetwise LCS Theory (due to Butz et al. [8,10])
I. Design evolutionary pressures most effectively

– Fitness guidance, parameter estimation, generalization
II. Ensure solution growth and sustenance

– Population initialization, schema supply, growth and sustenance
III. Enable effective solution search

– Mutation, recombination, local vs. global structure
IV. Consider additional challenges in multi-step problems

– Effective policy, problem sampling, reward propagation

Michigan-style LCS
XCS Theory: Facetwise Approach

Michigan-style LCS
XCS Theory: Evolutionary Pressures (or How?)

Source: [8]

761

 Main challenges (schema and covering)
• Covering Challenge

– Ensure coverage and GA application
– Prevent being trapped in a covering-deletion-cycle

• Schema Challenge
– Ensure that fitness pressure applies
– From both directions: over-general and over-specific classifiers
–

 Derived bounds:
• Covering bound
• Schema bound
• Reproductive opportunity bound
• Niche support bound
• Learning time bound

 PAC-learnability of k-DNF problem confirmed for XCS with those bounds!

Michigan-style LCS
XCS Theory: Learning Bounds (or When?)

െ logሺ1 െ 𝑃 𝑐𝑜𝑣. ሻ

െ log 1 െ 2 െ 𝜎 𝑃
2

 ൏ 𝑁

Covering bound, cf. [10]

Cover

Delete
ሾ𝑃ሿ

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS
 Why does it learn? XCS Theory in a Nutshell

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

 XCS for function approximation introduced by Wilson in 2002 [64]

• Supervised learning Actions become obsolete; only dummy action 𝑎ௗ

• Online learning Adapt model instance per instance

• Local learning Classifiers partition the input space; divide-and-conquer

• Evolutionary Learning Steady-state niche GA optimizes input space coverage

 Alternative view: Evolutionary Ensemble Learner
• XCS’ algorithmic structure as a general

online ensemble learning framework

• Classifiers as members of that ensemble

• No Boosting, no Bagging, more like Stacking

• Allows hybrid ensemble (cf. [26])

Modern Systems
XCSF: Piece-wise Online Function Approximation

Modern Systems
XCSF: Piece-wise Online Function Approximation

Schematic

𝑐𝑙ଵ: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖, 𝐹ሻ
𝑐𝑙ଶ: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖, 𝐹ሻ

…
𝑐𝑙ே: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖, 𝐹ሻ

𝑓: 𝑋 → ℝ, 𝑥௧ ↦ 𝑦, 𝑋 ⊆ ℝ𝑥௧ ൌ ሺ𝑥ଵ, … , 𝑥ሻ

SP ⊆ ሾPሿ

𝑃 𝑎ௗ ൌ ∑ . · .ி∈ሾಾሿ
∑ .ி∈ሾಾሿ

PA
ሾMሿ

𝑟 ൌ 𝑦 ൌ 𝑓ሺ𝑥௧ሻ
COV RL

𝑐𝑙௩

𝑐𝑙
GA

Performance Component
Reinforcement Component
Discovery Component
Interpolation Component (IC)

𝑐𝑙ଷ
𝑐𝑙
𝑐𝑙ଵଽ
𝑐𝑙ଵଶ
…

𝑃ሺ𝑎ௗሻ

𝑐𝑙ଵ. 𝐶
𝑐𝑙ଶ. 𝐶

𝑐𝑙ே. 𝐶

762

 Development of Classifier Prediction
 90’s: Wilson introduced ZCS and XCS as reinforcement learning algorithms

 Classifiers 𝑐𝑙 advocate specific action 𝑐𝑙. 𝑎 ∈ 𝐴 for certain subset of states 𝑥 ⊆ 𝑋

 Prediction attribute 𝑐𝑙. 𝑝 was defined to estimate the expected reward 𝔼ሾ𝑟|𝑥, 𝑎ሿ.

 2000: XCS recognized to be well applicable to supervised learning tasks (classification).

 since 2001: Not surprisingly, it was then also used to approximate functions (regression).

 Prediction 𝑐𝑙. 𝑝 was used as XCS’ output

 Eventually, modeled as function 𝑓 𝑥 ൌ 𝑤்𝑥 𝑤 of the current input 𝑥 ∈ 𝑋

 Intuition
𝑓ሺ𝑥ሻ

𝑥𝑐𝑙ଵ 𝑐𝑙ଶ 𝑐𝑙ଷ

𝑐𝑙ଵ. 𝑝

𝑐𝑙ଶ. 𝑝

𝑐𝑙ଷ. 𝑝

𝑓ሺ𝑥ሻ

𝑥𝑐𝑙ଵ 𝑐𝑙ଶ 𝑐𝑙ଷ

𝑐𝑙ଵ. 𝑤ሺሻ

𝑐𝑙ଶ. 𝑤ሺሻ

𝑐𝑙ଷ. 𝑤ሺሻ

𝑐𝑙ଵ. 𝑤ሺଵሻ

Modern Systems
XCSF: Innovations to preceding XCS(R) (1/2)

 Competent update procedures (cf. Lanzi et al. [24])

• Linear Least Square
• Kalman Filter
• Gain Adaptation
• Recursive Least Square

 Various predictors
• Polynomial approximation [25]
• Evolution Strategy [48]
• Neural Network [23]
• Support Vector Regression [29]
• RBF-Interpolation [42]

 Guided Mutation [37]

• Inspired by Covariance Matrix Adaptation
• Store weights for matching samples
• Assign weight < 1 for instances with high error (and vice versa)
• Guide mutation towards positively weighted instances

Modern Systems
XCSF: Innovations to preceding XCSR (2/2)

Source:
Gradient descent,
Wikipedia

Source: [37]

 Robot Kinematics
• Filtering of sensory information [20]

• Locally linear forward kinematics [38]

 Continuous action spaces [63]

• Hierarchical XCSF architectures
• e.g., Continuous Actor-Critic approach

 Stacking Approach for Ensemble Forecasting [36]

• Use of hybrid forecasting techniques (ARIMA, Exp. Smooting, etc.)
• Locally learning the weights for combination of those
• Applied to different time series

Modern Systems
XCSF: Applications

Source: [20]

Source: [63]

Source: [36]

 First introduced by Urbanowicz and Moore in 2014 [56]

 Conceived to tackle large-scale, complex classification problems
 Equipped with mechanisms for post-hoc Knowledge Discovery
 Proved very successful in large multiplexer problems (135-bit!)
 Focus on LCS scalability in terms of:

• Increasing number of training instances (big data)
• Increase in problem dimensionality (relevant features)
• Increase in total number of features (curse of dimensionality)

 Open Source project (Python):
https://github.com/ryanurbs/ExSTraCS_2.0

 Visit hands-on session at IWLCS@GECCO!

Modern Systems
ExSTraCS: Large-scale Supervised Classification

763

[P]

[M]

Covering
Genetic

Algorithm
[C]

2

3

5
9

Update Rule
Parameters6

Deletion
10

Pre-Processing: Expert Knowledge Discovery

Post-Processing: Rule Compaction

Data Set1

[C][I] [C][I]

4

Subsumption
7

Attribute
Feedback

Expert
Knowledge

Attribute Tracking8

A

B

C

Training Instance

[PC]
Prediction

(* see [51,56])

Modern Systems
ExSTraCS: Overview

* Adapted from Urbanowicz’s previous tutorials

 Automatically calculate training data statistics:
• Number of attributes
• Number of instances
• Location of endpoint (class)

 Automatic shuffling to prevent bias

 Determines data characteristics:
• Location of categorical attributes
• Location of continuous attributes
• Determines min and max ranges
• Counts distinct values for each attribute within the training data

 Automatic selection of Rule-Specificity limit (RSL)

Modern Systems
ExSTraCS: Adaptive Data Management (ADM)

Pre-Processing:A

Source: [2]ALKR-style
encoding

 Expert provides weights to the features/attributes
 Weights determine `predictive value’
 Weights guide covering mechanism and GA

 Weights can be provided manually by expert user, or…
 … automatically by utilizing Relief-based attribute weighting

• RelieF, SURF, SURF*, MultiSURF
• New to ExSTraCS 2.0 Tuned-RelieF (TuRF)

 Introduces sort of automated feature selection
 But: without actual removal for knowledge discovery purposes!

Modern Systems
ExSTraCS: Using Expert Knowledge (EK)

Pre-Processing: Expert Knowledge Discovery

Expert
Knowledge

A

* see [51,55] for more details

 An extension to the LCS algorithm that allows
for the explicit characterization of heterogeneity,
and allows for the identification of
heterogeneous subject groups.

 Akin to long-term memory. Experiential
knowledge stored separately from the rule
population that is never lost.

 Relies on learning that is both incremental and
supervised.

 Stored knowledge may be fed back into LCS
during learning.

Modern Systems
ExSTraCS: Attribute Tracking und Feedback
(AT&F)

* Adapted from Urbanowicz’s previous tutorials

Attribute
Feedback Attribute Tracking8

* see [54,57] for more details

764

 Outputs up to 5 distinct output files
a) Final population of learned rules
b) Population metrics (train/test accuracy, etc.)
c) Attribute co-occurrence in final rules
d) Attribute tracking scores per instance
e) Summary of predictions for testing data,

including votes (for further use)

 Facilitate algorithm transparency and interpretability!

Modern Systems
ExSTraCS: Knowledge Discovery from Output

gray box

Post-Processing: Rule CompactionC

[PC]

* see [53,57] for more details

 TO SOLVE: 135-bit Multiplexer
• All 135 features are predictive in at least some subset of the dataset.
• Non-RBML approaches would need to include all 135 attributes together in a single model properly

capturing underlying epistasis and heterogeneity.

 Few ML algorithms can make the claim that they can solve even the 6 or 11-bit multiplexer
problems, let alone the 135-bit multiplexer.

* Images adapted from [Urbanowicz and Browne, 2017]

Modern Systems
ExSTraCS: Solving the 135-Multiplexer

* Adapted from Urbanowicz’s previous tutorials

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS
 Why does it learn? XCS Theory in a Nutshell

 Modern Systems
 XCSF: Piece-wise Online Function Approximation
 ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

 Reconsider M-style LCS as an online ensemble learner
 Rules = ensemble members
 Each rule constitutes a local model / hypothesis
 Rules are experts of different problem niches mixture of experts
 `Goodness’ of each `expert’ determined instance-by-instance

without necessity to remember one-pass (online) learning
 Modularity (recall building block intuition) allows for stacking

• Different models for local prediction (ANN, RBF, polynomials) and
fitness-weighted combination = stacked generalization

 Learning Classifier System not only about classification (alone)
• XCSF: Function Approximation = Regression
• XCS(R): Sequential Decision Making = Reinforcement Learning
• XCSC: Clustering = Unsupervised Learning

 XCSF similarities to Locally Weighted Projection Regression
 XCS(R) generalizing Q-learner

Summary & Conclusions
A Different (ML-centric) Perspective on LCS

765

 Flexibility (RL, SL) and modularity (building blocks)
 Interpretability by design (condition-action rules)
 Follow divide and conquer principle (mixture of experts)
 Capture complex associations (epistasis, heterogeneity)
 Evolution as central component allows adaptation to

change (concept drift)
Overarching framework for general ML techniques

• LCS and Deep Learning do not mutually exclude!
• E.g., put DNNs to locally model a policy

 And (again) finally…
• they are simply cool ;-)

Summary & Conclusions
So, again: Why LCS? (ex post)

 Visual and statistical knowledge discovery from LCS rule sets
(Urbanowicz et al. [57])

 Theoretical hyperparameter derivation (Nakata et al. [30,31])
 Hierarchical LCS and multi-domain learning (Liu, Browne, Xue [28])
 Interpolation-assisted LCS (Stein et al. [40][42][43])
 LCS with active learning (Stein et al. [41])
 Algebraic formalization of LCS (Pätzel and Hähner [32])
 …
 nearly all of them regularly attend GECCO!

Summary & Conclusions
Recent Research Directions (excerpt)

Thanks to Ryan J. Urbanowicz for the permission to reuse
parts of his previous tutorials on LCS.

Acknowledgements
 Additional Information:

 Keep up to date with the latest LCS research
 Get in contact with an LCS researcher
 Contribute to the LCS community research and discussions.

 GBML Central - http://gbml.org/

 LCS Researcher Webpages:
 Urbanowicz, Ryan - http://www.ryanurbanowicz.com/
 Browne, Will - http://ecs.victoria.ac.nz/Main/WillBrowne
 Lanzi, Pier Luca - http://www.pierlucalanzi.net/
 Wilson, Stewart - https://www.eskimo.com/~wilson/
 Bacardit, Jaume - http://homepages.cs.ncl.ac.uk/jaume.bacardit/
 Holmes, John -

https://www.med.upenn.edu/apps/faculty/index.php/g5455356/p19936
 Kovacs, Tim - http://www.cs.bris.ac.uk/home/kovacs/
 Bull, Larry - http://www.cems.uwe.ac.uk/~lbull/

 International Workshop Learning Classifier Systems (IWLCS)
- held annually at GECCO

 Mailing List:: Yahoo Group: lcs-and-gbml[at]yahoogroups.com

Resources

* Adapted from Urbanowicz’s previous tutorials

766

 Educational LCS (eLCS) – in Python.
• https://github.com/ryanurbs/eLCS
• Simple Michigan-style LCS for learning how they work and how they are implemented.
• Code intended to be paired with first LCS introductory textbook by Urbanowicz/Browne.

 ExSTraCS 2.0 – Extended Supervised Learning LCS – in Python
• https://github.com/ryanurbs/ExSTraCS_2.0
• For prediction, classification, data mining, knowledge discovery in complex, noisy,

epistatic, or heterogeneous problems.

 BioHEL – Bioinformatics-oriented Hierarchical Evolutionary Learning – in C++
• http://ico2s.org/software/biohel.html
• GAssist also available through this link.

 XCSLib (XCS and XCSF) (by Lanzi in C++)
• http://xcslib.sourceforge.net/

 XCSF with function approximation visualization – in Java
• Martin Butz Chair website

Resources: Available Software

* Adapted from Urbanowicz’s previous tutorials

Selected Review Papers:
 Pätzel, David, Stein, Anthony, and Hähner, Jörg. “A Survey on Formal Theoretical Advances

Regarding XCS." IWLCS (2019), under review, to appear.
 Bull, Larry. "A brief history of learning classifier systems: from CS-1 to XCS and its

variants." Evolutionary Intelligence (2015): 1-16.
 Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine

learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.
 Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction,

review, and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.
 Sigaud, Olivier, and Stewart W. Wilson. "Learning classifier systems: a survey." Soft Computing 11.11

(2007): 1065-1078.
 Holland, John H., et al. "What is a learning classifier system?." Learning Classifier Systems. Springer

Berlin Heidelberg, 2000. 3-32.
 Lanzi, Pier Luca, and Rick L. Riolo. "A roadmap to the last decade of learning classifier system

research (from 1989 to 1999)." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 33-61.

Books:
 Drugowitsch, J., (2008) Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.

Springer-Verlag.
 Bull, L., Bernado-Mansilla, E., Holmes, J. (Eds.) (2008) Learning Classifier Systems in Data Mining.

Springer
 Butz, M (2006) Rule-based evolutionary online learning systems: A principled approach to LCS

analysis and design. Studies in Fuzziness and Soft Computing Series, Springer.
 Bull, L., Kovacs, T. (Eds.) (2005) Foundations of learning classifier systems. Springer.
 Kovacs, T. (2004) Strength or accuracy: Credit assignment in learning classifier systems. Springer.
 Butz, M. (2002) Anticipatory learning classifier systems. Kluwer Academic Publishers.
 Lanzi, P.L., Stolzmann, W., Wilson, S., (Eds.) (2000). Learning classifier systems: From foundations to

applications (LNAI 1813). Springer.
 Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Resources: LCS Review Papers & Books

* Adapted from Urbanowicz’s previous tutorials

 Textbook: ‘Introduction to Learning Classifier Systems’
Springer, 2017 (Urbanowicz & Brown, 2017)

 LCS Introductory Chapter: ‘Reaction Learning’, Chapter 7.1 in book:
‘Organic Computing – Technical Systems for Survival in the Real World’,
Birkhäuser, 2017 (Stein, 2017)

 YouTube video on LCS:
 Learning Classifier Systems in a Nutshell
 Animated, narrated explanation of basic LCS concepts.
 https://www.youtube.com/watch?v=CRge_cZ2cJc

 LCS and Rule-Based Machine Learning Wikipedia Pages – recently
updated and revised.
(https://en.wikipedia.org/wiki/Learning_classifier_system)

Resources: Most recent

* Adapted from Urbanowicz’s previous tutorials

 Figure sources: All figures that have not been created by the author or indicated otherwise are
free to use and taken from pixabay.com licensed according to the Pixaybay License

References
Figures

767

(1) Bacardit, Jaume, et al. "Speeding-up Pittsburgh learning classifier systems: Modeling time and
accuracy." Parallel Problem Solving from Nature-PPSN VIII. Springer Berlin Heidelberg, 2004.

(2) Bacardit, Jaume, and Natalio Krasnogor. "A mixed discrete-continuous attribute list representation for
large scale classification domains." Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. ACM, 2009.

(3) Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine
learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.

(4) Bernadó-Mansilla, Ester, and Josep M. Garrell-Guiu. "Accuracy-based learning classifier systems:
models, analysis and applications to classification tasks."Evolutionary Computation 11.3 (2003): 209-238.

(5) Booker, Lashon Bernard. "Intelligent behavior as an adaptation to the task environment, University of
Michigan." Ann Arbor, MI (1982).

(6) Bull, Larry. "A simple accuracy-based learning classifier system." Learning Classifier Systems Group
Technical Report UWELCSG03-005, University of the West of England, Bristol, UK (2003).

(7) Bull, Larry, and O’Hara, Toby. "Accuracy-based neuro and neuro-fuzzy classifier systems.“, GECCO 2002,
905-911, Morgan Kaufmann, 2002.

(8) Butz, M.; Kovacs, T.; Lanzi, P. & Wilson, S., “Toward a Theory of Generalization and Learning in XCS”,
IEEE Transactions on Evolutionary Computation, 8 , 28-46, 2004

(9) Butz, M.; Lanzi, P. & Wilson, S. “Function Approximation With XCS: Hyperellipsoidal Conditions,
Recursive Least Squares, and Compaction”, IEEE Transactions on Evolutionary Computation, 12 , 355-
376, 2008

(10) Butz, M. V., “Rule-based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis
and Design”, Springer, 2005

(11) Frey, Peter W., and David J. Slate. "Letter recognition using Holland-style adaptive classifiers." Machine
Learning 6.2 (1991): 161-182.

(12) Goldberg, David E. "E. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning." Reading: Addison-Wesley (1990).

References (1/5)
(13) Goldberg, D. E., “Genetic Algorithms as a Computational Theory of Conceptual Design”, Rzevski, G. &

Adey, R. A. (Eds.), Applications of Artificial Intelligence in Engineering VI, Springer Netherlands, 1991 , 3-16
(14) Holland, J., and J. Reitman. "Cognitive systems based on adaptive agents.”, Pattern-directed inference

systems (1978).
(15) Holland, J. “Properties of the Bucket brigade.” In Proceedings of the 1st International Conference on Genetic

Algorithms, 1-7 (1985)
(16) Holmes, John H. "A genetics-based machine learning approach to knowledge discovery in clinical

data." Proceedings of the AMIA Annual Fall Symposium. American Medical Informatics Association, 1996.
(17) Holmes, John H., and Jennifer A. Sager. "The EpiXCS workbench: a tool for experimentation and

visualization." Learning Classifier Systems. Springer Berlin Heidelberg, 2007. 333-344.
(18) Iqbal, Muhammad, Will N. Browne, and Mengjie Zhang. "Extending learning classifier system with cyclic

graphs for scalability on complex, large-scale boolean problems." Proceedings of the 15th annual
conference on Genetic and evolutionary computation. ACM, 2013.

(19) Iqbal, M.; Browne, W. N. & Zhang, M., “Reusing Building Blocks of Extracted Knowledge to Solve Complex,
Large-Scale Boolean Problems”, IEEE Transactions on Evolutionary Computation, 2014 , 18 , 465-480

(20) Kneissler, J.; Stalph, P. O.; Drugowitsch, J. & Butz, M. V., “Filtering Sensory Information with XCSF:
Improving Learning Robustness and Robot Arm Control Performance”, Evolutionary Computation, 2014 ,
22, 139-158

(21) Kovacs, Tim. "A comparison of strength and accuracy-based fitness in learning classifier systems." School
of Computer Science, University of Birmingham, Birmingham, UK (2002).

(22) Kovacs, Tim. "What should a classifier system learn and how should we measure it?." Soft Computing 6.3-4
(2002): 171-182.

(23) Lanzi, P. L. & Loiacono, D., “XCSF with Neural Prediction”, IEEE CEC, 2006 , 2270-2276
(24) Lanzi, P. L.; Loiacono, D.; Wilson, S. W. & Goldberg, D. E., “Generalization in the XCSF Classifier System:

Analysis, Improvement, and Extension”, Evol. Comput., MIT Press, 2007, 15, 133-168
(25) Lanzi, P. L.; Loiacono, D.; Wilson, S. W. & Goldberg, D. E., “Extending XCSF Beyond Linear

Approximation”, GECCO 2005, ACM, 2005, 1827-1834

References (2/5)

(26) Lanzi, P. L.; Loiacono, D. & Zanini, M., “Evolving classifier ensembles with voting predictors”, IEEE CEC
2008, June 1-6, 2008, Hong Kong, China, 2008 , 3760-3767

(27) Lanzi, P. L. & Wilson, S. W., “Using Convex Hulls to Represent Classifier Conditions”, GECCO 2006, ACM,
2006, 1481-1488

(28) Liu, Y.; Xue, B. & Browne, W. N., “Visualisation and Optimisation of Learning Classifier Systems for Multiple
Domain Learning”, Simulated Evolution and Learning, Springer International Publishing, 2017, 448-461

(29) Loiacono, D.; Marelli, A. & Lanzi, P. L., “Support vector regression for classifier prediction”, GECCO 2007,
2007, 1806-1813

(30) Nakata, M.; Browne, W. N. & Hamagami, T., “Theoretical adaptation of multiple rule-generation in XCS”,
GECCO 2018, Kyoto, Japan, July 15-19, 2018 , 482-489

(31) Nakata, M.; Browne, W. N.; Hamagami, T. & Takadama, K., “Theoretical XCS parameter settings of learning
accurate classifiers”, GECCO 2017, Berlin, Germany, July 15-19, 2017, 2017 , 473-480

(32) Pätzel, D. & Hähner, J., “An Algebraic Description of XCS”, GECCO 2018 Companion, ACM, 2018, 1434-
1441

(33) Pätzel, D.; Stein, A. & Hähner, J., “A Survey on Formal Theoretical Advances Regarding XCS”, GECCO
2019 Companion, ACM, 2019, under review

(34) Riolo, Rick L. "Lookahead planning and latent learning in a classifier system."Proceedings of the first
international conference on simulation of adaptive behavior on From animals to animats. MIT Press, 1991.

(35) Smith, Stephen Frederick. "A learning system based on genetic adaptive algorithms.“, Dissertation,
University of Pittsburgh, 1980.

(36) Sommer, M.; Stein, A. & Hähner, J., “Local ensemble weighting in the context of time series forecasting
using XCSF”, IEEE SSCI, 2016

(37) Stalph, P. O. & Butz, M. V., “Guided Evolution in XCSF”, GECCO 2012, ACM, 2012, 911-918
(38) Stalph, P. O. & Butz, M. V., “Learning local linear Jacobians for flexible and adaptive robot arm control”,

GPEM, 2012, 13, 137-157
(39) Stein, A., “Reaction Learning”, In book: Organic Computing -- Technical Systems for Survival in the Real

World , Müller-Schloer, C. & Tomforde, S. (Eds.), Birkhäuser, 2017, 287-328

References (3/5)
(40) Stein, A.; Eymüller, C.; Rauh, D.; Tomforde, S. & Hähner, J., “Interpolation-based Classifier Generation in

XCSF”, IEEE CEC, 2016 , 3990-3998
(41) Stein, A.; Maier, R. & Hähner, J., “Toward Curious Learning Classifier Systems: Combining XCS with

Active Learning Concepts”, GECCO 2017 Companion, ACM, 2017, 1349-1356
(42) Stein, A.; Menssen, S. & Hähner, J., “What About Interpolation? A Radial Basis Function Approach to

Classifier Prediction Modeling in XCSF”, GECCO 2018, ACM, 2018
(43) Stein, A.; Rauh, D.; Tomforde, S. & Hähner, J., “Interpolation in the eXtended Classifier System: An

Architectural Perspective”, Journal of Systems Architecture, 75, 79-94, 2017
(44) Stolzmann, Wolfgang. "An introduction to anticipatory classifier systems."Learning Classifier Systems.

Springer Berlin Heidelberg, 2000. 175-194.
(45) Stone, Christopher, and Larry Bull. "For real! XCS with continuous-valued inputs." Evolutionary

Computation 11.3 (2003): 299-336.
(46) Tamee, K.; Bull, L. & Pinngern, O., “Towards Clustering with XCS”, GECCO 2007, ACM, 2007, 1854-1860
(47) Tan, J.; Moore, J. & Urbanowicz, R., “Rapid Rule Compaction Strategies for Global Knowledge Discovery

in a Supervised Learning Classifier System”, The 2018 Conference on Artificial Life: A Hybrid of the
European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and
Simulation of Living Systems (ALIFE), 2013, 110-117

(48) Tran, T. H.; Sanza, C. & Duthen, Y., “Evolving prediction weights using evolution strategy”, GECCO 2008,
2009-2016, 2008

(49) Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction, review,
and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.

(50) Urbanowicz, Ryan J., and Will Browne. “An Introduction to Learning Classifier Systems”. Springer, 2017
(51) Urbanowicz, Ryan J., and Jason H. Moore. "ExSTraCS 2.0: description and evaluation of a scalable

learning classifier system." Evolutionary Intelligence(2015): 1-28.
(52) Urbanowicz, Ryan J., and Jason H. Moore. "The application of michigan-style learning classifier systems

to address genetic heterogeneity and epistasis in association studies." Proceedings of the 12th annual
conference on Genetic and evolutionary computation. ACM, 2010.

References (4/5)

768

(53) Urbanowicz, Ryan J., Ambrose Granizo-Mackenzie, and Jason H. Moore. "An analysis pipeline with
statistical and visualization-guided knowledge discovery for michigan-style learning classifier
systems." Computational Intelligence Magazine, IEEE 7.4 (2012): 35-45.

(54) Urbanowicz, Ryan, Ambrose Granizo-Mackenzie, and Jason Moore. "Instance-linked attribute tracking
and feedback for michigan-style supervised learning classifier systems." Proceedings of the 14th annual
conference on Genetic and evolutionary computation. ACM, 2012.

(55) Urbanowicz, Ryan J., Delaney Granizo-Mackenzie, and Jason H. Moore. "Using expert knowledge to
guide covering and mutation in a michigan style learning classifier system to detect epistasis and
heterogeneity." PPSN XII. Springer Berlin Heidelberg, 2012. 266-275.

(56) Urbanowicz, R. J.; Bertasius, G. & Moore, J. H., “An Extended Michigan-Style Learning Classifier System
for Flexible Supervised Learning, Classification, and Data Mining”, PPSN XIII, Springer International
Publishing, 2014, 211-221

(57) Urbanowicz, R. J.; Lo, C.; Holmes, J. H. & Moore, J. H., “Attribute Tracking: Strategies Towards Improved
Detection and Characterization of Complex Associations”, GECCO 2018, ACM, 2018, 553-560

(58) Urbanowicz, R. J. & Browne, W. N., “Introduction to Learning Classifier Systems”, Springer Publishing
Company, 2017

(59) Wilson, Stewart W. "ZCS: A zeroth level classifier system." Evolutionary computation 2.1 (1994): 1-18.
(60) Wilson, Stewart W. "Classifier fitness based on accuracy." Evolutionary computation 3.2 (1995): 149-175.
(61) Wilson, Stewart W. "Get real! XCS with continuous-valued inputs." Learning Classifier Systems. Springer

Berlin Heidelberg, 2000. 209-219.
(62) Wilson, Stewart W. "Classifiers that approximate functions." Natural Computing1.2-3 (2002): 211-234.
(63) Wilson, S., “Three Architectures for Continuous Action”, Learning Classifier Systems, Springer Berlin

Heidelberg, 2007 , 4399 , 239-257
(64) Wilson, S. W., “Classifiers that Approximate Functions”, Natural Computing, Kluwer Academic Publishers,

2002, 1, 211-234

References (5/5)

769

