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Instructor

 A comprehensive introduction to the huge field of LCS

 A review of all existent applications of LCS

 A in-depth comparison of Michigan vs. Pittsburgh LCS

 An introduction to the theory behind LCS 
 maybe in the future ;-)

What this tutorial is NOT!

 An attempt to get the audience in touch with LCS

 An illustrative introduction to make the LCS concept graspable 

 A `simplification’ to gain an intuition about the overarching learning 
framework which LCS provide

 A starting point to further dive into the broad field around LCS

 Therefore it is explicitly noted that…
• we restrict ourselves to Michigan-style LCS
• we see abstracted views of particular technical details
• at the end corresponding references for a `deeper dive’ are given

What this tutorial actually is

747



Course Agenda
 Introduction
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• A Different Perspective
• Why LCS?
• Resources & Current Research
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Learning Classifier Systems (LCS) comprise a family of flexible, evolutionary, 
rule-based machine learning systems which involve a unique tandem of local 
learning and global evolutionary optimization of the collective models’ localities.   

Introduction
A Brief Definition of Learning Classifier Systems

 Flexible
• Applicability: Have proven successful in a vast variety of domains
• Extensibility: Define more a framework rather than a specific algorithm

 Evolutionary
• Steady-state Niche Genetic Algorithm (GA) at their heart
• Neo-Darwinian Survival-of-the-Fittest Principle: Selection, Recombination, Mutation 

Operators
 Rule-based

• Knowledge is represented via IF(condition)-THEN(action) rules (aka `classifiers’)
• Divide-and-Conquer: Rules partition the problem space and solve it collectively

 Machine Learning
• Rules/Classifiers, i.e., their internal parameters are learnt via stochastic gradient-based 

algorithms (Widrow-Hoff delta rule, Recursive Least Squares (RLS), etc.)  
• Capable of Reinforcement Learning (RL), Supervised Learning (SL) and Unsupervised 

Learning (UL) with only minor and straight-forward changes necessary
• Thus, applicable to Sequential Problems, Classification, Regression, Clustering 

Introduction
Why Learning Classifier Systems? (1/3)
 Interpretability by design

• Knowledge represented by IF-THEN rules
• Allows for explicit injection of expert knowledge

 Complexity reduction by design 
 Online adaptivity to dynamic learning environments
 Inherent pressures toward generalization
 They are very cool ;-)
 Overarching framework

• Nearly any kind of ML algorithm can be integrated
 Comparative studies confirm competitive performance

 Rich body of problem domain and application work in over 40 years 
of research! 
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Example Problem
Checkerboard Classification 

𝑛 ൌ 2 dimensions
each within ሾ0,1ሿ

𝑛𝑑 ൌ  8 divisions 
for each dimension
with alternating field
colors (black/white)

𝑥

Task:
Of which shade is the 
field encompassing 
the 
query point 𝑥?

0 1

1

𝑥 ∈ 0,1 ଶ

Example Problem
Checkerboard Classification 

Linearly separable? 
 e.g., Linear Model, Perceptron

Non-linearly separable?
 e.g., Multi-layer Perceptron

Problem Space 
Partitioning
 LCS!

Introduction
Why Learning Classifier Systems? (2/3)

Investigated Problem Domains
 Adaptive Control (continuous and episodic)
 Uncertain Environments (Noise, Partial Observability)
 Dynamic Environments (Concept Drift/Shift)
 Data Imbalance

• Class Imbalance
• Sparsity regarding payoff 

 High Dimensionality / Scalability 
• Exploration guidance via expert knowledge
• Transfer Learning approaches
• Dimensionality reduction via Autoencoders

 Complexity of underlying problem
• Heterogeneity, Epistasis
• Obliqueness, Curvature, Modality, etc.

Introduction
Why Learning Classifier Systems? (3/3)

Fields of Real World Application
 Gas-Pipeline Control
 Autonomous Robotics
 Robotic Kinematics
 Motion Control 
 Genetics
 Biomedical Knowledge Discovery 
 Medical Diagnosis
 Cognitive Modeling 
 Traffic Control
 Smart Camera Networks
 Games
 … and many more!
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 Learning Classifier System 
(LCS)
 In retrospect, an odd name.
 There are many machine learning 

systems that learn to classify but 
are not LCS algorithms. 

 E.g. Decision trees

 Also referred to as…
 Rule-Based Machine Learning 

(RBML)
 Genetics Based Machine 

Learning (GBML)
 Adaptive Agents
 Cognitive Systems
 Production Systems
 Classifier System (CS, CFS)

Introduction
Looking Back: History of LCS*

* Image adapted from [49]

* Adapted from Urbanowicz’s previous tutorials

 LCSs are one of the earliest artificial cognitive systems 
– developed by John Holland (1978) [14].  
 His work at the University of Michigan introduced and popularized the 

genetic algorithm.

 Holland’s Vision: Cognitive System One (CS-1) 
 Fundamental concept of classifier rules and matching.
 Combining a credit assignment scheme with rule discovery.
 Function on environment with infrequent payoff/reward.

 The early work was ambitious and broad. This has led to many paths being 
taken to develop the concept over the following 40 years. 

 CS-1 archetype would later become the basis for `Michigan-style’ LCSs.

1970’s

1980’s

1990’s

2000’s

2010’s

 Genetic algorithms and CS-1 emerge
 Research flourishes, but application success is 

limited.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 LCS subtypes appear:  Michigan-style vs. Pittsburgh-
style

 Holland adds reinforcement learning to his system.
 Term `Learning Classifier System’ adopted.
 Research follows Holland’s vision with limited success.
 Interest in LCS begins to fade.

 Pittsburgh-style algorithms introduced by Smith
in Learning Systems One (LS-1) [35]

 Booker suggests niche-acting GA (in [M]) [5]
 Holland introduces bucket brigade credit assignment [15]
 Interest in LCS begins to fade due to inherent algorithm complexity and failure 

of systems to behave and perform reliably

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 REVOLUTION!
 Simplified LCS algorithm architecture with ZCS
 XCS is born: First reliable and more comprehensible 

LCS
 First classification and robotics applications (real-world) 

 Wilson revolutionizes LCS algorithms with accuracy-based rule fitness 
in his Extended Classifier System (XCS) [60]

 Holmes applies LCS to problems in epidemiology [16]
 Stolzmann introduces Anticipatory Classifier Systems (ACS) [44]

 Frey & Slate present an LCS with predictive accuracy  fitness rather than 
payoff-based strength [11]

 Riolo introduces CFCS2, setting the scene for Q-learning like methods and 
anticipatory LCSs [34]

 Wilson introduces simplified LCS architecture with his Zeroth-level Classifier 
System (ZCS), a strength-based system [59]

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials
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1970’s

1980’s

1990’s

2000’s

2010’s

 LCS algorithm specializing in supervised learning and 
data mining start appearing 

 LCS scalability becomes a central research theme
 Increasing interest in epidemiological and bioinformatics
 Facet-wise theory and applications

 Wilson introduces XCS for function approximation (XCSF) [64]
 Kovacs explores a number of practical and theoretical LCS questions [21,22]
 Bernadó-Mansilla introduce sUpervised Classifier System (UCS) for 

supervised learning [4]
 Bull explores LCS theory in simple systems [6]
 Bacardit introduces two Pitt-style LCS systems GAssist and BioHEL with 

emphasis on data mining and improved scalability to larger datasets [1,2]
 Holmes introduces EpiXCS for epidemiological learning. Paired with the first 

LCS graphical user interface to promote accessibility and ease of use [17]
 Butz introduces first online learning visualization for function approximation 
 Lanzi & Loiacono explore computed actions 

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 Increased interest in supervised learning applications persists. 
 Emphasis on solution interpretability and knowledge discovery.
 Scalability improving – 135-bit multiplexer solved!
 GPU interest for computational parallelization.
 Broadening research interest from American & European to 

include Australasian & Asian.

 Franco & Bacardit explored GPU parallelization of LCS for scalability.

 Urbanowicz & Moore introduced statistical and visualization strategies for 
knowledge discovery in an LCS [53]. Also explored use of `expert knowledge’ 
to efficiently guide GA [55], introduced attribute tracking for explicitly 
characterizing heterogeneous patterns [54,57]. 

 Browne and Iqbal explore new concepts in reusing building blocks (i.e., code 
fragments) .  Solved the 135-bit multiplexer reusing building blocks from 
simpler multiplexer problems [19].

 Bacardit successfully applied BioHEL to large-scale bioinformatics problems 
also exploring visualization strategies for knowledge discovery [3].  

 Urbanowicz introduced ExSTraCS for supervised learning [51,56]. Applied 
ExSTraCS to solve the 135-bit multiplexer directly.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

~40 years of LCS research has…
Clarified understanding.

Produced algorithmic descriptions.

Determined 'sweet spots' for run parameters.

Delivered understandable 'out of the box' code.

Demonstrated LCS algorithms to be…
Flexible

Widely applicable

Uniquely functional on particularly complex 

problems.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials
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 Introduction
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 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
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• Why does it learn? XCS Theory in a Nutshell

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification 

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research
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Michigan-style LCS
Building Blocks of a Learning Classifier System

Classifier

Environment

Population
Credit Assignment

Genetic Algorithm

Classifier
Classifier

Action Selection

…
LCS or `Adaptive Agent’

Detector Effector
State 𝜎௧ Action 𝑎௧ 

Reward 𝑟௧

(Compaction)

Classifier 𝑐𝑙
 IF-THEN rule

• Condition c𝑙. 𝐶
• Action 𝑐𝑙. 𝑎

 Condition 𝑐𝑙. 𝐶 encodes 
input subspace 𝑐𝑙. 𝐶 ⊆ 𝑋

• Conditions of 𝑐𝑙′𝑠 are not disjoint!

 Rule strength 𝑐𝑙. 𝑠, e.g.,
• Predicted Payoff
• Prediction Accuracy 

 Book-keeping parameters
• Experience
• Niche size
• Numerosity
• etc.

Michigan-style LCS
BBs of LCS: Classifier

𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

IF-THEN Book-keepingQuality

* dot-notation denotes reference to parameters of specified classifier 𝑐𝑙

𝑐𝑙 ≔

(0,0) (1,0)

(0,1) (1,1)

`𝑏𝑙𝑢𝑒′

`Mario’ multi-class problem [41]

Ternary Encoded Condition
 Encodes schema within problem’s 

input/state space 
 For binary input spaces 𝔹

 One bit of input instance covered 
by one symbol in the condition

 Symbol from ternary alphabet 
Σ ൌ ሼ0,1, #ሽ

• `#’ serves as don’t care / wildcard

 Condition is concatenation of 
symbols 

• 𝐶 ≔ 𝑐ଵ, … , 𝑐 , 𝑐 ∈ ሼ0,1, #ሽ

 Condition also encodes 
chromosome for the GA

 Example Problems:
• k-Multiplexer, Majority-On, Parity, etc. 

Michigan-style LCS
BBs of LCS: Classifier’s Condition

0    1    0   1 0    1    0   1
0        1 0         1

0 1          

𝑥ଷ
𝑥ଶ
𝑥ଵ
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1 
   

0 
  1

   
 0

   
 1

   
 0

   
1

0 
   

   
 1

   
   

   
 0

   
   

   
1

0 
   

   
   

   
   

   
 1

𝑥  𝑥 ହ 𝑥 ସ

𝑐𝑙ଵ. 𝐶 ൌ 01#11#
𝑐𝑙ଶ. 𝐶 ൌ ###0##

𝑐𝑙ଷ. 𝐶 ൌ 110101
𝑙 ൌ 6

Interval-based Condition
 Encodes subspace within problem’s 

input/state space 
 Real-valued input spaces ℝௗ

 One dimension 𝑖 ൌ 1, … , 𝑑 of an input 
instance is covered by one interval 
predicate in 𝐶

• 𝑖-th interval predicate ሺ𝑙, 𝑢ሻ
• Lower bound 𝑙, upper bound 𝑢

• Ordered vs. unordered Bound
 𝐶 is concatenation of intervals  

• 𝐶 ≔ 𝑙ଵ, 𝑢ଵ , … , 𝑙ௗ, 𝑢ௗ , 𝑙, 𝑢 ∈ ℝ
 Each bound is one gene in chromosome
 Example inputs:

• Continuous values e.g., Traffic flows at 
intersections, Sensory data

• Nominal (gender, blood group) or ordinal
features (age, salary, etc.)

Michigan-style LCS
BBs of LCS: Classifier’s Condition

𝑥ଵ

𝑥ଶ

0.0 0.5 1.0

1.0

0.5

𝑐𝑙. 𝐶 ൌ  ሾሺ0.30, 0.70ሻ, ሺ0.55, 0.95ሻሿ   

𝜎௧ ൌ (0.4, 0.75) 

interval predicate

for 𝑖 ൌ 1

in
te

rv
al

pr
ed

ic
at

e

fo
r𝑖

ൌ
2

Detector
𝜎௧
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Michigan-style LCS
BBs of LCS: Classifier’s Condition

Many more condition alphabets
 Hyperellipsoids (e.g., [9])

• Covariance Matrix representation
• Explicit geometric representation

 S-expressions / Code Fragments [19]

 Convex Hulls [27]

 Mixed Discrete-Continuous Attribute 
List Knowledge Representation 
(ALKR) [2]

 Neural Networks [7], etc.

Source: [19]

Source: [27]
Source: [2]

Discrete Actions
 Depends on the learning task

• Reinforcement Learning: Action
• Classification: Class/Endpoint
• Regression: No action needed!

 Examples:
• Robot navigation: Turn left, right, up, down
• Medical diagnosis: Tumor is benign or malignant
• Traffic light control: Signal plan A, B or C

 Large action spaces 𝐴
• Each rule maintains a single action
• Many rules needed for a complete mapping of 

the state-action-space

 Continuous Actions
• Selection turns out difficult
• But: Approaches do exist

Michigan-style LCS
BBs of LCS: Classifier’s Action

Fig. licensed according to CC BY-SA-NC

Effector

𝑎௫

Population ሾ𝑃ሿ
 The set of all rules/classifiers
 Constitutes knowledge base
 Entirety of 𝑐𝑙 ∈ ሾ𝑃ሿ collectively

makes up the global model
 Contains many transient rules
 Contains 𝑛  𝑁 classifiers

• 𝑁 is a critical hyperparameter
• Single classifier can subsume others 
 numerosity 𝑐𝑙. 𝑛𝑢𝑚

• Size of ሾ𝑃ሿ is limited s.t.
∑ 𝑐𝑙. 𝑛𝑢𝑚  𝑁∈ሾሿ

 ሾ𝑃ሿ usually starts `tabula rasa’
 Can be initialized a priori

• Randomly
• Expert Knowledge / Default rules

Michigan-style LCS
BBs of LCS: Population

Distillation of ሾ𝑃ሿ
 Not necessary for learning 

success!
 Increases inference speed and 

comprehensibility of model
 Removes transient rules from ሾ𝑃ሿ

• Smaller collection of `predictive‘ rules

 Different approaches, e.g.,
• Condensation [60] 
• Greedy compaction [9]
• Quick Rule Filtering [47]

 Typically applied at the end of 
learning or after convergence

 Up to ~90 % smaller size of ሾ𝑃ሿ
 But only marginal increase in 

prediction error

Michigan-style LCS
BBs of LCS: Compaction
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Action Selection
 The actual `inference’ step
 Chooses the action/prediction at each 

time step / for each situation
 Aka Policy 𝜋: 𝑆 → 𝐴 (from RL domain)
 More generally referred to as 

Performance Component
(1) Classifier Matching determines niche!
(2) Classifier Mixing collective solution!
(3) Action Selection
(4) Action Execution

 Handles Exploration vs. Exploitation 
trade-off, e.g.,

• Interleaving random/greedy selection
• 𝜖-greedy policy
• Purely explore and exploit afterwards

Michigan-style LCS
BBs of LCS: Action Selection

* adapted from [39]

Credit Assignment
 Aka Reinforcement Component
 Learning comes into play
 Reward signal from environment

• Immediate reward  may be 0
• Delayed payoff  goal reached, 1000

 Single-step vs. Multi-step 
 Correct / Incorrect Action Selection
 Reward / Punish 
 Problem: Long action sequences
 Which classifiers to reinforce / 

attenuate?
 Early `stage-setting’ classifiers 
 Adapts selected classifiers’ learnable 

parameters, i.e., strength 𝑐𝑙. 𝑠
 Updates book-keeping parameters

Michigan-style LCS
BBs of LCS: Credit Assignment

The early algorithm: 
(Implicit) Bucket Brigade [15,59]

The modern approach: 
Temporal Difference Learning

𝑐𝑙. 𝑠௧ ൌ 𝑐𝑙. 𝑠௧ିଵ  𝛽ሺ𝑟௧ିଵ  𝛾 max


𝑠 െ 𝑐𝑙. 𝑠௧ିଵሻ

Immediate reward 𝑟௧ିଵ + 
current max. strength  back-up

New estimate – old estimate  TD

* Classifiers 𝑐𝑙 that were in ሾ𝐴ሿ of the previous cycle are updated here!

𝑐𝑙. 𝑠௧ ൌ 𝑐𝑙. 𝑠௧ିଵ െ 𝛾𝑐𝑙. 𝑠௧ିଵ 
𝛾

|ሾ𝐴ሿ௧|
 𝑐𝑙. 𝑠௧

ೕ∈ሾሿ

Genetic Algorithm
 Aka Discovery Component
 Steady-state Niche GA
 Periodic execution 
 Optimizes coverage of the input space
 Usually, only conditions are altered

• However, action mutation exists
 Fitness measure

• Strength 𝑐𝑙. 𝑠 in ZCS and older variants
• Relative accuracy 𝑐𝑙. 𝜅ᇱ in XCS and 

descendants (XCSF, UCS, ExSTraCS)
 Hyperparameters

• Mutation rate 𝜇
• Crossover probability 𝜒
• Selection mechanism (Roulette-wheel 

vs. Tournament)
• GA activation threshold 𝜃ீ

Michigan-style LCS
BBs of LCS: Genetic Algorithm

Ternary Case

* adapted from [39]

Michigan-style LCS
BBs of LCS: Genetic Algorithm

Genetic Algorithm
 Still, steady-state niche GA
 Still, periodic execution 
 Still, optimizes coverage of the input 

space
 Same fitness measure
 Additional hyperparameter
 Mutation spread 𝑚

Real-valued case

𝑥ଵ

𝑥ଶ

0.0 0.5 1.0

1.0

0.5

𝑐𝑙ଵ. 𝐶 ൌ  ሾሺ0.30, 0.70ሻ, ሺ0.55, 0.95ሻሿ   

𝑐𝑙ଶ. 𝐶 ൌ  ሾሺ0.40, 0.80ሻ, ሺ0.30, 0.70ሻሿ   
𝑐𝑙ଵ. 𝐶 ൌ  ሾሺ0.30, 0.70ሻ, ሺ0.30, 0.70ሻሿ   

𝑐𝑙ଵ. 𝐶 ൌ  ሾሺ0.25, 0.70ሻ, ሺ0.30, 0.80ሻሿ   

1st offspring after crossover:

1st offspring after mutation:
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Michigan-style LCS
Putting all together
 Building blocks are the most basic components of LCS
 Each block can have more than one `color‘
 E.g., for credit assignment:

• Bucket Brigade Algorithm
• Profit Sharing Plan
• Implicit Bucket Brigade
• Q-Learning
• Widrow-Hoff (single-step)
• Linear Least Square
• Recursive Least Square

 Select the most promising block for your problem and put it together

  LCS provide a generic framework, not a single algorithm!

Michigan-style LCS
Putting all together: A Generic LCS

* adapted from [39]

 EXtended Classifier System (XCS) [60]

 Due to Stewart W. Wilson
 `Classifier fitness based on accuracy‘ 
 Replaces strength 𝑐𝑙. 𝑠 with triplet 

• Predicted payoff 𝑐𝑙. 𝑝
• Prediction error 𝑐𝑙. 𝜖
• Fitness 𝑐𝑙. 𝐹

 BBA credit assignment replaced with Q-learning-like update 
 Applies niche instead of panmictic GA 

• first on ሾ𝑀ሿ later on ሾ𝐴ሿ instead of ሾ𝑃ሿ
 Extension of the Zeroth-level Classifier System (ZCS) [59]

Michigan-style LCS
Bridging the Gap: Approaching XCS

Michigan-style LCS
Extended Classifier System: Overview

* adapted from [39]
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Extended Classifier System
A quick main loop run-through

Discrete Checkerboard
 What is the situation 𝜎(𝑡)?
 The coordinates of the red boxed 

field (10,11)
 Starting horizontally: 𝜎(𝑡)=1011
 What are the possible actions 

𝑎∈𝐴?
 `black‘ = 1
 `white‘ = 0
 What payoff can be retrieved?
 1000 for correct action
 0 for wrong action

00

01

10 11

00

01

10

11

XCS Main Loop
Matching

Environment

p    ε F
#011 : 0   43  01  .99
11## : 0   32  13  .09
#0## : 1   14  05  .52
101# : 0   27  24  .03
#0#1 : 1   18  02  .92
1#01 : 1   24  17  .15

…

1011

#011 : 0   43  01  .99
#0## : 1   14  05  .52
101# : 0   27  24  .03
#0#1 : 1   18  02  .92

Situation σ(t)
Population [P]

Match Set [M]

Single Classifier

matching

00

01

10 11

00

01

10

11

 At each timestep 𝑡 XCS retrieves a binary string on length 𝑛  𝑚
 This string is denoted as 𝜎 𝑡 ∈  0,1 ା 
 Example for discrete CBP (𝑛 ൌ 2, 𝑚 ൌ 2 bits per dimension) 

and 𝑡 ൌ 1: 𝜎 1 ൌ 1011
 Each classifier maintains a condition 𝐶
 The conditions are encoded ternary, i.e. 𝐶 ∈ 0,1, # ା

 The # symbol serves as wildcard or `don‘t care‘ operator
 Examples of conditions: (is matching 𝜎ሺ1)?)

• 1#11 
• #011 
• 01#1

XCS Main Loop
Matching

Matching is the process of 
scanning the entire population ሾ𝑃ሿ
for classifiers with a condition that 

is `fulfilled‘ by the situation 𝜎 𝑡

XCS Main Loop
Matching: A simple example

* adapted from [39]
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Environment

p    ε F
#011 : 0   43  01  .99
11## : 0   32  13  .09
#0## : 1   14  05  .52
101# : 0   27  24  .03
#0#1 : 1   18  02  .92
1#01 : 1   24  17  .15

…

1011

#011 : 0   43  01  .99
#0## : 1   14  05  .52
101# : 0   27  24  .03
#0#1 : 1   18  02  .92

0  1
42.5           16.6

Situation σ(t)
Population [P]

Match Set [M] Prediction Array

Single Classifier

matching

Offspring Classifiers

00

01

10 11

00

01

10

11

XCS Main Loop 
System Prediction

The calculation of the system 
prediction is the actual `inference‘ 
step! Here, the local models are 

combined (`mixed‘) into a 
collective target prediction!

 The system prediction 𝑃ሺ𝑎ሻ is a fitness-weighted sum of predictions
of all classifiers in ሾ𝑀ሿ advocating action 𝑎

𝑃 𝑎 ൌ
∑ 𝑐𝑙. 𝐹 ∗ 𝑐𝑙. 𝑝∈ሾெሿ|.ୀ

∑ 𝑐𝑙. 𝐹∈ሾெሿ|.ୀ

 Especially at this place, the separation of strength and accuracy 
becomes apparent!

 For each possible action 𝑎 ∈ 𝐴 there exists one entry within the PA
 If a is not represented in ሾ𝑀ሿ, the PA entry is 𝑛𝑖𝑙

XCS Main Loop 
System Prediction

XCS Main Loop 
System Prediction: A simple example

* adapted from [39]

Environment

p    ε F
#011 : 0   43  01  .99
11## : 0   32  13  .09
#0## : 1   14  05  .52
101# : 0   27  24  .03
#0#1 : 1   18  02  .92
1#01 : 1   24  17  .15

…

1011

#011 : 0   43  01  .99
#0## : 1   14  05  .52
101# : 0   27  24  .03
#0#1 : 1   18  02  .92

0  1
42.5           16.6

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action 
Selection
Regime

#011 : 0   43  01  .99
101# : 0   27 24  .03

Reward
= 1000

RL

Single Classifier

matching

00

01

10 11

00

01

10

11

XCS Main Loop 
Credit Assignment
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 𝜖 ← 𝜖  𝛽 𝑃 െ 𝑝 െ 𝜖

 𝑝 ← 𝑝  𝛽ሺ𝑃 െ 𝑝ሻ

 𝐹 ← 𝐹  𝛽 𝜅
ᇱ െ 𝐹 , 𝜅

ᇱ ൌ  ೕ.⋅ೕ.௨
∑ .⋅.௨ ∈ሾಲሿ

, 𝜅 ൌ 𝛼 ఢೕ

ఢబ

ି௩

 𝛽 is the learning rate (typically set to 0.2) 
 𝛼 (often set to 0.1) and 𝜈 (usually set to 5) control how strong 

accuracy decreases when error is higher than  𝜖

 𝜖 defines the targeted error level of the system
 In single-step problems, 𝑃 is set to the immediate reward 𝑟

 Classifier parameters are updated by means of the Widrow-Hoff 
(or delta) rule in combination with the moyenne adaptiv modifiée
(MAM) technique

cf. [Butz et al. 2004]

XCS Main Loop 
Credit Assignment

XCS Main Loop 
Covering

Environment

p    ε F
#01# : 1     10   00  .01 

1011

#01# : 1     10   00  .01 0  1
nil 10

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action 
Selection
Regime

#01# : 1     10  00  .01

Reward
= 0

Covering

RL

matching

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

00

01

10 11

00

01

10

11

 Covering is the process of generating at least one novel classifier
that matches the current input 𝜎ሺ𝑡ሻ whenever:
• Match set ሾ𝑀ሿ is empty (i.e. no matching 𝑐𝑙 in [P])
• ሾ𝑀ሿ is poor, i.e. average fitness below a certain threshold
• ሾ𝑀ሿ contains less then 𝜃 distinct actions  

 The condition of the covered classifier 𝑐𝑙௩ is initially set to the 
current input

 Additionally, each bit is replaced by a # (for generalization 
purposes) with probability 𝑃#

 The action is selected equiprobably between actions not present in 
ሾ𝑀ሿ

 Values for 𝑝, 𝜖 and 𝐹 are set to predefined initial values
(typically 10.0, 0.0 and 0.01, respectively) 

XCS Main Loop 
Covering

XCS Main Loop 
Covering

Environment

𝜎௧ ൌ 100110

Covering
𝑐𝑙௩. 𝐶 ൌ 1#0#10

𝑐𝑙௩. 𝑎 ൌ randሺ𝐴 \ 𝐴ሻ
𝑐𝑙௩. 𝑝 ൌ 𝑝 ൌ 10
𝑐𝑙௩. 𝜖 ൌ 𝜖 ൌ 0

𝑐𝑙௩. 𝐹 ൌ 𝐹 ൌ 0.01

ሾ𝑃ሿ

ሾ𝑀ሿ

𝑐𝑙௩

if ሺ𝑚𝑛𝑎 ൏ 𝜃ሻ





if 𝑀 ൌൌ 0 OR  𝑚𝑛𝑎 ൏ 𝜃

Calculate PA

else else

Adjust 𝑚𝑛𝑎
and 𝐴

1  0  0  1  1  0

randሾ0,1ሻ  𝑃#

randሾ0,1ሻ  𝑃#

# #

* adapted from [39]
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Environment

p    ε F
#011 : 0   43   01  .99
11## : 0   32   13  .09
#0## : 1   14   05  .52
101# : 0   27   24  .03
#0#1 : 1   18   02  .92
1#01 : 1   24   17  .15

…

1011

#011 : 0   43   01  .99
#0## : 1   14   05  .52
101# : 0   27   24  .03
#0#1 : 1   18   02  .92

0  1
42.5           16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action 
Selection
Regime

#011 : 0   43  01  .99
101# : 0   27  24  .03

Reward
= 1000

Covering

RL

matching

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

00

01

10 11

00

01

10

11

XCS Main Loop 
Genetic Algorithm

 One of the most essential parts of XCS is the incorporated steady-
state niche GA (steady-state: only a small fraction of the population 
is replaced)

 It is triggered when the average time over all classifiers in ሾ𝐴ሿ since 
the last GA invocation is greater than 𝜃ீ (often set to 12)

• 𝑡 െ 𝑡𝑠ഥ  𝜃ீ, where 𝑡𝑠ഥ ൌ
∑ .௧௦∈ሾಲሿ

|ሾሿ|

 The GA selects two parents from ሾ𝐴ሿ with a probability proportional 
to their fitness values (roulette-wheel selection)

• The higher a classifier‘s fitness, the higher the selection chance 

 The selected parents are copied to generate two offspring classifiers 
𝑐𝑙

ଵ , 𝑐𝑙
ଶ

XCS Main Loop 
Genetic Algorithm: Invocation and Selection

 The conditions of both 𝑐𝑙 are crossed with probability 𝜒 ൌ 0.8
(crossover operator)

• One-point crossover: Each offspring classifier‘s condition is split at a certain point and 
switched with the other offspring classifier 

• n-point crossover: more than one point is determined for switching 
• Uniform crossover: Each value is switched with a certain probability (often 0.5)

 Afterward, each bit is flipped with probability 𝜇 ൌ 0.04 to one of the other 
allowed alleles (mutation operator)

• E.g. 2nd bit is set to `1‘, mutation can flip this bit to `0‘ or `#‘

XCS Main Loop 
Genetic Algorithm: Crossover and Mutation

Environment

p    ε F
#011 : 01   43  01  .99
11## : 00   32  13  .09
#0## : 11   14  05  .52
001# : 01   27  24  .03
#0#1 : 11   18  02  .92
1#01 : 10   24  17  .15

…

0011

#011 : 01   43  01  .99
#0## : 11   14  05  .52
001# : 01   27  24  .03
#0#1 : 11   18  02  .92

00    01  10    11
nil  42.5 nil 16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action 
Selection
Regime

#011 : 01   43   01  .99
001# : 01   27   24  .03

Reward

Covering

RL

Single Classifier

matching

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

Previous Action Set 
[A]-1

+
max

discount 𝛾
delay = 1

XCS Main Loop 
Sequential Problem Solving (Multi-step)
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 𝑟 may or may not be retrieved in each step
 One has to distinguish immediate reward (𝑟) and total reward or

payoff 𝑟 at the end of a task (e.g. finally food was found)
 Update of classifier attributes is performed on the action set of the

previous timestep 𝑡 െ 1 ( 𝐴 ିଵ)
 The maximum system prediction 𝑃ሺ𝑎ሻ from the current PA is

discounted by a factor 𝛾 (usually 𝛾 ൌ  0.95)
 Additionally, the immediate reward gained for performing the action

in the previous state (of time step 𝑡 െ 1) 𝑟௧ିଵ
 is added (may be 0)

 This delay allows to retrieve „information from the future“
 In single-step environments 𝑃 ൌ  𝑟

 In multi-step problems 𝑃 ൌ 𝑟௧ିଵ
  𝛾 ∗ max

ୟ
𝑃𝐴 𝑎  

XCS Main Loop 
Sequential Problem Solving (Multi-step)

 Single-step update of 𝑝:

𝑝 ← 𝑝  𝛽 𝑃 െ 𝑝

 Substituting 𝑃 yields us the multi-step update formula
 Multi-step update of 𝑝:

𝑝 ← 𝑝  𝛽ሺ𝑟௧ିଵ
  𝛾 max


𝑃𝐴ሺ𝑎ሻ െ 𝑝ሻ

 Do you know this update procedure from somewhere?

𝑄ሺ𝑠, 𝑎ሻ ← 𝑄ሺ𝑠, 𝑎ሻ  𝛼ሾ𝑟  𝛾 max


𝑄 𝑠ᇱ, 𝑎 െ 𝑄 𝑠, 𝑎 ሿ

XCS Main Loop 
Sequential Problem Solving (Multi-step)

XCS Main Loop 
Multi-step Credit Assignment: A sample calculation

𝐴 ିଵ 𝐶 𝑎 𝑝 ϵ 𝐹
𝑐𝑙ଵ 01# 01 700 200 0.8
𝑐𝑙ଷ 010 01 500 500 0.5

𝑃𝐴
00 01 10 11

720 nil 360 nil

max
∈ 

𝑃𝐴ሺ𝑎ሻ ൌ 720
𝑟 ൌ 1000+0.9 · 720 ൌ 648

discount by 𝛾 immediate reward

refine attributes using 
Widrow-Hoff delta rule

e.g. 𝑝 of 𝑐𝑙ଵ: 

𝑃 ൌ 1648

Environment

𝑐𝑙ଵ. 𝑝 ← 700  0.2 1000  0.9 max 720,360 െ 700
𝑐𝑙ଵ. 𝑝 ൌ 889.6

* adapted from [39]

Examples for multi-step environments:
 Animat scenarios: 

• Agent is seeking food / gold / exit / etc.
• E.g., Woods or Maze scenarios

 Step-wise adjustment of a control variable:
• Pan, Tilt, Zoom in Smart Camera Networks
• Mountain Car
• Inverse Pendulum

 Movement decisions: 
• `Move to beacon‘ minigame in StarCraft II LE

XCS Main Loop 
Sequential Problem Solving (Multi-step)
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 One disadvantage of LCS often mentioned is…

“[…] less formal understanding and a 
relatively small body of theoretical work […]”

 We should put emphasis on “relatively”
 Sometimes experienced misconception that…

no theory would exists for LCS!

 This is not true!

Michigan-style LCS
XCS Theory in a Nutshell

Michigan-style LCS
XCS Theory: Much formal work already done!

XCS Theory
Hyperparameter derivation
 Parameter bounds (Butz, Stalph)
 Optimal parameters (Nakata et al.)

Facetwise Theory
 Evolutionary Pressures (Butz et al.)
 Solution growth, sustenance
 Effective search 

Formalizations (models)
 Simple LCSs (Goldberg, Bull)
 Probabilistic model 

(Drugowitsch & Barry)

Learning problem analysis
 Imbalanced domains (Orriols-Puig et al.)
 Complexity of classification problems 

(Bernadó-Mansilla et al.)

GA analysis in XCS
 Markov-chain analysis (Bull, Butz)
 Selection pressure (Butz, Orriols-Puig)
 Selection probability (Kovacs et al.)

Hypotheses
 Generalization Hypothesis (Wilson)
 Optimality Hypothesis (Kovacs)
 Theory on Strong Overgenerals (Kovacs) 

Convergence and time bounds
 PAC learnability of k-DNF (Butz)
 Domino convergence model (Butz et al.)
 Convergence proofs under simplifications 

(Drugowitsch, Wada)

*see [33] for a brief survey

 Facetwise Theory Approach (due to Goldberg [13])
• Proposed to analyze and understand GAs 
• Partitioning of a system into its most relevant components
• Analysis in separation
• Afterward, combine and investigate interactions
• Answer questions: What?, How? and When?

 Facetwise LCS Theory (due to Butz et al. [8,10])
I. Design evolutionary pressures most effectively

– Fitness guidance, parameter estimation, generalization
II. Ensure solution growth and sustenance

– Population initialization, schema supply, growth and sustenance 
III. Enable effective solution search

– Mutation, recombination, local vs. global structure
IV. Consider additional challenges in multi-step problems

– Effective policy, problem sampling, reward propagation 

Michigan-style LCS
XCS Theory: Facetwise Approach

Michigan-style LCS
XCS Theory: Evolutionary Pressures (or How?)

Source: [8]
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 Main challenges (schema and covering)
• Covering Challenge

– Ensure coverage and GA application
– Prevent being trapped in a covering-deletion-cycle

• Schema Challenge
– Ensure that fitness pressure applies
– From both directions: over-general and over-specific classifiers
–

 Derived bounds:
• Covering bound
• Schema bound
• Reproductive opportunity bound
• Niche support bound 
• Learning time bound

 PAC-learnability of k-DNF problem confirmed for XCS with those bounds!

Michigan-style LCS
XCS Theory: Learning Bounds (or When?)

െ logሺ1 െ 𝑃 𝑐𝑜𝑣. ሻ

െ log 1 െ 2 െ 𝜎 𝑃
2

 ൏ 𝑁

Covering bound, cf. [10]

Cover

Delete
ሾ𝑃ሿ

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS
 Why does it learn? XCS Theory in a Nutshell

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification 

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

 XCS for function approximation introduced by Wilson in 2002 [64]

• Supervised learning  Actions become obsolete; only dummy action 𝑎ௗ

• Online learning  Adapt model instance per instance 

• Local learning  Classifiers partition the input space; divide-and-conquer

• Evolutionary Learning  Steady-state niche GA optimizes input space coverage

 Alternative view: Evolutionary Ensemble Learner
• XCS’ algorithmic structure as a general

online ensemble learning framework

• Classifiers as members of that ensemble 

• No Boosting, no Bagging, more like Stacking

• Allows hybrid ensemble (cf. [26])

Modern Systems
XCSF: Piece-wise Online Function Approximation

Modern Systems
XCSF: Piece-wise Online Function Approximation

Schematic

𝑐𝑙ଵ: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖, 𝐹ሻ
𝑐𝑙ଶ: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖, 𝐹ሻ

…
𝑐𝑙ே: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖, 𝐹ሻ

𝑓: 𝑋 → ℝ, 𝑥௧ ↦ 𝑦, 𝑋 ⊆ ℝ𝑥௧ ൌ ሺ𝑥ଵ, … , 𝑥ሻ

SP ⊆ ሾPሿ

𝑃 𝑎ௗ ൌ ∑ . · .ி∈ሾಾሿ
∑ .ி∈ሾಾሿ

PA
ሾMሿ

𝑟 ൌ 𝑦 ൌ  𝑓ሺ𝑥௧ሻ
COV RL

𝑐𝑙௩

𝑐𝑙
GA

Performance Component
Reinforcement Component
Discovery Component
Interpolation Component (IC)

𝑐𝑙ଷ
𝑐𝑙
𝑐𝑙ଵଽ
𝑐𝑙ଵଶ
… 

𝑃ሺ𝑎ௗሻ

𝑐𝑙ଵ. 𝐶
𝑐𝑙ଶ. 𝐶

𝑐𝑙ே. 𝐶
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 Development of Classifier Prediction
 90’s: Wilson introduced ZCS and XCS as reinforcement learning algorithms 

 Classifiers 𝑐𝑙 advocate specific action 𝑐𝑙. 𝑎 ∈ 𝐴 for certain subset of states 𝑥 ⊆ 𝑋

 Prediction attribute 𝑐𝑙. 𝑝 was defined to estimate the expected reward  𝔼ሾ𝑟|𝑥, 𝑎ሿ.

 2000: XCS recognized to be well applicable to supervised learning tasks (classification). 

 since 2001: Not surprisingly, it was then also used to approximate functions (regression). 

 Prediction 𝑐𝑙. 𝑝 was used as XCS’ output

 Eventually, modeled as function 𝑓 𝑥 ൌ 𝑤்𝑥  𝑤 of the current input 𝑥 ∈ 𝑋

 Intuition
𝑓ሺ𝑥ሻ

𝑥𝑐𝑙ଵ 𝑐𝑙ଶ 𝑐𝑙ଷ

𝑐𝑙ଵ. 𝑝

𝑐𝑙ଶ. 𝑝

𝑐𝑙ଷ. 𝑝

𝑓ሺ𝑥ሻ

𝑥𝑐𝑙ଵ 𝑐𝑙ଶ 𝑐𝑙ଷ

𝑐𝑙ଵ. 𝑤ሺሻ

𝑐𝑙ଶ. 𝑤ሺሻ

𝑐𝑙ଷ. 𝑤ሺሻ

𝑐𝑙ଵ. 𝑤ሺଵሻ

Modern Systems
XCSF: Innovations to preceding XCS(R) (1/2)

 Competent update procedures (cf. Lanzi et al. [24])

• Linear Least Square
• Kalman Filter
• Gain Adaptation
• Recursive Least Square

 Various predictors
• Polynomial approximation [25]
• Evolution Strategy [48]
• Neural Network [23]
• Support Vector Regression [29]
• RBF-Interpolation [42]

 Guided Mutation [37]

• Inspired by Covariance Matrix Adaptation
• Store weights for matching samples
• Assign weight < 1 for instances with high error (and vice versa)
• Guide mutation towards positively weighted instances

Modern Systems
XCSF: Innovations to preceding XCSR (2/2)

Source: 
Gradient descent, 
Wikipedia

Source: [37]

 Robot Kinematics
• Filtering of sensory information [20]

• Locally linear forward kinematics [38]

 Continuous action spaces [63]

• Hierarchical XCSF architectures
• e.g., Continuous Actor-Critic approach 

 Stacking Approach for Ensemble Forecasting [36]

• Use of hybrid forecasting techniques (ARIMA, Exp. Smooting, etc.) 
• Locally learning the weights for combination of those
• Applied to different time series 

Modern Systems
XCSF: Applications

Source: [20]

Source: [63]

Source: [36]

 First introduced by Urbanowicz and Moore in 2014 [56]

 Conceived to tackle large-scale, complex classification problems
 Equipped with mechanisms for post-hoc Knowledge Discovery
 Proved very successful in large multiplexer problems (135-bit!)
 Focus on LCS scalability in terms of:

• Increasing number of training instances (big data)
• Increase in problem dimensionality (relevant features)
• Increase in total number of features (curse of dimensionality)

 Open Source project (Python): 
https://github.com/ryanurbs/ExSTraCS_2.0

 Visit hands-on session at IWLCS@GECCO!

Modern Systems
ExSTraCS: Large-scale Supervised Classification
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[P]

[M]

Covering
Genetic

Algorithm
[C]

2

3

5
9

Update Rule
Parameters6

Deletion
10

Pre-Processing:   Expert Knowledge Discovery

Post-Processing:  Rule Compaction

Data Set1

[C][I] [C][I]

4

Subsumption
7

Attribute 
Feedback

Expert 
Knowledge

Attribute Tracking8

A

B

C

Training Instance

[PC ]
Prediction

(* see [51,56])

Modern Systems
ExSTraCS: Overview

* Adapted from Urbanowicz’s previous tutorials

 Automatically calculate training data statistics:
• Number of attributes
• Number of instances
• Location of endpoint (class)

 Automatic shuffling to prevent bias

 Determines data characteristics:
• Location of categorical attributes
• Location of continuous attributes
• Determines min and max ranges
• Counts distinct values for each attribute within the training data 

 Automatic selection of Rule-Specificity limit (RSL)

Modern Systems
ExSTraCS: Adaptive Data Management (ADM)

Pre-Processing:A

Source: [2]ALKR-style 
encoding

 Expert provides weights to the features/attributes
 Weights determine `predictive value’
 Weights guide covering mechanism and GA

 Weights can be provided manually by expert user, or… 
 … automatically by utilizing Relief-based attribute weighting 

• RelieF, SURF, SURF*, MultiSURF
• New to ExSTraCS 2.0  Tuned-RelieF (TuRF)

 Introduces sort of automated feature selection 
 But: without actual removal for knowledge discovery purposes!

Modern Systems
ExSTraCS: Using Expert Knowledge (EK)

Pre-Processing:   Expert Knowledge Discovery

Expert 
Knowledge

A

* see [51,55] for more details

 An extension to the LCS algorithm that allows 
for the explicit characterization of heterogeneity, 
and allows for the identification of 
heterogeneous subject groups.

 Akin to long-term memory.  Experiential 
knowledge stored separately from the rule 
population that is never lost.

 Relies on learning that is both incremental and 
supervised.

 Stored knowledge may be fed back into LCS 
during learning.

Modern Systems
ExSTraCS: Attribute Tracking und Feedback 
(AT&F)

* Adapted from Urbanowicz’s previous tutorials

Attribute 
Feedback Attribute Tracking8

* see [54,57] for more details
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 Outputs up to 5 distinct output files
a) Final population of learned rules
b) Population metrics (train/test accuracy, etc.)
c) Attribute co-occurrence in final rules
d) Attribute tracking scores per instance
e) Summary of predictions for testing data,

including votes (for further use)

 Facilitate algorithm transparency and interpretability!

Modern Systems
ExSTraCS: Knowledge Discovery from Output

gray box

Post-Processing:  Rule CompactionC

[PC ]

* see [53,57] for more details

 TO SOLVE: 135-bit Multiplexer
• All 135 features are predictive in at least some subset of the dataset.
• Non-RBML approaches would need to include all 135 attributes together in a single model properly 

capturing underlying epistasis and heterogeneity.

 Few ML algorithms can make the claim that they can solve even the 6 or 11-bit multiplexer 
problems, let alone the 135-bit multiplexer.

* Images adapted from [Urbanowicz and Browne, 2017]

Modern Systems
ExSTraCS: Solving the 135-Multiplexer

* Adapted from Urbanowicz’s previous tutorials

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS
 Why does it learn? XCS Theory in a Nutshell

 Modern Systems
 XCSF: Piece-wise Online Function Approximation
 ExSTraCS: Large-scale Supervised Classification 

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

 Reconsider M-style LCS as an online ensemble learner
 Rules = ensemble members
 Each rule constitutes a local model / hypothesis
 Rules are experts of different problem niches mixture of experts
 `Goodness’ of each `expert’ determined instance-by-instance 

without necessity to remember  one-pass (online) learning
 Modularity (recall building block intuition) allows for stacking

• Different models for local prediction (ANN, RBF, polynomials) and 
fitness-weighted combination = stacked generalization

 Learning Classifier System not only about classification (alone)
• XCSF: Function Approximation = Regression
• XCS(R): Sequential Decision Making = Reinforcement Learning
• XCSC: Clustering = Unsupervised Learning

 XCSF  similarities to Locally Weighted Projection Regression
 XCS(R)  generalizing Q-learner

Summary & Conclusions
A Different (ML-centric) Perspective on LCS
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 Flexibility (RL, SL) and modularity (building blocks)
 Interpretability by design (condition-action rules) 
 Follow divide and conquer principle (mixture of experts)
 Capture complex associations (epistasis, heterogeneity)
 Evolution as central component allows adaptation to 

change (concept drift)
Overarching framework for general ML techniques

• LCS and Deep Learning do not mutually exclude!
• E.g., put DNNs to locally model a policy

 And (again) finally…
• they are simply cool ;-)

Summary & Conclusions
So, again: Why LCS? (ex post)

 Visual and statistical knowledge discovery from LCS rule sets 
(Urbanowicz et al. [57])

 Theoretical hyperparameter derivation (Nakata et al. [30,31])
 Hierarchical LCS and multi-domain learning (Liu, Browne, Xue [28])
 Interpolation-assisted LCS (Stein et al. [40][42][43])
 LCS with active learning (Stein et al. [41])
 Algebraic formalization of LCS (Pätzel and Hähner [32])
 … 
  nearly all of them regularly attend GECCO!

Summary & Conclusions
Recent Research Directions (excerpt)

Thanks to Ryan J. Urbanowicz for the permission to reuse 
parts of his previous tutorials on LCS. 

Acknowledgements
 Additional Information:

 Keep up to date with the latest LCS research
 Get in contact with an LCS researcher
 Contribute to the LCS community research and discussions.

 GBML Central - http://gbml.org/

 LCS Researcher Webpages:
 Urbanowicz, Ryan - http://www.ryanurbanowicz.com/
 Browne, Will - http://ecs.victoria.ac.nz/Main/WillBrowne
 Lanzi, Pier Luca - http://www.pierlucalanzi.net/
 Wilson, Stewart - https://www.eskimo.com/~wilson/
 Bacardit, Jaume - http://homepages.cs.ncl.ac.uk/jaume.bacardit/
 Holmes, John -

https://www.med.upenn.edu/apps/faculty/index.php/g5455356/p19936
 Kovacs, Tim - http://www.cs.bris.ac.uk/home/kovacs/
 Bull, Larry - http://www.cems.uwe.ac.uk/~lbull/

 International Workshop Learning Classifier Systems (IWLCS) 
- held annually at GECCO 

 Mailing List:: Yahoo Group: lcs-and-gbml[at]yahoogroups.com

Resources

* Adapted from Urbanowicz’s previous tutorials
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 Educational LCS (eLCS) – in Python.
• https://github.com/ryanurbs/eLCS
• Simple Michigan-style LCS for learning how they work and how they are implemented.
• Code intended to be paired with first LCS introductory textbook by Urbanowicz/Browne.

 ExSTraCS 2.0 – Extended Supervised Learning LCS – in Python
• https://github.com/ryanurbs/ExSTraCS_2.0
• For prediction, classification, data mining, knowledge discovery in complex, noisy, 

epistatic, or heterogeneous problems.  

 BioHEL – Bioinformatics-oriented Hierarchical Evolutionary Learning – in C++
• http://ico2s.org/software/biohel.html
• GAssist also available through this link.

 XCSLib (XCS and XCSF) (by Lanzi in C++)
• http://xcslib.sourceforge.net/

 XCSF with function approximation visualization – in Java
• Martin Butz Chair website

Resources: Available Software

* Adapted from Urbanowicz’s previous tutorials

Selected Review Papers:
 Pätzel, David, Stein, Anthony, and Hähner, Jörg. “A Survey on Formal Theoretical Advances 

Regarding XCS." IWLCS (2019), under review, to appear.
 Bull, Larry. "A brief history of learning classifier systems: from CS-1 to XCS and its 

variants." Evolutionary Intelligence (2015): 1-16.
 Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine 

learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.
 Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction, 

review, and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.
 Sigaud, Olivier, and Stewart W. Wilson. "Learning classifier systems: a survey." Soft Computing 11.11 

(2007): 1065-1078.
 Holland, John H., et al. "What is a learning classifier system?." Learning Classifier Systems. Springer 

Berlin Heidelberg, 2000. 3-32.
 Lanzi, Pier Luca, and Rick L. Riolo. "A roadmap to the last decade of learning classifier system 

research (from 1989 to 1999)." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 33-61.

Books: 
 Drugowitsch, J., (2008) Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.  

Springer-Verlag.
 Bull, L., Bernado-Mansilla, E., Holmes, J. (Eds.) (2008) Learning Classifier Systems in Data Mining. 

Springer
 Butz, M (2006) Rule-based evolutionary online learning systems: A principled approach to LCS 

analysis and design.  Studies in Fuzziness and Soft Computing Series, Springer.
 Bull, L., Kovacs, T. (Eds.) (2005) Foundations of learning classifier systems. Springer.
 Kovacs, T. (2004) Strength or accuracy: Credit assignment in learning classifier systems. Springer.
 Butz, M. (2002) Anticipatory learning classifier systems. Kluwer Academic Publishers. 
 Lanzi, P.L., Stolzmann, W., Wilson, S., (Eds.) (2000). Learning classifier systems: From foundations to 

applications (LNAI 1813). Springer.
 Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Resources: LCS Review Papers & Books

* Adapted from Urbanowicz’s previous tutorials

 Textbook: ‘Introduction to Learning Classifier Systems’
Springer, 2017 (Urbanowicz & Brown, 2017)

 LCS Introductory Chapter: ‘Reaction Learning’, Chapter 7.1 in book: 
‘Organic Computing – Technical Systems for Survival in the Real World’, 
Birkhäuser, 2017 (Stein, 2017)

 YouTube video on LCS:
 Learning Classifier Systems in a Nutshell
 Animated, narrated explanation of basic LCS concepts.
 https://www.youtube.com/watch?v=CRge_cZ2cJc

 LCS and Rule-Based Machine Learning Wikipedia Pages – recently 
updated and revised. 
(https://en.wikipedia.org/wiki/Learning_classifier_system) 

Resources: Most recent

* Adapted from Urbanowicz’s previous tutorials

 Figure sources: All figures that have not been created by the author or indicated otherwise are 
free to use and taken from pixabay.com licensed according to the Pixaybay License
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