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Topics Topics
1. What makes the problem difficult to solve? 1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

o Normal Distribution, Rank-Based Recombination
¢ Step-Size Adaptation
o Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

¢ Choice of problem formulation and encoding (not covered)
e Choice of initial solution and initial step-size
o Restarts, Increasing Population Size

o Restricted Covariance Matrix
3
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization
@ Task: minimize an objective function (fitness function, loss
function) in continuous domain

f:XCR"=>R,
@ Black Box scenario (direct search scenario)
X f(x)

—

x = f(x)

» gradients are not available or not useful
» problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

@ Search costs: number of function evaluations

Problem Statement Black Box Optimization and lts Difficulties

What Makes a Function Difficult to Solve?

Why stochastic search?

@ non-linear, non-quadratic, non-convex
on linear and quadratic functions much better
search policies are available

@ ruggedness
non-smooth, discontinuous, multimodal, and/or
noisy function

@ dimensionality (size of search space)
(considerably) larger than three

@ non-separability
dependencies between the objective variables
@ ill-conditioning

non-smooth level sets

gradientdirection Newten direction
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

@ Goal

» fast convergence to the global optimum
) ) ) _...orto arobust solution x
» solution x with small function value f(x) with least search cost
there are two conflicting objectives

@ Typical Examples
» shape optimization (e.g. using CFD)
» model calibration
» parameter calibration

curve fitting, airfoils
biological, physical
controller, plants, images

@ Problems

» exhaustive search is infeasible
» naive random search takes too long
» deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
6

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy
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cut from a 5-D example, (easily) solvable with evolution strategies



Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if
arg( min  f(xy,...,%) = <argminf(x1, ce)y. . argminf(. .. ,x,,)>

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
decomposable functions

f(xla ce 7xn) = Zfl(xl)

Rastrigin function

Problem Statement ll-Conditioned Problems

[lI-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

fx) = 32" H(x—x*) = 3 35, hig (xi—x})?+ 5 X0 hig (xi—x7) (x5—x7)
H is Hessian matrix of f and symmetric positive definite

gradient direction —f"(x)T

Newton direction —H~'f’(x)T

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10"
are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H™') is necessary.

Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one (')
Rotating the coordinate system

@ f:x — f(x) separable

@ f:x — f(Rx) non-separable
R rotation matrix

ENEE 0 1 2 3

! Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

T osecton
Non-smooth level sets (sharp ridges)

Similar difficulty but worse than ill-conditioning

<

1-norm

scaled 1-norm 1/2-norm
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What Makes a Function Difficult to Solve?
...and what can be done

The Problem Possible Approaches

Dimensionality exploiting the problem structure

separability, locality/neighborhood, encoding
lll-conditioning second order approach
changes the neighborhood metric
Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a
reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator . .
serves as repair mechanism

restarts

Evolution Strategies (ES)

Stochastic Search

A Search Template

A black box search template to minimize f : R* — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x1, .
@ Evaluate xi,...,xyonf
© Update parameters 6 < Fy(0,x1, .

..,X) ER?

o 7x/\7f(xl)a 000 af(x)\))

I
Topics

2. How does the CMA-ES work?

o Normal Distribution, Rank-Based Recombination
e Step-Size Adaptation
o Covariance Matrix Adaptation

Evolution Strategies (ES)

Stochastic Search

A Search Template

A black box search template to minimize f : R* — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x1,
@ Evaluate x;,...,xyonf
© Update parameters 6 < Fy(0,x1,

...X) ER?

Ce ,x,\,f(xl)a 000 af(x)\))
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Evolution Strategies (ES)

Stochastic Search

A Search Template

A black box search template to minimize f : R* — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x1,

o,x) ER?
@ Evaluate x;,

..o.xyonf

© Update parameters 6 < Fo(0,x1,...,x\,f(x1),...,f(x)))

Evolution Strategies (ES)

Stochastic Search

A Search Template

A black box search template to minimize f : R* — R

Initialize distribution parameters @, set population size A € N
While not terminate

@ Sample distribution P (x]6) — x1,

...,X) ER?
@ Evaluate x;,

L.o.xyonf

Evolution Strategies (ES)

Stochastic Search

A Search Template

A black box search template to minimize f : R* — R

Initialize distribution parameters €, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x1,

.,x) €ER?
@ Evaluate x;,

L.oxyonf

© Update parameters 6 < Fo(0,x1,...,x\,f(x1),...,f(x)))

© Update parameters 6 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Evolution Strategies (ES)

Stochastic Search

A Search Template

A black box search template to minimize f : R* — R

Initialize distribution parameters €, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x1,

o,x) ER?
@ Evaluate x;,

..o.xyonf

© Update parameters 6 < Fp(0,x1,...,xx,f(x1),...,f(x)))

20
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R* — R
Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x]6) — x1,...,x) € R"

@ Evaluate x;,...,xyonf

© Update parameters 6 < Fo(0,x1,...,x\,f(x1),...,f(x)))

Everything depends on the definition of P and Fy
deterministic algorithms are covered as well

21

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R™"; 0 € Ry; A € N>o, usually A > 5, default 4 + |3logn|

Setcy, = 1;¢1 = 2/n?; cpy & pw /N2 cc B 4/n; co = 1/y/n;de = 1 wimy. )
decreasinginiand > w; =1, w,> 0> wyrn, py' =y 0 w2~ 3/A
Initialize C=1,andp. =0,p, =0
While not terminate

z; = m+oy,;, wherey, ~N;(0,C) fori=1,..., sampling

m 4 m+ cmoy,,, Wherey, = Zlewrk(i) Y;

Ps <—(1—Ca)Po+\/m\/uw C*%yw path for o
P+ (1 =co)p. + Noam{lp, 12} /1= (1= co)2Viw y,, pathfor C

update mean

0 4+ 0 X exp (2—3 (% —1) update of &
A
C+C+euy i wu (Wy] —C) + ca(p.pf — C) update C

Not covered: termination, restarts, useful output, search boundaries and encoding,
corrections for: positive definiteness guaranty, p_ variance loss, ¢, and d,, for large A

23
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R* — R
Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x]6) — x1,...,x) € R"

@ Evaluate xi,...,xyonf

© Update parameters 6 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Everything depends on the definition of P and Fy
deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined
via operators on a population, in particular, selection, recombination
and mutation

Natural template for (incremental) Estimation of Distribution Alaorithms
22

Evolution Strategies (ES) A Search Template

Evolution Strategies

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1,...,)\

as perturbations of m,  where x;,m ¢ R", s € R,, C € R™" ||

where

@ the mean vector m € R” represents the favorite solution
@ the so-called siep-size o € R controls the sfep length

@ the covariance matrix C € R™*" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

24




Evolution Strategies (ES) The Normal Distribution

Why Normal Distributions?

@ widely observed in nature, for example as phenotypic traits

@ only stable distribution with finite variance
stable means that the sum of normal variates is again
normal:

N(@x,A)+N(y,B) ~N(x+y, A+B)

helpful in design and analysis of algorithms
related to the central limit theorem

© most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction, rotational
invariant

© maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape

25

Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/ (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

27

Evolution Strategies (ES) The Normal Distribution

Normal Distribution

Standard Normal Distribution
0.4

o
w

probability density of the 1-D standard
normal distribution

probability density
o
i

o

probability density of
a 2-D normal
distribution

Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
{xeR"|(x —m)"C™'(x —m) =n}
Lines of Equal Density

N (m,02T) ~ m + o N (0,1)
one degree of freedom o
components are
independent standard
normally distributed

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x A/ (0,T) ~ A (0, AAT) holds for all A.

28
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The Normal Distribution
Multivariate Normal Distribution and Eigenvalues
For any positive definite symmetric C,
C=dd?bbT + -+ d%bybk
d;: square root of the eigenvalue of C
b;: eigenvector of C, corresponding to d;

The multivariate normal distribution N'(m, C)

N(m,C) ~m+N(0,d?)b; + -+ N(0,d3)b

dy - by
dy - by

Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions

Rank-based algorithms
Update of all parameters uses only the ranks

Flia) < flxaa) <o S f(an)

N

(f(xa)) < g(f(xz A)) <..< g(f(xm)) vg
g is strictly monotonically increasing
3 g preserves ranks

itley . e algorithm and selection pressure: ly rank-based allocation of reproductive trials 1s best,
ICGA

31

Evolution Strategies (ES) The Normal Distribution

The (u/p, A)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + o y;
N—_——

=y

Let x;.) the i-th ranked solution point, such that f(x1.)) < -+ < f(xx.))-

The best 11 points are selected from the new solutions (non-elitistic)

and weighted intermediate recombination is applied.
30

Evolution Strategies (ES) Invariance

Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

fx) & fle—

Identical behavior on f and f,
i ox—=f(x),

x(t:O) = X0
fo: x> f(x—a), x=0 =x;+a

No difference can be observed w.r.t. the argument of

844



IS TGLESEICRIEEN (S Summary Step-Size Control

Summary . Evolution Strategies
Bm Recalling
" : New search points are sampled normally distributed [ - ... /. . |
— s \ = ;
— CSAES || M a s e x; ~m + o N;(0,C) fori=1,...,\
10° |
as perturbations of m, where x;;m € R", o € R, C € R™" 77777777777
h where
El(ﬂ @ the mean vector m € R” represents the favorite solution
and m «+ Zf;l Wi X\
10-9 @ the so-called siep-size o € R, controls the step length
@ the covariance matrix C € R"*" determines the shape of
107 2000 e P e To000 the distribution ellipsoid
func. evals.
The remaining question is how to update o and C.
On 20D Sphere Function: f(x) = S° , [x]?

@ ES without adaptation can’t approach the optimum =- adaptation required

33 34

Step-Size Control Why Step-Size Control

Methods for Step-Size Control

Path Length Control (CSA)

. . . The Concept of Cumulative Step-Size Adaptation
@ 1/5-th success rule®, often applied with “+*-selection P P P * m+oy;
i 1
increase step-size if more than 20% of the new solutions are successful, m < m+oy,
decrease otherwise .
T , Measure the length of the evolution path
@ o-self-adaptation®, applied with “,"-selection
L . . . the pathway of the mean vector m in the generation sequence
mutation is applied to the step-size and the better, according to the P y 9 9
objective function value, is selected
simplified “global” self-adaptation
@ path length control? (Cumulative Step-size Adaptation, CSA)® j@
self-adaptation derandomized and non-localized @
. Y Y
Rechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen decrease o increase o
Evolution, Frommann-Holzboog ~
cSchumer and Steiglitz 1.968. Ac‘ia!)tiw.e step size random search.‘IEEE TAC |003€|y speaking steps are
Schwefel 1981, Numerical Optimization of Computer Models, Wiley
Hansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput. (*] perpendlcular under random selection (|n expectatlon)
92 . . . . . -
eOslermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN IV e perpendlCUIar in the desired situation (tO be most effICIent)
35

36
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Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setc, = 4/n,d, ~ 1.

37

Two-Point Step-Size Adaptation (TPA)

@ Sample a pair of symmetric points along the previous mean shift

HN(O I)” (m(g) _ nl(g—l))
Hnl(ﬁ) — m(g—l)“C(g)

1

X1y =m® £ [lx]|c :==xTC1x

[Hansen et al., 2014] Hansen, N., Atamna, A., and Auger, A. (2014). How to assess step-size adaptation mechanisms in randomised search.
In Parallel Problem Solving from Nature—PPSN XIlI, pages 60-69. Spggger.

846

(5/5,10)-CSA-ES, default parameters

10°

10"

1072

[l — x|

107

10*

10°

Step-Size Control Path Length Control (CSA)

T T

— respective step-size

— with optimal step-size
— with step-size control

f)=>"x

i=1
in [—0.2,0.8]"
for n = 30
0 560 1600 15;00 2000 2500 3(;00 35;00 4600
function evaluations
38
On Sphere with Low Effective Dimension
On a function with low effective dimension
o flx)="" [x?, xcRY, M<N.
@ N — M variables do not affect the function value
— N=10,M=10 [] — N=10,M=10
— N=100,M=100 || — N=100,M =100
— N=100,M=10 || — N=100,M=10

10 10° 10t 10° 10%
function evaluations

10° 10!
function evaluations

10°



e 6
Alternatives: Success-Based Step-Size Control

comparing the fitness distributions of current and previous iterations

Generalizations of 1/5th-success-rule for non-elitist and
multi-recombinant ES

@ Median Success Rule [AitEnaraetal, 2013]
@ Population Success Rule itoshehiov, 2014)
controls a success probability

[Ait Elhara et al., 2013] Ait Elhara, O., Auger, A., and Hansen, N. (2013). A median success rule for non- elitist evolution strategies: Study of
feasibility. In Proc. of the GECCO, pages 415-422.

[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proc. of the
GECCO, pages 397-404. 41

Sy
Step-Size Control: Summary

10 { —— CMA-ES, a=1 (sphere)
—— CMA-ES, a=3
—— CMA-ES, a=10
1074 —— CMA-ES, a=30
100
E
=
E 102
g
10
10-¢
10 T T T T T T T o
0 2500 5000 7500 10000 12500 15000 17500 20000

func. evals.

On 20D TwoAxes Function: f(x) = SV 2[Rx]? + o Sy 211 [RX]}, R: orthogonal

@ convergence speed of CSA-ES becomes lower as the function becomes ill conditioned

i=1

(a® becomes greater) = covariance matrix adaptation required

43

Step-Size Control EITn[;ERYE

Step-Size Control: Summary

Why Step-Size Control?

t stop-size

@ to achieve linear convergence at near-optimal rate

Cumulative Step-Size Adaptation

optima stop-size
(scalo invaria

&

@ efficient and robust for A < N
@ inefficient on functions with (many) ineffective axes

Alternative Step-Size Adaptation Mechanisms
@ Two-Point Step-Size Adaptation
@ Median Success Rule, Population Success Rule

the effective adaptation of the overall population diversity seems yet to
pose open questions, in particular with recombination or without entire

control over the realized distribution.?

?Hansen et al. How to Assess Step-Size Adaptation Mechanisms in Randomised
Search. PPSN 2014

42

Covariance Matrix Adaptation (CMA)

Evolution Strategies

Recalling

New search points are sampled normally distributed
x; ~m + o N;(0,C) fori=1,...,\

as perturbations of m,
where

where x;,;m € R", 0 € Ry, C € R™"

@ the mean vector m € R”" represents the favorite solution
@ the so-called siep-size o € R controls the sfep length
@ the covariance matrix C € R"*" determines the shape of

the distribution ellipsoid

The remaining question is how to update C.

44
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m—+ oyy, yw:Z?=1 WiYi:X, ytNM<07C)

C

initial distribution, C =1

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m—+ oyy, yw:Z?=1 WiYix, ytNM<07C)

yw, movement of the population mean m (disregarding o)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m—+ oyy, yw:Z?=1 WiYi:X, ytNM<07C)

B

initial distribution, C =1

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m—+ oyy, yw:Z?=1 WiYix, ytNM<07C)

mixture of distribution C and step y,,,
C+08xC+02xy,yl
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <— m-—+ oy, yw—

(&>

new distribution (disregarding o)

i— 1Wiyi:)\7

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mo A Oy, Y = I Widis

a
\/

movement of the population mean m

yi ~ N;(0,C)

yi ~ N;(0,C)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m—+ oYy, Yy = Z?:l WiYix, Yi~ M<07 C)
a '
[ ]
new distribution (disregarding o)
50
Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <= m—+ oYy, Yy = Z?:l WiYix, Yi~ M<07 C)

mixture of distribution C and step y,,,
C+08xC+0.2xy,y!
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update
yi ~N;(0,0C)

m < m-—+oyy, Yw= Zf;l WiYix,

new distribution,

C+08xC+0.2xy,yl

the ruling principle: the adaptation increases the likelihood of
successful steps, y,,, to appear again

another viewpoint: the adaptation follows a natural gradient

approximation of the expected fitness
53

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

C«+ (1 - Ccov)C + Ccovﬂwywy;l‘;
covariance matrix adaptation

learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
conducts a principle component analysis (PCA) of steps y,,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

learns a new rotated problem representation \/

components are |ndependent only
in the new representation.. -

@ learns a new (Mahalanobis) metric

variable metric method
@ approximates the inverse Hessian on quadratic functions

transformation into the sphere function
for = 1: conducts a natural gradient ascent on the distribution A/
entirely independent of the given coordinate system

55
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update
Initialize m € R", and C =1, set o = 1, learning rate c.oy ~ 2/n”
While not terminate

X =
m <
C «

The rank-one update has been found independently in several domains® 7 8 °

m+ oy,

m—+ oyy

(1 = ceor)C + Ceovtt Yudm

yi ~ Ni(0,C),

o
where y,, = Z Wi i\

i=1

rank-one

6Kjellstrijm&Taxt-i‘n 1981. Stochastic Optimization in System Design, IEEE TCS

where p,, =

>1

HIWIZ -

7Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix
adaptation, ICEC

8Ljung 1999. System Identification: Theory for the User

Haario et al 2001. An adaptive Metropolis algorithm, JSTOR

54

(TAELELNENHRCELIENLLE (G LV Covariance Matrix Rank-One Update

Invariance Under Rigid Search Space Transformation

f = hRast flevel sets in dimension 2 f =h
AN, —~ = :
© © 0] 0 © 7
2 © O ©@® O © &
@O @O @@ @@ |
POO®OO
o 0 . . 0 ) r ]
YN O)] M—Mm—————————
s S S S R
H © ©©®© O ¢ | |
@@ O O @) @ °
-2p) i ® ©© [ N S RS R R
© 0 0] 0 ©-
’93 _Q _f? 0 3 -3 -2 -1 0 1 2

for example, invariance under search space rotation
(separable < non-separable)
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(COENELLCNETHECETIEULL (e 1LV Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Invariance Under Rigid Search Space Transformation Cumulation
The Evolution Path
Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

2

An exponentially weighted sum of
steps y,, is used

8
Py (L)t 5

exponentially
fading weights

for example, invariance under search space rotation
(separable < non-separable)

57 58

Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation

The Evolution Path “Cumulation” is a widely used technique and also know as

Evolution Path

@ exponential smoothing in time series, forecasting
Conceptually, the evolution path is the search path the strategy takes over a number of

generation steps. It can be expressed as a sum of consecutive steps of the mean . @ exponentially weighted mooving average
'An exponentially weighted sum of @ iferate averaging in stochastic approximation
steps y,, is used @ momentum in the back-propagation algorithm for ANNs

8
peoc Yy (L=c)™ yy
=

exponentially
fading weights

“Cumulation” conducts a low-pass filtering, but there is more to it. ..

The recursive construction of the evolution path (cumulation):

pe (I=c)pe+ /1= (1=ce) i yw
—— —_——

decay factor normalization factor input = m—nmold
-

where p, = ﬁ ce < 1. History information is accumulated in the evolution path.
59 60
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

CumU|atI0n C«+ (1 *CCOV)CJFCcov#w.wax

Utilizing the Evolution Path T T ) .
We used y.y,, for updating C. Because y,y, = —y.(—y») the sign of y,, is lost.

(&=

Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

CumU|atI0n C«+ (1 *CCOV)CJFCcov#w.wax

Utilizing the Evolution Path T T ) .
We used y.y,, for updating C. Because y.y, = —yw(—y») the sign of y,, is lost.

The sign information (signifying correlation between steps) is (re-)introduced by using
the evolution path.

pe — (I—co)pe +/1—(1—ce)*/owyw
N—_—— —_— —
decay factor normalization factor
C « (1 7Ccov)C+Ccov pcch
N~~~

rank-one

where p,, = ﬁ Ceov K e < 1 such that 1/c. is the “backward time horizon”.
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation

Utilizing the Evolution Path T T ) .
We used y.y,, for updating C. Because y,y, = —yw(—y») the sign of y,, is lost.

a
\V,

Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from about O(n?) to O(n).(®)

aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

C+ (1 - Ccov)c + Ccovﬂw,"wyx

Number of f-evaluations divided by dimension on the cigar function f(x) = x3 + 106 37, x?

10*

c. = 1 (no cumulation)

5 - ) i

1 2

dimension

The overall model complexity is n* but important parts of the model
can be learned in time of order n
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Rank-u Update

x; = m-+oy, yi o~ M(07C),
m < m+oyy, Yoo = D wiyia

The rank-u update extends the update rule for large population sizes A using
1 > 1 vectors to update C at each generation step.

1OJastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p Update

rank-p. CMA
conducts a
PCA of
steps

EMNAgIobaI
conducts a
PCA of
points

xp = mog +yi, yi~ N(0,C)

.
C« ﬁ 32 (xi:x —mnew) (xi: x —7new) Mnew = Mold + i ¥ia

sampling of A = 150 calculating C from p = 50
solutions (dots) solutions
mnew IS the minimizer for the variances when calculating C

new distribution

" Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, |. Inza and E.
Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p Update

1
Mnew < m+ m 2y

ﬁZyMyIA
(-1 xCH+1xc,

X = mtoy, n~N@OCO €

T e

new distribution

sampling of A = 150 calculating C where

solutions where =50,
C:IandO':1 WIZ---:WH:i,
and ceoy = 1
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p. Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n*) to O(n) (12)
given p, x A xn
Therefore the rank-p update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p. Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n*) to O(n) (12)
given u, x A xn
Therefore the rank-p update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(»n?) to O(n) .

12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p Update

Rank-one update
best f-value 50 mean coordinates
25

107
10!
10!
10
1077
107
101 1.0
‘

3500 5000 7500 IS0 1000 3500 5000 7500 T0000T 50015000
principle axis lengt]

-

100 102

102
10
10
10

107 10
2500 5000 7500 100001250015000 0 2500 5000 7500 100001250015000

best f-value mean coordinates

Rank-u update

10°
10 20
!

10 1
10
10
07 0.5
107
0
10" 05

2300 5000 7500 100001250015000 02300 50007500 100001250015000

" step-size o principle axis length

5 10

2 6 2

STwoAxes(X) = E X; + 10 E X;
i=1 i=6

A = 10 (default for N = 10)

.

107! 100
107

107

y

107

7

0-° 10
07 2500 5000 7500 1000012500 15000 0" 2500 5000 7500 100001250015000
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n*) to O(n) (12)
given u, x A xn
Therefore the rank-p update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(»n?) to O(n) .

Rank-one update and rank-u update can be combined

12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-p. Update

Rank-one update

best f-value mean coordinates
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Rank-u update
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Covariance Matrix Adaptation (CMA) BV (-Xe11VN

Cigar Type:

Discus Type:
1 long axis = n-1 short axes

1 short axis = n-1 long axes

fE) =2 +aXl 5 ) =a-x3+ 3022

10-10
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Covariance Matrix Adaptation (CMA) BVCG-Xe11VN

On 10D Discus Function

10D Discus Function (axis ratio: a = 10°)

n
1) =02 A 4 3%
i=1

Positive Update

102"
1000728~

N

- e,
ot Eoaaevs -

10 eig(C) r\

‘ — ‘ ‘ : : 1081
0 1000 2000 3000 4000 5000 6000 7000 8000 0 0
function evaluations

1000 2000 3000 4000 5000 6000 7000 8000
function evaluations

@ Positive: wait for the smallest eig(C) decreasing
@ Active: decrease the smallest eig(C) actively
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Covariance Matrix Adaptation (CMA) BVCG-Xe1VN

Active Update

utilize negative weights [Jastrebski and Arnold, 2006]

Active Update (rewriting)

decreasing the variances in unpromising directions

[A/2] A
C + C+C1pcpc T + Cu Z WLYi:)y;‘l:,\ —Cp Z ‘Wi‘yii)\yzk
i=1 i=A—|A/2]+1

increasing the variances in promising directions

@ increases the variance in the directions of p, and promising steps
Yi:x (i S |_>‘/2J)

@ decrease the variance in the directions of unpromising steps y;.\
(= A=[A2]+1)

@ keep the variance in the subspace orthogonal to the above

[Jastrebski and Arnold, 2006] Jastrebski, G. and Arnold, D. V. (2006). Improving Evolution Strategies through Active Covariance Matrix
Adaptation. In 2006 IEEE Congress on Evolutionary Computation, pages 9719-9726.
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Covariance Matrix Adaptation (CMA) BWC(-Xe11VN

Summary
Active Covariance Matrix Adaptation + Cumulation
[A/2] A
C (I*CI *C;L+C;)C+Clpcpr T+Cu Z Wiyi:)\y;‘l:)\fc; Z ‘Wi|yi:AyIA
i=1 i=A—[\/2]+1

o —|Kv,-\ <0 (fori > X —[A/2] + 1): negative weight assigned to y;.,
Zi:A—u“M =1.

@ ¢, > 0: learning rate for the active update
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CMA-ES Summary

Input: m € R™; 0 € Ry; A € N>y, usually A > 5, default 4 + [3logn|

Setc, = 1;¢1 &~ 2/n?%; cp & pw/n?; cc A n;co = 1/y/nyde =1 wi—, )
Lo —1
decreasing in 7 and g 5wi =1L w,>0> w41, ey = g 5:1 w? A~ 3/\

Initialize C =1,andp. =0,p, =0

While not terminate

xz; = m+oy;, wherey, ~N;(0,C) fori=1,..., A sampling

m =+ Croy,, wherey, =>"" wui y; update mean

pU<—(1—cg)pc,—|—\/1—(1—00)2,/uw07%yw path for o
pe  (1=co)pe + Vo 2n{llp, 1} /1 — (1 — cc)?\/irw y,, pathfor C
0 4 0 X exp (2—2(%—1)) update of &

A
C+—C+cy Zi:l Wrk(i) (yly;r - C) + ci(p.pl —C) update C

Not covered: termination, restarts, useful output, search boundaries and encoding,
corrections for: positive definiteness guaranty, p, variance loss, ¢, and d. for large A

77

\LHECEWE GG RGENECTEN LY Strategy Parameters and Initialization

Default Parameter Values
CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

@ related to selection and recombination
@ \: offspring number, new solutions sampled, population size
@ u: parent number, solutions involved in mean update
@ w;: recombination weights

@ related to C-update
@ 1 — ¢.: decay rate for the evolution path, cumulation factor
@ ci: learning rate for rank-one update of C
@ c,: learning rate for rank-p. update of C

@ related to o-update

@ | — ¢, : decay rate of the evolution path
@ d,: damping for o-change

The default values depends only on the dimension. They do in the first place
not depend on the objective function.
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Topics

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

¢ Choice of problem formulation and encoding (not covered)
e Choice of initial solution and initial step-size
o Restarts, Increasing Population Size

o Restricted Covariance Matrix
78

\HECEWE GG RGENTECTEN LY Strategy Parameters and Initialization

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

@ related to the initial search distribution
o m(9): initial mean vector
o o (or \/Cl.(fl).)): initial (coordinate-wise) standard deviation

@ related to stopping conditions
e max. func. evals.

max. iterations

function value tolerance

min. axis length

stagnation

Practical Hints:
@ start with an initial guess m(?) with a relatively small step-size (¥ to locally
improve the current guess;
@ then increase the step-size, e.g., by factor of 10, to globally search for a better

solution.
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\LECETTE LT GRGEREET AN YA Strategy Parameters and Initialization

Python CMA-ES Implementation
https://github.com/CMA-ES/pycma
pycma

A Python implementation of CMA-ES and a few related numerical optimization tools.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic derivative-free numerical optimization
algorithm for difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous

search spaces.

Useful links:
* A quick start guide with a few usage examples
* The API Documentation

« Hints for how to use this (kind of) optimization module in practice
Installation of the latest release
Type

python -m pip install cma

in a system shell to install the latest release from the Python Package Index (PyPl). The release link also provides more

installation hints and a quick start guide.
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Python CMA-ES Demo

https://github.com/CMA-ES/pycma

Optimizing 10D Rosenbrock Function

cma.plot()

[foest med. worstl. f=min(f), o, axis ratio

10 s ragey
10t
08
10°
06
10t
04
1072 X std
10°*
n stdy.0
10-¢ mil
) i
o 1000 200 300 4000 0 1000 2000 300 4000

Principle Axes Lengths

Standard Deviations x o~! in All Coordinates

0 1000 2000 3000 4000 0 1000 2000 3000
function evaluations function evaluations
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4000

Object Variables (curr best, 10-D, popsize~10)
7}1=1.00007¢
q{$1=1.00007

($1=0.99988¢

0.99945¢
0999203
0.99838¢

($1=0.996611
5($1=0.99373;
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\LENGETTE LT GRGEREET SN YA Strategy Parameters and Initialization

Python CMA-ES Demo

https://github.com/CMA-ES/pycma

Optimizing 10D Rosenbrock Function

In [1]: import cma # import
opts = cma.CMAOptions() # CMA Options
opts[ 'ftarget'] = le-4

# - function value target

opts[ 'maxfevals'] = le6 # - max. function evaluations

cma.fmin(cma.ff.rosen,
x0=[0.0] * 10, # - x0 = [0,..., 0]
sigma0=0.1, # - sigma0 = 0.1
options=opts) # - other options

(5_w,10)-aCMA-ES (mu_w=3.2,w_1=45%) in dimension 10
r 16 13:39:57 2018)

Iterat #Fevals function value axis ratio sigma

1 10 1.169928472214858e+01 1.0e+00 9.12e-02

2 20 1.363303277917634e+01 1.1e+00 8.33e-02

3 30 1.232089008099892e+01 1.2e+00 7.55e-02

100 1000 5.724977739870999e+00 9.1e+00 1.65e-02

200 2000 2.550841127554589e+00 1.5e+01 3.97e-02

300 3000 3.674986141687857e-01 1.5e+01 2.76e-02

400 4000 1.266345464781239e-03 5.0e+01 1.18e-02

7. 5

420 4200 039461687999381e-05 5.5e+01 4.04e-03

# Minimize Rosenbrock function

(seed=909490, Mon Ap

min&max std t[m:s]
9e-02 9e-02 0:00.
8e-02 8e-02 0:00
7e-02 8e-02 0:00.
7e-03 2e-02 0:00.
le-02 4e-02 0:00
3e-03 2e-02 0:00
8e-04 2e-02 0:00.
2e-04 5e-03 0:00

U e MR OoOoOo

termination on ftarget=0.0001 (Mon Apr 16 13:39:58 2018)

final/bestever f-value = 2.804423e-05 2.804423e-05

incumbent solution: [ 0.9998542 0.99996219 0.9999681 1.00000445 0.

99998977 0.99968537
0.99954974 0.99918266 ...]

std deviations: [ 0.00023937 0.00022203 0.00024836

1258 0.00043481
0.00078261 0.0014964 ...]
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Multimodality

0.00024782 0.0003

Two approaches for multimodal functions: Try again with

e a larger population size

e a smaller initial step-size (and random initial mean vector)

84



Multimodality

Approaches for multimodal functions: Try again with

¢ the final solution as initial solution (non-elitist) and small step-size

¢ a larger population size

» a different initial mean vector (and a smaller initial step-size)

A restart with a large population size helps if the objective function has

a well global structure
« functions such as Schaffer, Rastrigin, BBOB function 15~19
e loosely, unimodal global structure + deterministic noise

f

AA A a A W x { 1
A |
Y I8
— [z
o A YYVAR | % ’
i : I
{‘{ ‘\i[ ¢ = //‘ .
L : T A&
v - ,1\”/
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Multimodality

Approaches for multimodal functions: Try again with

¢ the final solution as initial solution (non-elitist) and small step-size
¢ a larger population size

» a different initial mean vector (and a smaller initial step-size)

A restart with a small initial step-size helps if the objective function

has a weak global structure
e functions such as Schwefel, Bi-Sphere, BBOB function 20~24

/ Eak
,, N adat

a large population size has a negative effect
87

-
<

Multimodality

Hansen and Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions, PPSN 2004.

Rastrigin function Griewank function

1 : 000 @-RB gE gy 1 x50
o9 X ’c(’ﬁ
0.8 ,’ X 08 X7,
d/ , "’l®,
/ % ,
£.6 /. K .6 Y
a , ! 3t g’
0.4 v # 4 S04 P
o ! —X/
o B ]
02 & e s 02 Rg
‘ / -9 o)
obsex xi 4 o 0-97 T -x
10 T 7100 1000 10 100 1000
population size population size
(a) (b)
Fig. 1. Success rate to reach fsop = 107'° versus population size for (a) Rastrigin
P
function (b) Griewank function for dimensionsn =2 (——Q—-"),n =5 (——x——"),

n=10(—0—),n=20(-—+—--"),n=40 (—- - —-—"), and n = 80 (—v—).
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Restart Strategy

It makes the CMA-ES parameter free

IPOP: Restart with increasing the population size

o start with the default population size
« double the population size after each trial (parameter sweep)
e may be considered as gold standard for automated restarts

BIPOP: IPOP regime + Local search regime
* |IPOP regime: restart with increasing population size

o Local search regime: restart with a smaller step-size and
a smaller population size than the IPOP regime
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Topics Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems
@ O(N?) Time and Space Complexities

» to store and update C € RV*¥
» to compute the eigen decomposition of C

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

e Choice of problem formulation and encoding (not covered)
e Choice of initial solution and initial step-size
o Restarts, Increasing Population Size

o Restricted Covariance Matrix
89 90

Restricted Covariance Matrix Restricted Covariance Matrix
Variants with Restricted Covariance Matrix Separable CMA (Sep-CMA)

CMA-ES Variants with Restricted Covariance Matrices
o Sep-CMA [Ros and Hansen, 2008]
» C =D. D: Diagonal
@ VD-CMA [Akimoto etal., 2014]
» C =D(I+w")D. D: Diagonal, v € R".
") LM_CMA [Loshchilov, 2014]
> C:I-l—Zf:lviviT. v, € RV,
) VkD_CMA [Akimoto and Hansen, 2016]
» C=D(I+ Y\ vw)D. v, e RV,

N (m, o) ~ m + oN(0,1) N (m,D?) ~m +DN(0,I) N(m,C)~m+C%N(0,I)
one degree of freedom o n degrees of freedom (2 1 ) /2 degrees of freedom

w
+1 y
[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time and space complexity. In CMA CE,“;, )= c ta (Pt'l’t‘T - C(’)) ten Z wi ((x,» —m (’))(x' - m( )T - C(l))
Parallel Problem Solving from Nature - PPSN X, pages 296-305. Springer. i=1
[Akimoto et al., 2014] Akimoto, Y., Auger, A., and Hansen, N. (2014). Comparison-based natural gradient optimization in high dimension. In I3
Proceedings of Genetic and Evolutionary Computation Conference, pages 373-380, Vancouver, BC, Canada. SEP [k = (€O + e (D’c]f _ [(’“)]M) oY ([x,. —mO2 [(7(1)]k’k)
[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proceedings of : =
Genetic and Evolutionary Computation Conference, pages 397-404.
[Akimoto and Hansen, 2016] Akimoto, Y. and Hansen, N. (2016). Projection-based restricted covariance matrix adaptation for high dimension. (N + 2)/3 times greater than CMA
In Genetic and Evolutionary Computation Conference, GECCO 2016, Denver, Colorado, USA, July 20-24, 2016, page (accepted). ACM.
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\LENCETTE LT GRGEREETEXG YA Restricted Covariance Matrix

Demo: On 100D Separable Ellipsoid Function

|f?m med, worst|, = min(f), 0, axi®ljtat Variables (curr best, 100-D, popsize~17 |foest, med, worst|, f—min(f), o, axi®jstet Variables (curr best, 100-D, popsize~17
10

107

min(f=0 8044101

0 5000 10000 15000 20000 25000
function evaluations

Separable-CMA CMA

0 5000 10000 15000 20000 25000
func ions

e CMA needed 10 times more FEs + more CPU time
* However, Sep-CMA won't be able to solve rotated ellipsoid function

as efficiently as it solves separable ellipsoid
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Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by

orders of magnitude
the update follows the natural gradient

C o« H™!' <= adapts a variable metric
<= new (rotated) problem representation
= f:x > g(x"Hx) reduces to x + x"x
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Summary and Final Remarks

Summary and Final Remarks
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Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~8x? seconds per function evaluation on a 2GHz

PC, tweaks are available
1000000 f-evaluations in 100-D take 100 seconds internal CPU-time

variants with restricted covariance matrix such as Sep-CMA
@ better methods are presumably available in case of

partly separable problems

specific problems, for example with cheap gradients
specific methods

v

v

v

small dimension (n < 10)
for example Nelder-Mead

small running times (number of f-evaluations < 100n)
model-based methods

v
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Thank you

Source code for CMA-ES in C, C++, Java, Matlab, Octave, Python, R, Scilab
and
Practical hints for problem formulation, variable encoding, parameter setting
are available (or linked to) at
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
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Comparison during BBOB at GECCO 2010

24 functiong,and 20+ algarithms in 20-0

Proportion of functions
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