
Una-May O’Reilly, Erik Hemberg
ALFA: AnyScale Learning for All Research Group

MIT CSAIL
unamay@csail.mit.edu, hembergerik@csail.mit.edu

http://groups.csail.mit.edu/ALFA

Introduction
to

Genetic Programming

GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3323398

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page.

Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Instructor: Una-May O’Reilly
• Leader: AnyScale Learning For All Group, MIT CSAIL
• Experience solving real world, complex problems requiring

AI/machine learning where evolutionary computation is a core
capability

• Applications include
– Cybersecurity
– Waveform data mining – medical applications
– Behavioral data mining – MOOC
– Circuits, network coding
– Sparse matrix data mapping on parallel architectures
– Finance
– Flavor design
– Wind energy

» Turbine layout
» Resource assessment

• Focus on innovation in genetic programming
– coevolution
– Improving its competence
– scaling

Instructor: Erik Hemberg
• Research Scientist: AnyScale Learning For All Group, MIT

CSAIL,
– Experience solving complex problems requiring AI and machine learning

with evolutionary computation as a core capability
– Bronze HUMIE Award, 2017

• Applications include
– Cybersecurity
– Behavioral data mining – MOOC
– Pylon design
– Network controllers
– Tax avoidance

• Focus on innovation and implementation in genetic
programming
– Grammatical representations
– Coevolution
– Estimation of Distribution and GP

About You
• EA experience?

– ES? GA? EDA? PSO? ACO? EP?
• CS experience?
• Programming? algorithms?
• Teacher?
• Native English speakers?

710

Tutorial Goals
• Introduction to GP algorithm, given some knowledge

of genetic algorithms or evolutionary strategies
– provide Black box demonstration of GP symbolic regression

• Become familiar with GP design properties and
recognize them
– ponygp in python

• You could teach it in an undergrad lecture
• Use it “out of the box”
• Set groundwork for advanced topics

– Theory, other tutorials
– Specialized workshops (Genetic improvement etc)
– GP Track talks at GECCO, Proceedings of EuroGP, Genetic

Programming and Evolvable Machines

Agenda
1. Context: Evolutionary Computation and

Evolutionary Algorithms
2. GP is the genetic evolution of executable

expressions
– Black box example of GP symbolic regression

3. Nuts and Bolts Description of Algorithm
Components

4. pony_gp.py demonstration from project PonyGP
5. Resources and reference material
6. Examples

• Agenda

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest
• Offspring variation: genetic crossover and mutation
• Population-based adaptation over generations
• Genotype-phenotype duality
• non-deterministic

EA Generation Loop

Evolutionary Computation and Evolutionary Algorithms

Each generation

select

breed

replace

population = random_pop_init()
generation = 0
while needToStop == false

generation++
solution = bestOf(population)
phenotypes =decoder(genotypes)
calculateFitness(phenotypes)
parents = select (phenotypes)
offspring = breed(parents.genotypes)
population = replace(parents, offspring)
recheck(needToStop)

711

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

• Where there is need for complex solutions
– evolution is a process that gives rise to complexity
– a continually evolving, adapting process, potentially with

changing environment from which emerges modularity,
hierarchy, complex behavior and complex system
relationships

• Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP or

convex optimization
– unyielding to approximations (SQP, GEO-P)
– eg. TSP, graph coloring, bin-packing, flows
– for: logistics, planning, scheduling, networks, bio gene

knockouts
– Typified by discrete variables
– Solved by Genetic Algorithm (GA)

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

• Continuous Optimization
– non-differentiable, discontinuous, multi-modal, large scale

objective functions ‘black box’
– applications: engineering, mechanical, material, physics
– Typified by continuous variables
– Solved by Evolutionary Strategy (ES)

• Program Search
– program as s/w system component, design, strategy, model
– common: system identification aka symbolic regression, modeling
– Symbolic regression is a form of supervised machine learning

» GP offers some unsupervised ML techniques as well
§ Clustering

– will show a blackbox GP example soon
§ http://flexgp.github.io/gp-learners/sr.html
§ http://flexgp.github.io/gp-learners/blog.html

EA Individual Examples

Evolutionary Computation and Evolutionary
Algorithms

Problem Gene Genome Phenotype Fitness
Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21 variables x of

function f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy
coloring coloring # of colors

investment
strategy rule agent rule set trading strategy portfolio change

Regress data Executable sub-
expression

Executable
expression model Model error on

training set (L1, L2)

Blackbox Example of
GP Symbolic Regression

http://flexgp.github.io/gp-learners/sr.html
http://flexgp.github.io/gp-learners/blog.html

S/W by ALFA Group’s FlexGP team
Special recognition to Ignacio Arnaldo, PhD who prepared SR Learner tutorial and blog post

712

Regression

System

f(X)

Inputs

x11

x21

x31

Output

AKA
Explanatory variables
Independent variables
Manipulated variables
Control variables
Decision variables
Features

Response variable
Dependent variable
Label

y4

x12

x22

x32

x13

x23

x33

x14

x24

x34

y3 y2 y1

GOAL: FIND F(X) THAT GENERATES Y

Regression
• Regress a relationship between a set of explanatory

variables and a response variable
• Linear regression:

– Assume linear model: y=ax+b
– Optimize parameters (a,b) so data best fits model

• Logistic regression for classification
– Maps linear model into sigmoid family

• Symbolic regression does NOT assume a model
– Not parameter search
– Model is intrinsic in GP solutions

FlexGP’s SR Learner
• Targeted partly to be black-box for non-researchers
• sr.jar is available for download

– Only supported for Debian linux
– Source is on

§ http://flexgp.github.io
• functionality both for performing Symbolic regression on numerical

datasets and for testing the retrieved models
• Referred to as our baseline in time-aligned ALFA group publications

– Bring Your Own Learner! A cloud-based, data-parallel commons for machine learning, Ignacio
Arnaldo, Kalyan Veeramachaneni, Andrew Song, Una-May O’Reilly. IEEE Computational
Intelligence Magazine. Special Issue on Computational Intelligence for Cloud Computing (Feb.
2015), Vol 10, Issue 1, pp 20-32.

– Multiple regression genetic programming, Ignacio Arnaldo, Krzysztof Krawiec, Una-May O'Reilly, GECCO '14, pp 879--
886.

• Option to accelerate runs with C++ optimized execution
– Requires gcc and g++ compilers, configuring Linux kernel parameter governing the

maximum size of shared memory segments
• Option to accelerate runs with CUDA (GPU)

– Added requirement of nvcc compiler
– append the -cuda flag, make some extra directories…

• Easy parameter changing through a central file

DEMONSTRATION
§ http://flexgp.csail.mit.edu -> LEARNERS
§ http://flexgp.github.io/gp-learners/sr.html INSTRUCTIONS
§ http://flexgp.github.io/gp-learners/blog.html EXAMPLE

713

Agenda
HOW DOES IT WORK UNDER THE HOOD?

WHAT IS THIS EXECUTABLE EXPRESSION?

Agenda

Koza’s Executable Expressions
Pioneered circa 1988
• Lisp S-Expressions

– Composed of primitives
called ‘functions’ and
‘terminals’

– Aka operators and
variables

Example:
• primitives: + - * div a

b c d 4
• (*(- (+ 4 c) b) (div d a))
In a Lisp interpreter:
1. bind a b c and d
2. Evaluate expressions

% Lisp interpreter
(set! a 2) -> 2
(set! b 4) -> 4
(set! c 6) -> 6
(set! d 8) -> 8
(*(- (+ 4 c) b) (div d a)) -> 12
; Rule Example
(if (= a b) c d) -> 8
;Predicate:
(> c d) -> nil

• GP Evolves Executable
Expressions

A Lisp GP system
A Lisp GP system is a large set of functions which are

interpreted by evaluating the entry function
– Some are definitions of primitives you write!

» (defun protectedDivide …)
– Rest is software logic for evolutionary algorithms

Any GP system has a set of functions that are pre-defined
(by compilation or interpretation) for use as primitives
also has software logic that handles
– Population initialization, iteration, selection, breeding,

replacement
GP expressions are first class objects in LISP so the GP

software logic can manipulate them as data/variables
as well as have the interpreter read and evaluate them

GP Evolves Executable Expressions

How to Evaluation an Expression
• interpreter beneath your code

– Lisp example
• interpreter within your code

– typical,
– examples: SR.jar or ponygp.py

• compile then execute on your OS
– older system in existence

714

How to Manipulate Expressions as Data
• for Crossover and Mutation we want

– offspring can be different size and structure than parents
– syntactic correctness
– randomness in replication and variation

• GP solution
– reference the abstract syntax tree
– XO - swap subtrees between trees of parents
– Mutation: insert, subst or delete from an AST

• A picture tells a 1000 words…

Abstract Syntax Trees

GP Evolves Executable Expressions

• Whether parsed preorder (node, left-child, right-child) or
postorder (left-child, right-child, node) or inorder (left, node, right)
the expression evaluates to the same result

Inorder: 2+3

preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (a max best)

preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+
2 3

+
- max

2 3 a best

•(tree)GP uses an expression tree as its genotype structure

if

S

t2

Tnot

sumsum

>

t1 t5

Parent 2

if
G

av
<

t2

Rand

t1

sumsum

>

t1 t5

Child 1

t3
=

max

t4

if

S Tnot

Child 2

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent 1

R

GP Tree Crossover

Nuts and Bolts GP Design

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent

R
if

G

av
<

t2 t1
=

max

t4

and

t1

Mutant-subst

R

if

G

av
<

t2 t3
=

t4

and

t1

Mutant-deletion
R

if

G

av
<

t2

t3

=
max

t4

and

t1

Mutant-addition
R

max

HVL-Mutation: substitution, deletion, insertion

Nuts and Bolts GP Design

715

GP Preparatory Steps
Assume we have a GP system with internal expression evaluator.

1. Decide upon functions and terminals
– Terminals bind to decision variables in problem
– Combinatorial expression space defines the search space

2. Set up the fitness function
– Translation of problem goal to GP goal
– Minimization of error between desired and evolved expression when

executed
– Maximization of a problem based score

3. Decide upon run parameters
– Population size is most important

» Budget driven or resource driven
– GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
– Maximum number of fitness evaluations
– Time
– Minimum acceptable error
– Good enough solution (satisficing)

Nuts and Bolts GP Design

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
pop = random programs from a set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation

or
adequate program found

End

Population Initialization
• Fill population with random expressions

– Create a function set F and a corresponding function-count set
– Create an terminal set (arg-count = 0), T
– draw from F with replacement and recursively enumerate its

argument list by additional draws from F U T.
– Recursion ends at draw of a terminal
– requires closure and/or typing

• maximum tree height parameter
– At max-height-1, draw from T only

• “ramped half-half” method ensures diversity
– equal quantities of trees of each height
– half of height’s trees are full

» For full tree, only draw from terminals at max-height-1

Nuts and Bolts GP Design

Selection in GP
• Proceeds in same manner as evolutionary algorithm

– Same set of methods
– Conventionally use tournament selection
– Also see fitness proportional selection
– Cartesian genetic programming:

» One parent: generate 5 children by mutation
» Keep best of parents and children and repeat

§ If parent fitness = child fitness, keep child

716

Determining a Expression’s Fitness
• One test case:

– Execute the expression with the problem decision variables (ie
terminals) bound to some test value and with side effect values
initialized

– Designate the “result” of the expression
• Measure the error between the correct output values for the

inputs and the result of the expression
– Final output may be side effect variables, or return value of

expression
– Eg. Examine expression result and expected result for regression
– Eg. the heuristic in a compilation, run the binary with different

inputs and measure how fast they ran.
– EG, Configure a circuit from the genome, test the circuit with an

input signal and measure response vs desired response
• Usually have more than one test case but cannot enumerate

them all
– Use rational design to create incrementally more difficult test cases

(eg block stacking)
– Use balanced data for regression

Nuts and Bolts GP Design

Details When Using Executable Expressions
• Closure

– Design functions with wrappers that accept any type of
argument

– Often types will semantically clash…need to have a way of
dealing with this

Practicality
• Sufficiency

– Make sure a solution can be plausibly expressed when
choosing your primitive set

» Functions must be wisely chosen but not too complex
» General primitives: arithmetic, boolean, condition, iteration,

assignment
» Problem specific primitives

– Can you handcode a naïve solution?
– Balance flexibility with search space size

GP Evolves Executable Expressions

Requirements to Evolve Programs
• The search space must encompass

programs of varying length and structure
must compose

• Closure
• Crossover of the genotype must preserve

syntactic correctness so the program can
be directly executed

Nuts and Bolts GP Design

Tree Crossover Details
• Crossover point in each

parent is picked at random
• Conventional practices

– All nodes with equal
probability

– leaf nodes chosen with 0.1
probility and non-leaf with
0.9 probability

• Probability of crossover
– Typically 0.9

• Maximum depth of child is a
run parameter
– Typically ~ 15
– Can be size instead

• Two identical parents rarely
produce offspring that are
identical to them

• Tree-crossover produces
great variations in offspring
with respect to parents

• Crossover, in addition to
preserving syntax, allows
expressions to vary in
length and structure (sub-
expression nesting)

Nuts and Bolts GP Design

717

GP Tree Mutation
• Often only crossover is used
• But crossover behaves often like macro-mutation
• Mutation can be better tuned to control the size of

the change
• A few different versions

Nuts and Bolts GP Design

Other Sorts of Tree Mutation
• Koza:

– Randomly remove a sub-tree and replace it
– Permute: mix up order of args to operator
– Edit: + 1 3 -> 4, and(t t) -> t
– Encapsulate: name a sub-tree, make it one node and allow

re-use by others (protection from crossover)
» Developed into advanced GP concept known as

§ Automatic module definition
§ Automatically defined functions (ADFs)

• Make your own
– Could even be problem dependent (what does a subtree

do? Change according to its behavior)

Nuts and Bolts GP Design

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
pop = random programs from a set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation

or
adequate program found

End

Grow or Full

•Tournament selection
•Fitness proportional selection
•Your favorite selection

Ramped-half-half

Prepare input data
Designate solution
Define error between actual
and expected

Sub-tree crossover•HVL-mutate
•Subtree subst
•Permute
•Edit
•Your own

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

Leaf:node bias

GP Parameters
• Population size
• Number of generations
• Max-height of trees on

random initialization
– Typically 6

• Probability of crossover
– Higher than mutation
– 0.9
– Rest of offspring are copied

• Probability of mutation
– Probabilities of addition,

deletion and insertion

• Population initialization
method
– Ramped-half-half
– All full
– All non-full

• Selection method
– Elitism?

• Termination criteria
• Fitness function
• what is used as “solution”

of expression

Nuts and Bolts GP Design

718

GP Software Deep Dive
• flexgp.csail.mit.edu
• http://flexgp.github.io/gp-learners/
• https://flexgp.github.io/pony_gp/
• https://github.com/flexgp/pony_gp

PonyGP: Simple Symbolic Regression
• Given a set of independent

decision variables and
corresponding values for a
dependent variable

• Want: a model that predicts the
dependent variable

– Eg: linear model with numerical
coefficients

» Y= aX1 + bX2 + c(X1X2)
– Eg: non-linear model

» y= a x12 + bx23

– Prediction accuracy: minimum
error between model prediction and
actual samples

• Usually: designer provides a model
and a regression (ordinary least
squares, Fourier series)
determines coefficients

• With genetic programming, the
model (structure) and the
coefficients can be learned

• Example: y=f(x)
• Domain of x [-5.0,+5.0]
• Choose the operands (terminals)

– X0, X1, 1.0, 0
• Choose the operators (functions)

– +, - , *, / (protected)
– protected divide: if denom==0,

return numerator
• Fitness function: sum of mean

squared error between yi, and
expression’s return values

• Prepare 121 points for test cases
• Random test case, out of sample

ratio 70:30, random selection
• Test problem:

– Y=(X0 * X0) + (X1 * X1)

GP Examples

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material

Agenda

Reference Material
Where to identify conference and journal material
• Genetic Programming Bibiliography

– http://www.cs.bham.ac.uk/~wbl/biblio/
Online Material
• ACM digital library: http://portal.acm.org/

– GECCO conferences
– GP conferences (pre GECCO),

• Evolutionary Computation Journal (MIT Press)
• IEEE digital library:

http://www.computer.org/portal/web/csdl/home
– Congress on Evolutionary Computation (CEC)
– IEEE Transactions on Evolutionary Computation

• Springer digital library: http://www.springerlink.com/
– European Conference on Genetic Programming: “EuroGP”

719

GP Software
Commonly used in published research (and somewhat active):
• http://flexgp.github.io/gp-learners/index.html
• Heuristic lab (using grammar guided GP) , GEVA (UCD)
• EPOCHx
• DEAP, JGAP
• Java: ECJ, TinyGP
• Matlab: GPLab, GPTips
• C/C++: MicroGP
• Python: Ponygp, oop_ponyGP.py, DEAP, PyEvolve
• .Net: Aforge.NET
Others
• http://www.epochx.org/index.php

Strongly typed GP, Grammatical evolution, etc
Lawrence Beadle and Colin G Johnson

• http://www.tc33.org/genetic-programming/genetic-
programming-software-comparison/
– Dated Feb 15, 2011

Genetic Programming Benchmarks
Genetic programming needs better benchmarks

– James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro
Castelli, Leonardo Vanneschi, Wojciech Ja ́skowski, Krzysztof Krawiec,
Robin Harper, Kenneth De Jong, and Una-May O’Reilly.

– In Proceedings of GECCO 2012, Philadelphia, 2012. ACM.

• Related benchmarks wiki
– http://GPBenchmarks.org

Software Packages for Symbolic Regression

No Source code available
• Datamodeler - mathematica, Evolved Analytics
• Eureqa II/ Formulize - a software tool for detecting

equations and hidden mathematical relationships in
data
– http://creativemachines.cornell.edu/eureqa
– Plugins to Matlab, mathematica, Python
– Convenient format for data presentation
– Standalone or grid resource usage
– Windows, Linux or Mac
– http://www.nutonian.com/ for cloud version

• Discipulus™ 5 Genetic Programming Predictive
Modelling

Reference Material - Books
• Genetic Programming, James McDermott and Una-May O'Reilly, In the

Handbook of Computational Intelligence (forthcoming), Topic Editors: Dr.
F. Neumann and Dr. K Witt, Editors in Chief Prof. Janusz Kacprzyk and
Prof. Witold Pedrycz.

• Essentials of Metaheuristics, Sean Luke, 2010
• Genetic Programming: From Theory to Practice

– 10 years of workshop proceedings, on SpringerLink, edited
• A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu

and online digitally
• Advances in Genetic Programming

– 3 years, each in different volume, edited
• John R. Koza

– Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT
Press)

– Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
– Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III,

David Andre, and Martin A. Keane, (Morgan Kaufmann)
– Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A.

Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
• Linear genetic programming, Markus Brameier, Wolfgang Banzhaf,

Springer (2007)
• Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone,

1997 (Morgan Kaufmann)

720

The Block Stacking Problem

Block Stacking Example

Goal: a plan to rearrange the current state of stack and table
into the goal stack

Current State

A

C

F
E

D B

stack

table

table

Goal Stack

A

B
C

D

E
F

stack

Koza-92 Block Stacking Problem: Primitives
• State (updated via side-

effects)
– *currentStack*
– *currentTable*

• The operands
– Each block by label

• Operators returning a block
based on current stack
– top-block
– next-needed
– top-correct

• Block Move Operators
return boolean
– Return nil if they do

nothing, t otherwise
– Update *currentTable* and

currentStack
– to-stack(block)
– to-table(block)

• Sequence Operator returns
boolean
– Do-until(action, test)

» Macro, iteration timeouts
» Returns t if test satisified,

nil if timed out
• Boolean operators

– NOT(a), EQ(a b)

Block Stacking Example

Random Block Stacking Expressions
• eq(to-table(top-block) next-needed)

– Moves top block to table and returns nil
• to-stack(top-block)

– Does nothing
• eq(to-stack(next-needed)

eq (to-stack(next-needed) to-stack(next-needed)))
– Moves next-needed block from table to stack 3 times

• do-until(to-stack(next-needed)
(not(next-needed))

- completes existing stack correctly (but existing
stack could be wrong)

Block Stacking Example

Block Stacking Fitness Cases

• different initial stack and table
configurations (Koza - 166)
– stack is correct but not complete
– top of stack is incorrect and stack is incomplete
– Stack is complete with incorrect blocks

• Each correct stack at end of expression
evaluation scores 1 “hit”

• fitness is number of hits (out of 166)

Block Stacking Example

721

Evolved Solutions to Block Stacking
eq(do-until(to-table(top-block) (not top-block))

do-until(to-stack(next-needed) (not next-needed)

– first do-until removes all blocks from stack until it is empty and top-block
returns nil

– second do-until puts blocks on stacks correctly until stack is correct and
next-needed returns nil

– eq is irrelevant boolean test but acts as connective
– wasteful in movements whenever stack is correct

• Add a fitness factor for number of block movements
do-until(eq (do-until (to-table(top-block)

(eq top-block top-correct))
(do-until (to-stack(next-needed) (not next-needed))

(not next-needed)
– Moves top block of stack to table until stack is correct
– Moves next needed block from table to stack
– Eq is again a connective, outer do-until is harmless, no-op

Block Stacking Example

More Examples of Genetic Programming
• Evolve priority functions

that allow a compiler to
heuristically choose
between alternatives in
hyper-block allocation

• Evolve a model that
predicts, based on past
market values, whether a
stock’s value will increase,
decrease or stay the same
– Measure-correlate-predict a

wind resource
– ICU clinical forecasting

» FlexGP

• Flavor design
– Model each panelist

» Advanced methods for
panelist clustering,
bootstrapped flavor
optimization

• Community Benchmarks
– Artifical Ant
– Boolean Multiplexor

• FlexGP
– Cloud scale, flexibly

factored and scaled GP

GP Examples

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material
4. Examples
5. Deeper discussion (time permitting)

Agenda

How Does it Manage to Work
• Exploitation and exploration

– Selection
– Crossover

• Selection
– In the valley of the blind,

the one-eyed man is king
• Crossover: combining
• Koza’s description

– Identification of sub-trees
as sub-solutions

– Crossover unites sub-
solutions

• For simpler problems it
does work

• Current theory and
empirical research have
revealed more complicated
dynamics

Time Permitting

722

Why are we still here?
Issues and Challenges

• Trees use up a lot of
memory

• Trees take a long time
to execute
– Change the language for

expressions
» C, Java

– Pre-compile the
expressions, PDGP
(Poli)

– Store one big tree and
mark each pop member
as part of it

» Compute subtrees for
different inputs, store
and reuse

• Bloat: Solutions are full of
sub-expressions that may
never execute or that
execute and make no
difference

• Operator and operand sets
are so large, population is
so big, takes too long to run

• Runs “converge” to a non-
changing best fitness
– No progress in solution

improvement before a good
enough solution is found

Time Permitting

Runs “converge”: Evolvability
• Is an expression tree ideal for evolvability?
• Trees do not align, not mixing likes with likes as we

would do in genetic algorithm
• Biologically this is called “non-homologous”
• One-point crossover

– By Poli & Langdon
– Theoretically a bit more tractable
– Not commonly used
– Still not same kind of genetic material being swapped

Time Permitting

Evolvability - modularity and reuse
• Expression tree must be big

to express reuse and
modularity

• Is there a better way to
design the genome to allow
modularity to more easily
evolve?

Time Permitting

Evolvability: modularity and reuse

Time Permitting

723

Register Machine Genotype
• linear genotype, varying length, direct data

Time Permitting

CPU Registers

A B C
12288 56

genotypeb = b+c
a = a xor c
c = b*c
c = c-a

P1

P2

b=…

a=…

c=…

c=…

b=…

a=…

c=…

c=…

1
2
3

5
4

6
7
8

3

4
5
6

1
2

7
8

C1 C2

Crossover

Register Machine Advantages
• Easier on memory and crossover handling
• Supports aligned “homologous” crossover
• Registers can act as poor-man’s modules
• The primitive level of expressions allows for

– Potentially more easily identifiable building blocks
– Potentially less context dependent building blocks

• The register level instructions can be further
represented as machine instructions (bits) and run
native on the processor
– AIM-GP (Auto Induction of Machine Code GP)
– Intel or PPC or PIC, java byte code,
– Experience with RISC or CISC architectures
– Patent number: 5946673, DISCIPLUS system

Time Permitting

Cartesian Genetic Programming

Time Permitting

• Developer: Julian Miller
• operators and operands are

nodes and data flow is
described by genome

• Fixed length genome but
variable length phenome
– Integers in blocks
– For each block, integers to

name inputs and operator
• Unexpressed genetic

material can be turned on
later

• No bloat observed (plus
nodes are upper bounded

Dealing with Bloat
• Why does it occur?

– Crossover is destructive
– Effective fitness is selected for

• Effective fitness
– Not just my fitness but the

fitness of my offspring
• Approaches

– Avoid - change genome
structure

– Remove: Koza’s edit operation
– Pareto GP
– Penalize: parsimony pressure

» Fitness =
A(perf) + (1-a)(complexity

• “Operator equalisation for bloat free genetic
programming and a survey of bloat control
methods”, by Sara Silva and Stephen Dignum
and Leonardo Vanneschi

– GPEM Vol 13, #2, 2012

Examples:
• (not (not x))
• (+ x 0)
• (* x 1)
• (Move left move-right)
• If (2=1) action

No difference to fitness (defn
by Banzhaf, Nordin and
Keller)

Can be local or global

Time Permitting

724

Current GP research example:
Use of Domain Knowledge and Novelty to Improve Program Synthesis Performance

• Human programmers solve coding problems with
problem specific knowledge
– How can human expertise be incorporated in GP for

program synthesis
• Use GP on a Benchmark suite of 21 program

synthesis problems with problem statements and
input/output cases
– Different degrees of domain knowledge used in grammar

» By human
» By Natural Language Processing

– Fitness function to reward program components required
by problem statement

– Novelty search: reward “novel solutions” instead of “fit”

The End

725

