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v Introduction

v Evolutionary deep learning for image classification

v Complex system analysis for pattern clustering and 
feature extraction

v Summary 
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Introduction
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Computer Vision

v The “art” of making computers see (and understand what 

they see)

v Computer vision vs image processing

v Sub-topics:
• Image acquisition

• Image enhancement

• Image segmentation

• 3D-information recovery/feature extraction

• Image understanding
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Application Taxonomy

v EC techniques
• GA, GP, ES, EP, PSO, DE, LCS, EMO, EDA, etc.

v Solution types
• Optimisation of parameters of specific solutions  (using GA, ES, 

PSO…) 
Related with a well-defined task or for a whole system

• Generation of solutions from scratch (GP, …) 
Performance optimization based on specific objective functions
It is difficult to choose a model with reasonable assumptions

v Role of EC techniques
• Interactive qualitative comparisons between solutions
• Generation of emergent collective solutions

Achievement of higher-level and complex tasks from collective use of trivial, 
local, hard-wired behaviours: generation of full EC-based solutions, NOT 
parameter optimization tasks
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Applications 

vEC techniques: GP, PSO, LCS, EMO

vImage Analysis
• Object tracking

• Edge detection

• Segmentation

• Motion detection

• Object/digit recognition

vEnglish stress detection(signal processing)

vPattern Recognition: feature selection and 
biomarker detection
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Evolutionary Deep Learning for 

Image Classification
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Evolutionary Deep Learning

v Deep Learning – personal view

• Definition 

• NN-based deep learning

• Non-NN type deep learning

v Evolutionary Deep Learning – personal view

• evolving NNs/neuro-evolution à evolutionary deep learning

• GAs/PSO/GP for evolving NNs

• GP for deep learning

v Examples of EvoDL for Image Classification
• GAs for evolving CNNs for image classification

• PSO for evolving CNNs for image classification

• GAs for evolving auto-encoders for image classification

• GP for evolving deep structures for image classification

v Summary

12
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Deep Learning -- Overview

v It aims at learning hierarchical/meaningful representations through a
deep and non-linear transformation
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Stanford emotion analysis Google Translate

n SPEECH Lower the error rate by 30%, which is a most 
big breakthrough

n VISION Error rate from 26% to 15% in ImageNet

n NATURE LANGUAGE PROCESSING Deep auto-encoders
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Deep Learning -- Definition

v What is “Deep Learning”? Deep Learning = Deep Neural Networks?
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Deep Learning – Definition [Zhou]
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Deep Learning – My View

v Layer-by-layer processing

v Feature transformation 
• Feature extraction

• Feature construction

• Feature learning

v Sufficient model complexity

• Complexity ≠ the number (#) of nodes, layers

• Including function complexity

• Not necessarily symmetrical

v #examples? 

v Interpretation?
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Deep Neural Networks (Learning)

Neural network-based DL methods are very popular

• Convolutional layers, pooling layers, fully-connected layers Convolutional
Neural Networks (supervised)

• Restricted Boltzmann Machines Deep Belief Networks (unsupervised)

• Auto-encoders Stacked Deep Auto-encoders (unsupervised)

17

Convolutional Neural Networks

v Supervised Deep Learning method, dominant DL algorithm

v Rumelhart and PDP Group’s T-C Problem of weight Sharing [Chap 8,1986]

v Yan LeCun’s SWNNs [1989, 90, …]

v A CNN is composed of multiple convolutional layers, pooling layers and fully-
connected layers [1998?]

v State-of-the-art CNNs: VGG (2015), ResNet (2015), DenseNet [2016]
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Architecture of LeNet-5

Deep Belief Networks

v Pioneering work on Deep Learning

• A Fast Learning Algorithm for Deep Belief Nets
Published in Neural Computing, 2006, Hinton and etc.,

• Reducing to Dimensionality of Data with Neural Networks
Published in Science, 2006, Hinton and etc.,

v Unsupervised Deep Learning method (DRBMs)
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Deep (Stacked) Auto-encoders

v Unsupervised Deep Learning method

v Several variants
• Deep sparse auto-encoders

• Deep de-nosing auto-encoders

• Deep contractive auto-encoders

• Deep unsymmetrical auto-encoders

• Deep explicit auto-encoders

v Learn a reconstruction between the output
of the decoder and the input of the encoder

20
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Non-NN Deep Learning

v Deep Convex Net [2011]

v PCA Net [2014/15]

v Deep FisherNet [2016]

v Deep Forest learning [2017]

v Genetic Programming based Deep 
Structures/Learning

• 2012: GP is doing (evolutionary) deep learning

• 2018: GP is deep learning

21

Disadvantages of NN-based DL methods

v Too many hyper-parameters

• Tricky tuning, particularly for cross-tasks

• Hard to repeat others’ results. For example, when several people use CNNs, they 
are actually using different learning models due to too many different options such 
as convolutional-pooling layer structures

v Currently, gradient-based algorithms are used to train the weights

• Theoretically resulting in local optimal, does not matter too much by using other
tricks, such as good initialisation

v Model complexity fixed once structure decided; usually, more than 
sufficient

v Architectures of state-of-the-art NN DL methods are manually designed

v Big training data required

v Theoretical analysis difficult

v Blackbox and interpretation hard 

v …
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(Manually Designed) State-of-the-art DNNs and Limitations

v State-of-the-art DNNs

• ResNet 101, ResNet 1202, DensNet, VGG, Maxout

• Network in Network, highway Network, All-CNN

• Manually designed for specific image data classification problems

v Architectures of state-of-the-art DL methods become more and more
deep and complex, manual design is difficult to respond

v Manual design highly relies expertise in both DL methods and problems
investigated

v Researchers from other communities commonly have no expertise in DL
methods

v Evolutionary computation (EC) methods work well in addressing non-
convex/no-differentiable problems, and do not require domain
knowledge

23

Evolutionary Deep Learning 

v Two stages: 

• evolving NNs/neuro-evolution à

• evolutionary deep learning

v GAs/PSO/DE/GP for evolving DNNs

v GP for deep learning

24
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Evolutionary Deep Learning – EC for Evolving NNs

v EC methods have been successfully used to optimize the architecture
and even the weights of neural networks over 20 years ago (Yao 1999)

• Neuro-genetic evolution (Ronald 1994), Cellular Encoding (Gruau 1994)

• GNARL (Angeline 1994), EPNet (Yao 1997), NEAT (Stanley and Miikkulainen
2002)

• HyperNEAT (Stanley 2008), ES-HyperNEAT (Risi, Stanley 2012)

• EANT/EANT2 (Kassahun and Sommer 2005), (Siebel and Sommer 2007)

• ICONE (Rempis 2012), DXNN (Sher 2012), SUNA (Vargas 2016), MABE (Bohm
2016)

• CMA-HAGA (Rostami 2016/17), …

v Neural networks were typically shallow and have a small number of
parameters

v NEAT and its variants are capable of address the problem regarding
median-scale neural networks

v Recently, a number of EC-based new methods have been proposed to
automatically evolve/learn DNNs

25

Evolving Unsupervised DNN

v One method using GA to automatically evolve unsupervised DNN

v The goal is achieved by two stages:
• Architecture and initialized weights are evolved for building blocks

• Stacked building blocks stacked are trained by Stochastic Gradient Descent

26

Yanan Sun, Gary G. Yen, Zhang Yi, "Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations". IEEE 
Transactions on Evolutionary Computation. DOI:10.1109/TEVC.2018.2808689.

Evolving Unsupervised DNN

v Evolved building blocks are stacked with the architecture and weight
initialization values

v Using SGD to achieve the best performance of the deep model

27 28

Evolving Unsupervised DNN

First layer Second layer Third layer
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EvoCNN

v One method using GA to evolve the architectures and the weight
initialization of CNNs

v Designed a variable-length individual method encoding CNNs with
unequal depths

v Proposed a crossover operator for individuals with different lengths

v Train the individual with a small number of epochs to find the potentially
better one

v Find the best one when the evolutionary process terminates, and then
fully trained it for the best performance
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Sun, Yanan, Bing Xue, and Mengjie Zhang. "Evolving deep convolutional neural networks for image classification." arXiv preprint arXiv:1710.10741 
(2017).

EvoCNN

v The architecture is encoded with real numbers representing the
configurations of building blocks in CNN

v Weights are initialized with Normal distribution of which the mean and
standard derivation are evolved

30

EvoCNN

v Crossover operation is composed of three phases: UC, UAC and UR
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EvoCNN

v Comparisons on the FASHION dataset

32
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EvoCNN

v Comparisons on the MNIST variants
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Genetic CNN

v One method using GA evolving CNNs

v The encoding process is composed of multiple stages

v The maximum number of stages must be predefined, which reflects the
depth of the evolved CNN

v Each individual is directed trained from scratch

v Individuals have the equal lengths

34

Lingxi Xie and Alan Yuille, “Genetic CNN,” in Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017, pp.1388–
1397.
(John-Hopskins Uni, USA)

Genetic CNN

v A set of convolutional operations is predefined

v A directed acyclic graph is used to denote the connections

v Binary-string is used to encode such connections

v One-point crossover operation is used
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Large-scale Evolution

v One method using GA to evolve architectures of
CNNs

v Individuals are with unequal lengths

v Only mutation operation, no crossover operation

v Once a new individual is evaluated, mutation is done
and the worse one is discarded

v Fitness is the classification accuracy in terms of image
classification tasks

v Weights are inherited from the parent individual

36

[4] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le and Alex Kurakin, “Large-scale evolution of 
image classifiers,” in Proceedings of Machine Learning Research, Sydney, Australia, 2017, pp. 2902–2911.
Google DeepMind
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Large-scale Evolution

v A set of predefined convolutional operations are
provided

v Randomly select multiple convolutional operations
and then stacked them

v During mutation, the setting of one convolutional
operation could be changed, removing or adding new
connections, and so on

v Large-scale Evolution defined 12 operations for
mutation

37

Large-scale Evolution

v Evolutionary process
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Hierarchical Evolution

v One method using GA to evolve architectures of
CNNs

v The whole architecture is evolved by several steps

v In each step, only a small architecture is evolved

v Multiple small architectures are stacked to form a
big/deep architecture

39

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando and Koray Kavukcuoglu, “Hierarchical representations for efficient architecture 
search,” in Proceedings of 2018 Machine Learning Research (ICML), Stockholm, Sweden, 2018.

Hierarchical Evolution

v In the first step, a set of primitive operations is provided

• 1x1 convolution of C channels

• 3x3 depth-wise convolution

• 3x3 separable convolution of C channels

• 3x3 max-pooling

• 3x3 average-pooling

• Identify

v Randomly select several primitive operations, and then use a
Directed Acyclic Graph to denote the connection between selected
operations

40
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Hierarchical Evolution

v GA is used to change the connections between
primitive operations

v Available mutation operations:

• Add/remove a node in the existing architecture

• Add a new connection

• Alter an existing edge

• Remove an existing edge

v Each individual is evaluated on image classification
tasks, the best is selected in terms of the classification
accuracy

41

Hierarchical Evolution

v In the second step, the best one found in the previous step is as a new
primitive operation, and do the same evolutionary process

42

CGP-CNN

v One genetic programming approach evolving architectures of CNNs

v By providing a set of primitive operations, the Cartesian genetic
programming is used to evolve different connections between the
primitive operations

43

Masanori Suganuma, Shinichi Shirakawa and Tomoharu Nagao, “A genetic programming approach to designing convolutional neural network 
architectures,” in Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 2017: 497-504.

CGP-CNN

v In encoding process, each operation is encoded by
three unit, the first is the index, the second and the
third refers to the indices of its input

v Each one is converted to the CNN for fitness
evaluation on image classification task, the fitness is
the corresponding classification accuracy

44
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CGP-CNN

v One example of the evolved CNN
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PSOAO

v A PSO method to evolve architectures of the Flexible
Convolutional Auto-encoder

• A traditional convolutional auto-encoder has one encoder and one
decoder

– one encoder is composed of on convolutional layer and on pooling layer

– one decoder contains only one de-convolutional layer

– State-of-the-art CNNs do not have such architectures

• In the flexible convolutional auto-encoder

– its encoder has multiple convolutional layers and pooling layers

– It can form the state-of-the-art CNNs

– but its architecture is not easy to manually tune

v Particles with different lengths to represent different flexible 
convolutional auto-encoders

v In PSOAO, a x-reference velocity updating strategy is proposed
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Yanan Sun, Bing Xue and Mengjie Zhang, “A particle swarm optimization-based flexible convolutional auto-encoder for image classification,” arXiv
preprint arXiv:1712.05042, 2017.

PSOAO

v In x-reference, gBest and
pBest adopt the length of
the current particle

v If the lengths of gBest
and pBest exceed that of
the current particle,
truncation is performed,
otherwise zeros are
padded

47

PSOAO

v The performance of flexible convolutional auto-encoder outperforms state-
of-the-art auto-encoders and convolutional auto-encoders

48
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IPPSO

v A PSO to effectively evolve the architectures of CNNs

v The encoding strategy is based on IP protocol

v Binary string is used to encode the architecture

v Masks are used to disable/enable the corresponding unit

49

Bin Wang, Yanan Sun, Bing Xue and Mengjie Zhang, “Evolving deep convolutional neural networks by variable-length particle swarm optimization for 
image classification,” Accepted by IEEE Congress on Evolutionary Computation.

IPPSO

v Best on MDRBI

v Second Best on MB

v Fifth on Convex

50

CNN-GA (our recent work)

v One method to automatically find architectures of CNNs
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GP-based Evolutionary Deep Learning

v 3-Tier/2-Tier GP for image classification [2012, 2013]

v GP-HoG [2015-16]

v MLGP [2017]

v ConvGP [2017]

v GP-Criptor – (Deep) Transfer Learning [2014-16]

52
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3-Tier/2-Tier GP (2012)
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3-Tier/2-Tier GP

54

2-Tier GP (2012)

55

GP-HoG [2015-16]

56
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GP-HoG
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Multi-Later GP (MLGP) [2017]
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Compared with Existing GP methods
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Compared with non-GP methods
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ConvGP [2017]

Incorporate key 
ideas from both 
GP and CNN!

Experiment Design
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Results

JAFFE Cars

Faces

Pedestrians

Visualisation (JAFFE)

The corresponding conv-net had 5,479,489 parameters

Visualisation (Cars)

The corresponding conv-net had 773,185 parameters

Visualisation (Faces)

The corresponding conv-net had 56,385 parameters
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Visualisation (Pedestrian)

The corresponding conv-net 
had 105,537 parameters

Evolutionary (Deep) Transfer Learning [2015-17]

70

70

Dataset Classes Total 

instance

s

Dimension

s

Brodatz (No rotation) 20 1680 64 x 64

Brodatz (With rotation) 20 20160 64 x 64

OutexTC 24 2817 128 x 128

KySinHw 25 22500 122 x 122

Kylberg (no rotation) 28 4480 115 x 115

Kylberg (With rotation) 28 53760 115 x 115

CUReT 61 5612 200 x 200

KylbergKySinHw

CUReTBrodatz

O
u
te

xT
C

Feature Vector 
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Harith Al-Sahaf, Ausama Al-Sahaf, Bing Xue, Mark Johnston, Mengjie Zhang. "Automatically Evolving Rotation-invariant Texture Image Descriptors by Genetic Programming". IEEE 
Transaction on Evolutionary Computation. 2017. pp. 83-101.
Harith Al-Sahaf, Mengjie Zhang, Ausama Al-Sahaf, Mark Johnston. "Keypoints Detection and Feature Extraction: A Dynamic Genetic Programming Approach for Evolving Rotation-
invariant Texture Image Descriptors". IEEE Transaction on Evolutionary Computation. 2017. DOI: 10.1109/TEVC.2017.2685639. 
Muhammad Iqbal, Bing Xue, Harith Al-Sahaf, Mengjie Zhang. "Cross-Domain Reuse of Extracted Knowledge in Genetic Programming for Image Classification". IEEE Transaction on 

Evolutionary Computation. 2017. DOI: 10.1109/TEVC.2017.2657556. 

Feature Transfer

72

72

Dataset Class

es

Total 

instances

Dimensions

Webcam 31 795 152-752 x 152-
752

Amazon 31 2817 300 x 300

DSLR 31 498 1000 x 1000

DSLRAmazon

Webcam
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Summary

v NN-based evolutionary deep learning has started to 
demonstrate great potential to outperform the 
manually designed state-of-the-art deep networks in 
image classification and analysis

v GP based evolutionary deep learning has also started, 
and is expected to demonstrate the advantages in 
effectiveness, efficiency and interpretability in image 
analysis

v Evolutionary deep learning is still in an early stage, but 
is expected to show the great accuracy, efficiency, 
small training set, and good interpretability of the deep 
models.

73

Acknowledgement

v Thanks my colleagues and research students particularly 
Dr Bing Xue, Dr Yanan Sun, Andrew Lensen, Ying Bi, Ben 
Evans, A/Prof Will Browne, Dr Will Smart and Dr Ignas
Kukenys, Dr Toktam Ebadi, Dr Mahdi Setayesh, Dr Andy 
Song, Harith Al-Sahaf, Dr Yuyu Liang, Liam Cervante, 
Mitch lane, and other members in our ECRG Group.

v Thanks GECCO2018 organisers

v Funding Agents: 
1. Marsden Fund of New Zealand award number(s): VUW 
1509, 16-VUW-111, E2280/3663 (Huawei)
2. University Research Fund at Victoria University of 
Wellington award number(s): 210375/3557, 209861/3580, 
209862/3580, 213150/3662.

74

35 people -- several people are missing!

More Recent Group Photo

75

References

v Yanan Sun, Gary G. Yen, Zhang Yi, "Evolving Unsupervised Deep Neural 
Networks for Learning Meaningful Representations". IEEE Transactions on 
Evolutionary Computation. DOI:10.1109/TEVC.2018.2808689.

v Toktam Ebadi, Ignas Kukenys, Will N. Browne, Mengjie Zhang: Human-
Interpretable Feature Pattern Classification System Using Learning Classifier 
Systems. Evolutionary Computation 22(4): 629-650 (2014)

v Bing Xue, Mengjie Zhang, Will N. Browne: Particle Swarm Optimization for 
Feature Selection in Classification: A Multi-Objective Approach. IEEE T. 
Cybernetics 43(6): 1656-1671 (2013)

v Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature 
Construction for Effective Biomarker Identification and Classification using 
Genetic Programming". Proceedings of 2014 Genetic and Evolutionary 
Computation Conference (GECCO 2014). ACM Press. Vancouver, BC, 
Canada. 12-16 July 2014.pp.249--256.

v Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang. “Binary 
PSO and rough set theory for feature selection: a multi-objective filter based 
approach". International Journal of Computational Intelligence and Applications, 
Vol. 13, No. 2 (2014). pp. 1450009 -- 1- 34. DOI: 10.1142/S1469026814500096

v Hoai Bach Nguyen, Bing Xue, Ivy Liu, Peter Andreae, Mengjie Zhang. 
"Gaussian Transformation based Representation in Particle Swarm 
Optimisation for Feature Selection". Proceedings of the 18th European 
Conference on the Applications of Evolutionary Computation (EuroApplications
2015). Lecture Notes in Computer Science. Vol. 9028. Copenhagen, Denmark. 
8-10 April 2015. pp. 541-553

76

1244



References

v Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, An Experimental 
Study on Hyper-parameter Optimization for Stacked Auto-Encoders, 
2018 IEEE Congress on Evolutionary Computation (CEC). Accepted.

v Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on 
Evolutionary Computation Approaches to Feature Selection", IEEE 
Transaction on Evolutionary Computation, vol. 20, no. 4, pp. 606-626, 
Aug. 2016. doi: 10.1109/TEVC.2015.2504420. 

v Stefano Cagnoni, GECCO 2008 and GECCO 2014 Tutorial on 
ECV/IASP

v Will Smart, Mengjie Zhang. "Tracking Object Positions in Real-time 
Video using Genetic Programming". In Proceeding of Image and 
Vision Computing International Conference, 2004. pp. 113-118. 

v Huayang Xie, Mengjie Zhang, Peter Andreae. "Genetic Programming 
for Automatic Stress Detection in Spoken English". Proceedings of 
EvoWorkshops 2006 (EvoIASP 2006), Lecture Notes in Computer 
Science, Vol. 3907. Springer. 2006. pp.460-471. 

v Peter Andreae, Huayang Xie, Mengjie Zhang. "Genetic Programming 
for Detecting Rhythmic Stress in Spoken English". International 
Journal of Knowledge-Based and Intelligent Engineering Systems 
(KES Journal). Special Issue on Genetic Programming. Vol. 12, No. 1, 
2008. pp. 15-28. 

v Mahdi Setayesh, Mengjie Zhang, Mark Johnston:Investigating Particle 
Swarm Optimisation Topologies for Edge Detection in Noisy Images. 
Australasian Conference on Artificial Intelligence 2011: 609-618 77

References

v Yuyu Liang, Mengjie Zhang, Will N. Browne: A Supervised Figure-Ground 
Segmentation Method Using Genetic Programming. EvoApplications 2015: 
491-503

v Mahdi Setayesh, Mengjie Zhang, Mark Johnston: A novel particle swarm 
optimisation approach to detecting continuous, thin and smooth edges in noisy 
images. Inf. Sci. 246: 28-51 (2013)

v Aaron Scoble, Will N. Browne, Bill Stephenson, Zane Bruce, Mengjie Zhang: 
Evolutionary spatial auto-correlation for assessing earthquake liquefaction 
potential using Parallel Linear Genetic Programming. IEEE Congress on 
Evolutionary Computation 2013: 2940-2947

v Andy Song, Mengjie Zhang: Genetic programming for detecting target motions. 
Connect. Sci. 24(2-3): 117-141 (2012)

v Harith Al-Sahaf, Andy Song, Kourosh Neshatian, Mengjie Zhang: Two-Tier 
genetic programming: towards raw pixel-based image classification. Expert 
Syst. Appl. 39(16): 12291-12301 (2012)

v Harith Al-Sahaf, Andy Song, Kourosh Neshatian, Mengjie Zhang: Extracting 
image features for classification by two-tier genetic programming. IEEE 
Congress on Evolutionary Computation 2012: 1-8

v Harith Al-Sahaf, Mengjie Zhang, Mark Johnston: Genetic Programming for 
Multiclass Texture Classification Using a Small Number of Instances. SEAL 
2014: 335-346

78

Complex System Analysis for Pattern 
Clustering and Feature Extraction

Relevant set detection in complex systems

Goal

Identification of Relevant Subsets (RSs): groups of variables 
most significant for the system dynamics, which are 

v integrated among themselves

v segregated from the rest of the system

Methodology

Detect subsets of system variables which:

v behave in a coherent and coordinated way

v loosely interact with the remainder of the system

Search of structures ranked according to some measures 
based on information theory, which describe the organization 
of the system
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Relevant Index (RI)

Based on the observation of the dynamical states of a system

Defined as the ratio between:

v Integration: measure of the total statistical dependence 
within a subset of variables

v Mutual information: measure of the statistical dependence 
between two subsets of variables: here, between subset Sk

and the rest of the system

RI(Sk)!=!
!("#)

$!("#; %&"#)
U: system  S: subset (dimension: k)

I: integration   MI: mutual information

Tc Index

Statistical index that measures the deviation of the 
normalized RI of a group of variables with respect to the  
statistics of a reference system (homogeneous system)

'*(+,) =
-. +/ 0< -.1 >

2(-.3)

<RIh>, σ(RIh): average and standard deviation of the RI of a 
sample of subsets of size k extracted from a homogeneous 
system Uh

zI Index

Faster to compute than the Tc and useful to overcome the 
inefficiency caused by the homogeneous system computation

The product 2mI (m being the number of observations) has a Chi 

Square distribution whose degrees of freedom depend on the 
size of the analyzed subset and on the cardinality L of the 
alphabet of its variables

<2mI(Sk)>h, σ(2mI(Sk))h: average and standard deviation of the 
Chi Square distribution of all subsets of dimension k of the 
homogeneous system

 ! "# =
$%& '( ) *$%& '( +,

-.$%& '( /,
=

$%& '( )0.'(/

$0.'(/

g "# = 1234
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Index Computation

v Full description of a dynamical system: index  
computation for all possible subsets of the system 
variables (exhaustive search)

v The number of possible subsets of the system variables 
increases exponentially with the number of variables

v An exhaustive search cannot be performed in a 
reasonable time

Solutions:

v Computational optimization  (CUDA C kernels)

v Design of efficient strategies that limit the extension of 
the search by quickly detecting the most promising 
subsets
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Metaheuristics 

Niching memetic algorithm:

v Search for relevant dynamical variable sets (Candidate 
RSs, CRSs) when the dimension of the variable space 
increases

v Population diversity maintained during the search 
process to find more than one (possibly all) RSs

Solutions

v Niching genetic algorithm + local search [6]

v K-Means PSO [5]

Memetic Algorithm

1. Genetic algorithm to draw the search towards the 
basins of attraction of the main local maxima in the 
search space

The evolutionary phase is based on the Deterministic 
Crowding niching technique

2. Local search to improve the results, exploring those 
regions more finely and extensively

1. Genetic Algorithm

Individual: 

Subset of variables

v Binary string of size N  (N = total number of variables)

v 1 → the corresponding variable is included in the CRS

After single-point crossover, each child replaces the most 
similar parent of lower fitness

Fitness function:

v zI index of the CRS associated to the individual

v Maximization problem

v Parallel implementation (CUDA C kernel)

2. Local Search

vCreation of a buffer to store the Nbest CRSs found (highest 
zI indices) and their fitness values

vThe local search strategies are driven by statistics, 
computed at runtime, on the results obtained by the GA

vExtensive exploration of the regions of the search space 
that are most likely to have high fitness values
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K-Means PSO [4]

Particle representation: 

A particle represents a subset of variables

Binary string of size N  (N = total number of variables)
1 → the corresponding variable is included in the CRS 

Floating point vectors → Binary encoding

1 → particle’s elements having a positive value

0 → negative ones

Fitness function:

zI index of the CRS associated to the particle

Maximization problem

Parallel implementation (CUDA C kernel)

SPSO search process enhanced by a Niching technique

Creation of a buffer to store the best CRSs found (highest 
zI indices) and their fitness values.

SPSO

K-Means PSO

K-Means PSO

At regular intervals K-means is applied to the swarm

Reorganization into sub-swarms (by elements’ proximity in 

the search space)

SPSO independently applied to each sub-swarm

K-Means

Iterative sieving algorithm

The iterative sieving algorithm [1] derives a hierarchy of RSs
by iteratively grouping one or more RSs into a single entity

One step of the sieving algorithm keeps only those sets 
that are not included or do not include any other set with 
higher index value

v Iterative runs of the sieving algorithm on the same data, 
each time using a new representation

v The top-ranked RS of the previous iteration (highest zI) is 
considered as atomic and substituted by a single variable 
(group variable)

v The algorithm stops when the zI value of the most 
relevant set detected falls below a pre-set threshold
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Real-world dataset collected by Società Autostrade SpA
at highway toll booths

v 11034 binary patterns representing the ten digits from 
0 to 9

v Size: 13x8 pixels à strings of 104 binary features

ROW 1

ROW 2

ROW 13

ROW 1 ROW 2 ROW 13

8 pixels 8 pixels 8 pixels…

104 pixels

zI/Tc-based clustering and classification zI-based pattern clustering   [2]

Variables (columns): patterns 
Observations (rows): pixels

Results

Classification

296 groups à 296 centroids

296-centroid distance-
based zI classifier

Fully zI-based classifier

…

296 groups detected

Classifier Accuracy

Random Forest 99.02%

SVM 98.54%

296-centroid 
LVQ

98.37%

OSLVQ (71-81
centroids)

98.37%

296-centroid
distance-based
zI

98.27%

Fully zI-based
classifier

97.77%

110-centroid
distance-based
zI

97.65

80-centroid 
LVQ

97.65%

Naive Bayes
Multinomial

96.05%

J48 
Consolidated

95.72%

Tc-based classification [3]

Variables (columns): pixels
Observations (rows) : patterns
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Results

v Relevant pixel subsets were found in a supervised

fashion by computing the Tc index separately from 
patterns representing each digit.

v Considering all 79 subsets having Tc above a given 
threshold, accuracy of a Random Forest classifier was 
almost as good (98.93% vs. 99.08%) as using the 104 
original features (despite considering almost 25% fewer 
variables)

v Using only 20 features, accuracy (97.74%) was better 
than using similarly-sized feature sets computed by more 
conventional techniques (PCA 97.54%, Weka’s 

InfoGainAttributeEval filter 93.47%)

Ongoing work

v Using the zI along with the iterative sieving algorithm to 
find pixel subsets relevant for classification

v Allowing the sieving algorithm to generate RSs sharing 
the same variables (currently they are mutually 
exclusive)

v Allowing the sieving algorithm to exclude non-relevant 
sets

v Finding a (classifier-dependent?) optimal representation 
for the RSs
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Concluding Remarks

v Evolutionary computer vision and image analyisi is still a 
big and hot topic

v Evolutionary deep learning will play a significant role

v GP-based deep learning will have more developments

v Interpretability and expandability will be a major focus

v EC techniques will be more popular in pattern recognition

v GP, GAs, PSO, DE, 

v EC will be in more main stream conferences and 
journals

v Including the alpha series: AlphaGo, AlphaZero, 
AlphaStar

v GPU will be a popular tool
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