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@ Future Directions

Why Multi-Objective Optimisation Important?

® Many real-world applications involve more than one objective

| B

'Discrepancy of the same community/cluster —s minimize
 Discrepancy of different communities/clusters — maximize

- [1]1 M. Gong, et. al.,“Complex Network Clustering by Multiobjective Discrete Particle Swarm
Gecifj;w Optimization Based on Decomposition”, IEEE Trans. Evol. Comput., 18(1):82-97,2014.




Why Multi-Objective Optimisation Important?

® Many real-world applications involve more than one objective
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- [2] M. Ribeiro, et. al., "Multi-Objective Pareto-Efficient Approaches for Recommender Systems”,
Gecc XS “#  ACMTrans. Intelligent Systems and Technology, 5(4): 1-20,2014.
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Why Multi-Objective Optimisation Important?

® Many real-world applications involve more than one objective

Shinkansen N700, bullet train [3] Exeter water distribution network [4]

3] btpillenglish e

- 20040616/

-, [4] R. Farmani, et al.“Evolutionary multi-objective optimization in water distribution network design”,

GECCULY ¥ Engineering Optimization, 37(2): 167-183,2005 6
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Multi-objective Optimisation Problem (MOP)

® Mathematical definition (continuous problem)

minimize F(x) = (fi(x),+, fm(x))T
subject to  g;(x) > a j
=bj, j=q+1,-- ¢

¢ x:decision variable
¢ F:objective vector
* (X decision space

¢ ) — R™: objective space

>

j.'é
e
[

GecceD

1003




Which Solution is Better?

® Pareto domination: x' < x>
o F(x!)is no worse than F(x?)in any objective, and
o F(x')is better than F(x?)in at least one objective
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Which Solution is Better?

® Pareto domination: x' < x2
o F(x!)is no worse than F(x?)in any objective, and
o F(x')is better than F(x?)in at least one objective

1 Region dominated by x

Which Solution is Better?

® Pareto domination: x* < x?
o F(x')is no worse than F(x?)in any objective, and
o F(x!)is better than F(x?)in at least one objective
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Which Solution is Better?

® Pareto domination: x" < x?
o F(x')is no worse than F(x?)in any objective, and
o F(x!')is better than F(x?)in at least one objective

Region non-dominated with x
1 Region dominated by x
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Pareto-optimal Solutions = Best Trade-off Candidates

T

hi

® X is Pareto-optimal iff no solution dominates it

® Pareto set (PS): all Pareto-optimal solutions in decision space
e,, Pareto front (PF):image of PS in the objective space
Gecci 0
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Convergence and Diversity in EMO

o [GINEENILS: non-dominated, close to the PF
o [BIYEHIY: even distribution along the PF

Convergence and Diversity in EMO

o [@NWEEENIEE: non-dominated, close to the PF
o[BI even distribution along the PF

Convergence and Diversity in EMO

o (GRS non-dominated, close to the PF
o [BIYEHIY: even distribution along the PF

f2

PF

h

poor diversity)|
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Convergence and Diversity in EMO Convergence and Diversity in EMO

© (ORI non-dominated, close to the PF o [@NWEEENIEE: non-dominated, close to the PF
o [BIEEI: even distribution along the PF o[BI even distribution along the PF
f2 fq fa f?

PF PF PE PF

h |b | d d diversi lfl fi — f | ——fi

poor diversity| alanced convergence and diversity| poor diversity balanced convergence and dwersltyl

Balance between convergence and diversity is the corner stone
I I
11-4 11-5

Classic Methods vs Evolutionary Approaches Pareto-based EMO Methods

® Classic multi-objective optimisation [4] ® Two-step procedure

¢ Rank the population by [elelll TR TRTe1E

o - - * dominance level, dominance count, ...
ne optimum solution
Eeimte 2 ralntive single-objective optimization problem, e.g, ¢ Refine the dominance-based ranking by [(EISIs A ERA(eN))
Higher-level imporca o - weighted sum - g .
—} —> ‘:Im:po(w‘rjciv‘ez.:;r minimize g (xlw) = 5 s x F(o1) —> » crowding distance, k-th nearest neighbour, ...
subject to_x € Q
e Evolutionary multi-objective optimisation (EMO) Pt
* set-based method Mating ) sortin truncation
. . Selecti »| Reproduction Fa Fa
* approximate the PF at a time election T most crowded point
[ . P
Qt
Fs Fs
4
. Environmental
Evaluation [ Selection
e e, [5] K. Deb, et. al., “A fast and elitist multiobjective genetic algorithm: NSGA-II", I[EEE Trans. Evol. Comput., 6(2):
GECCi “(:f’ﬁ [4] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms”, Wiley, 2009. 12 u{:f"ﬁ 182-197,2002. 13
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Indicator-based EMO Methods General Framework of MOEA/D

® A (unary) quality indicator [ is a function [ : ¥ = 2% 3 R that @ Basic idea
assigns a Pareto set approximation a real value.  Decomposition
» Decompose the task of approximating the PF into N subtasks, i.e. MOP to subproblems
. . . . . . Each subproblem can be either single objective or multi-objective
Multi-objective . Single-objective '
4 —  Indicator — 3 )

Problem Problem Collaboration

> Population-based technique: N agents for N subproblems.
> Subproblems are related to each other while N agents solve these subproblems in a
collaborative manner.

NOTE: performance indicator should be dominance preserving!

reference point
i

I
'
I
I
I
I
I
least area contribution

i

I
3 I
'
I
|

worst solution

[6] N. Beume, et. al., “SMS-EMOA: Multiobjective selection based on dominated hypervolume”, Eur ] Oper Res.
181(3): 1653-1669,2007. 14

14 15

Outline Simple MOEA/D

® A simple MOEA/D works as follows:

. Step 1: Initialize a population of solutions P := {x'}}¥,, a set of reference
® S|mP|e MOEA/D points W = {wi}f\;l and their neighborhood structure. Randomly
assign each solution to a reference point.
Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w*’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x°.

Step 2.3: Update the subproblems within the neighborhood of w* by

x°.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

[7] Q. Zhang et al., “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans.
Evol. Comput,, | 1(6):712-731,2007. 17

16 17-1
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Simple MOEA/D

@ A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions P := {x'},, a set of reference
points W := {w'}¥, and their neighborhood structure. Randomly
assign each solution to a reference point.

Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w'’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x°.
Step 2.3: Update the subproblems within the neighborhood of w* by
x°.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

[7] Q. Zhang et al., “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans.
Evol. Comput., | 1(6): 712-731,2007. 17
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Algorithm Settings

® Subproblem formulation

multiple objectives parameters single objective

(i), fn(x)) — |sransformation] —— (x|

A scalarizing function g : R — R that maps each objective vector
F(x) = (fi(x), -, fm(x)) € R™ to a real value g(F(x)) € R

weighted sum weighted Tchebycheff

i

gxlw,z") = max wil fi(x — 2]

19
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Algorithm Settings

® Weight vector/Reference point Setting
¢ Use Das and Dennis’s method [8] to sample a set of uniformly distributed
weight vectors from a unit simplex
m
o w=(wp, - ,wy,)T where Zwi =1l,weR™
izl
¢ Each weight vector set a direction line (starting from the utopian point)
® Neighbourhood structure:
¢ Two subproblems are neighbours if their weight vectors are close.

¢ Neighbouring subproblems are more likely assumed to have similar property
(e.g. similar objective function and/or optimal solution).

[8] I. Das et.al.,“Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear
Multicriteria Optimization Problems”, SIAM J. Optim, 8(3): 631-657, 1998.

18
Simple MOEA/D (cont.)
® A simple MOEA/D works as follows:
Step 1: Initialize a population of solutions P := {x'}¥ |, a set of reference
points W = {w’}f\;l and their neighborhood structure. Randomly
assign each solution to a reference point.
Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w*’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x°.
Step 2.3: Update the subproblems within the neighborhood of w* by
x°.
Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.
20
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Simple MOEA/D (cont.)

@ A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions P := {x'}¥ |, a set of reference
points W := {w'}}¥, and their neighborhood structure. Randomly
assign each solution to a reference point.

Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w'’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x°.

Step 2.3: Update the subproblems within the neighborhood of w* by

x°.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

20
20-2
Outline
® Current Developments
¢ Decomposition methods
S 2
22
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Collaboration Among Different Agents

Each agent i records the
best-so-far solution found
for its subproblem (memory)

® At each iteration, each agent does the following:

o |MEGTREEIIGI]) (local selection): borrows solutions from its neighbours.
o [EuIgeYe[WIddlely: reproduce a new solution by applying reproduction operators

on its own solutions and borrowed solutions.

(local competition):

> Pass the new solution among its neighbours (including itself).

» Replace the old solution by the new one if the new one is better than old one for its objective.

21

21

Setting of Weight Vectors

® Drawbacks of the Das and Dennis’s method
e N i
ot very uniform [9] Him—1
e Number of weights is restricted to N =

» N increases nonlinearly with m

» If Nis not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al., “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.

[10] K. Li, et al.,“An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition”,
|EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23
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Setting of Weight Vectors

@ Drawbacks of the Das and Dennis’s method
* Not very uniform [9]

. ; . H+m-1
o Number of weights is restricted to N = 1)
» N increases nonlinearly with m m

» If Nis not large enough, all weight vectors will be at the boundary of the simplex

simplex-lattice design

uniform design [9]

[9] Y-Y Tan, et al., “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.

[10] K. Li, et al., “An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition”,
|EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23
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Setting of Weight Vectors

® Drawbacks of the Das and Dennis’s method
¢ Not very unifo-rm [9] . Him-1
* Number of weights is restricted to N = 3

. . ; m—1
» N increases nonlinearly with m

» If Nis not large enough, all weight vectors will be at the boundary of the simplex

Ist layer 2nd layer

[9] Y=Y Tan, et al., “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.

[10] K. Li, et al.,“An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition”,
IEEE Trans. Evol. Comput., 19(5): 694-716,2015. 23

23-4
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Setting of Weight Vectors

® Drawbacks of the Das and Dennis’s method
e N i
ot very uniform [9] Him—1
e Number of weights is restricted to N =

» N increases nonlinearly with m
» If Nis not large enough, all weight vectors will be at the boundary of the simplex

|

Ist layer Combination of two layers [10] 2nd layer

[9] Y-Y Tan, et al., “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.

[10] K. Li, et al.,“An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition”,
|EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23
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Setting of Weight Vectors (cont.)

® Drawbacks of uniform distributed weight vectors
¢ Do NOT always lead to evenly distributed solutions
¢ Do NOT support all PF shapes
» Disconnected PF

» Inverted PF
»

[11]S. Jiang, et al," by D ition with Pareto-adaptive Weight Vectors”, ICNC'l 1, 1260-1264, 201 I.
[12]Y.Qi, ot al, "MOEA/D with Adapuvengh[Ad]ustment Evol. Comput. 22(2): 231-264, 2014,

[13] M_Wu, et al,, “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] M. Wu, et al,, “Learning to Decompose: A Paradigm for Decomposition-Based Multi-Objective Optimization”, |EEE Trans. Evol.
Comput,, accepted for publication, 2018. 24

[15] F Gu, et al., “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018.
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Setting of Weight Vectors (cont.)

® Drawbacks of uniform distributed weight vectors
¢ Do NOT always lead to evenly distributed solutions
¢ Do NOT support all PF shapes
» Disconnected PF

» Inverted PF
»

[11] S. Jiang, et al.,“Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors”, ICNC'l I, 1260-1264,201 1.
[12]Y. Qi, et al, “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264, 2014,

[13] M. Wu, et al, “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] M. W, et al., “Learning to Decompose: A Paradigm for Decomposition-Based Multi-Objective Optimization”, [EEE Trans. Evol,
Comput, accepted for publication, 2018.

[15] F Gu, et al, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018.
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Setting of Weight Vectors (cont.)

® Drawbacks of uniform distributed weight vectors
¢ Do NOT always lead to evenly distributed solutions
¢ Do NOT support all PF shapes
» Disconnected PF

» Inverted PF
,

m fZ W1 2
\VA
If the PF meets Z fi = 1, that’s fine; otherwise ... A
i=1
3
) A
i 5 wt
= SSeeel \\., w’
zld fl

[11] S.Jiang, et al.,“Multiob imi y D with Pareto-adaptive Weight Vectors”, ICNC' 1, 1260-1264,201 .
[12] Y. Qi, et al, “MOEA/D with AdaptweWelghtAd]us(ment Evol. Comput. 22(2): 231264, 2014,

[13] M. Wu, et al, “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] M. Wu, et al,, “Learning to Decompose: A Paradigm for Decomposition-Based Multi-Objective Optimization”, IEEE Trans. Evol.
Comput., accepted for publication, 2018. 24
[15] F Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018.
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Setting of Weight Vectors (cont.)

® Drawbacks of uniform distributed weight vectors
¢ Do NOT always lead to evenly distributed solutions
¢ Do NOT support all PF shapes
» Disconnected PF
» Inverted PF

»
nvm 0774252 10 Points along Paretofront 2 g

hv(pak) = 0.793305 ;10 Points along Pareto front* +

hv(pal) = 0.178965 ;10 Points along Pareto front:* + %=1

; e

(a) A (MOEA/D) for convex and concave PF (b) pa for .convex PF (c) pa for concave PF

Assume PF as

m
E :fp _ - estimate p according to the number of non-dominated solutions
7

(1] i=1
[12] Y. et al, “MOEA/D with Adapeive Weight Adjustment’, Evol. Comput. 22(2):231-264,2014.
[13] MW, et al. “Adaptive Weights Generation for D 4 Mult-Objective O
Regression”, GECCO’17, 641-648,2017.
[14] M. Wo et al, “Learning to Decompose: A Paradigm for Decomposition-Based Multi-Objective Optimization”, IEEE Trans. Evol.
Comput, accepted for publication, 2018.
[15] F Gu, et al., “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput, 22(2):211-225,2018.

Using Gaussian Process
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Setting of Weight Vectors (cont.)

® Drawbacks of uniform distributed weight vectors
¢ Do NOT always lead to evenly distributed solutions
¢ Do NOT support all PF shapes
» Disconnected PF

» Inverted PF
»

[11] S. Jiang, et al.,“Multiobjective Optimization by D ition with Pareto-adaptive Weight Vectors”, ICNC'l I, 1260-1264,201 1.
[12]Y.Qi, ot al, "MOEA/D with Adapuvengh[Ad]ustment Evol. Comput. 22(2): 231-264, 2014,
[13] M. Wu, et al, “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] M. Wa, et al, “Learning to Decompose: A Paradigm for Decomposition-Based Multi-Objective Optimization”, IEEE Trans. Evol.
Comput., accepted for publication, 2018. 24
[15] F. Gu, et al, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018.

Setting of Weight Vectors (cont.)

® Drawbacks of uniform distributed weight vectors
¢ Do NOT always lead to evenly distributed solutions
¢ Do NOT support all PF shapes
» Disconnected PF
» Inverted PF

»
SOM Weight Postions

Adaptive weight vectors adjustment _ J
» Estimate the PF shape progressively according to 1: N
the current population "
» Resample a set of weight vectors according to 12|

the estimated PF '

v Add new ones in feasible regions, and remove
useless ones from infeasible regions [12]

¥ Sampling from some estimated model, e.g. GP [13,

02
14] and SOM [15] L ,,L /°
» Construct new subproblems with respect to b es DT a——
newly sampled weight vectors
[11]S. Jiang, et al., “Multiobjective Optimization by D ion with Pareto-adaptive Weight Vectors”, ICNC'I 1, 1260-1264,201 .

[12]Y. Qi, et al., "MOEA/D with AdaptweWelghtAd]ustment Evol. Comput. 22(2): 231-264, 2014,
[13] M. Wu, et al, “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] M. Wu, et al,, “Learning to Decompose: A Paradigm for Decomposition-Based Multi-Objective Optimization”, IEEE Trans. Evol.
Comput., accepted for publication, 2018. 24
[15] F Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018.
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Revisit Weighted Tchebycheff

® Weighted Tchebycheff

PF * non-smooth, weakly dominate solution
AoA=---mmmmm oo ‘w « evenly distributed weights evenly do
! NOT lead to distributed solutions
fap-----== A ' * might easily loose diversity
z* | 3 :
fi
weighted Tchebycheff

g(x|w,z )— max wllfl(x—z |

25

Revisit Weighted Tchebycheff

® Weighted Tchebycheff

PF * non-smooth, weakly dominate solution [16]
RoA=-mmmmm - - W « evenly distributed weights evenly do NOT
lead to distributed solutions

d
|
pp---ooT S | * might easily | diversit
f2 : : might easily loose diversity
I
I
h
7777777 I
1 ! 1
1 ! 1
AN
|
v ' | !
fi
weighted Tchebycheff
* *
g(x|w,z") = max w;|fi(x — 27|
1<i<m
[16] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2

25
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Revisit Weighted Tchebycheff

® Weighted Tchebycheff

W = (w1, ws)T * non-smooth, weakly dominate solution [16]
A « evenly distributed weights evenly do NOT
weakly dominated solution lead to distributed solutions

../ i+ might easily loose diversity

>\/PF

h
weighted Tchebycheff

g(xiw,z") = max wilfifx = =]

[16] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2%
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g"(xlw, ) = max (P23 |5 S
i im1 (3

Revisit Weighted Tchebycheff

® Weighted Tchebycheff
f2
W= (wr, ws)” * non-smooth, weakly dominate solution [16]
A ' « evenly distributed weights evenly do NOT
weakly dominated solution lead to distributed solutions
- ./ i+ might easily loose diversity

7 PF
T b

\ w = (wy,ws)T

i
weighted Tchebycheff

gxlw, %) = max wilfi(x - =]

augmented scalarizing function

1<i<m

fi

GGCCEQ"? [16] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2%

>
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Revisit Weighted Tchebycheff

®© Weighted Tchebycheff

w = (wy, )" * non-smooth, weakly dominate solution [16]
b « evenly distributed weights evenly do NOT
,,,,,,,,,, e

/ weakly dominated solution lead to distributed solutions

* might easily loose diversity
PF
’N

h
weighted Tchebycheff

glxlw,2) = max wilfi(x = 5|

augmented scalarizing function

g% (x|w,z*) = max (M) + pZ(M)

<i<m® w; w;

GECCq (:Fl’ [16] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2

>
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

PE . non-smooth, weakly dominate solution
,,,,,,,,,,,,,,, o * evenly distributed weights evenly do
NOT lead to distributed solutions
fol- T - | * might easily loose diversity
7" | 3 :
f1
weighted Tchebycheff

) = | f. — *
g(xiwz") = max wilfi(x — =]

R
gf'}:‘ [12]Y.Qi, et al,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27

Geccyd
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

PF * non-smooth, weakly dominate solution
,,,,,,,,,,,,,,, ‘o « evenly distributed weights evenly do
i NOT lead to distributed solutions
S o ' * might easily loose diversity
z* | i . o
fi
weighted Tchebycheff

g(x|w,z") = 1I§ﬂiﬁs>§nwi|fi(x -2

[12] Y. Qi, et al,,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27

U'l@ [12]Y.Qi, et al,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014.
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Revisit Weighted Tchebycheff (cont.)

®© Weighted Tchebycheff

PE * non-smooth, weakly dominate solution
,,,,,,,,,,,,,,, o * evenly distributed weights evenly do
NOT lead to distributed solutions
N - i * might easily loose diversity
z* i 3 . B
fi
weighted Tchebycheff

gxlw, %) = max wilfi(x - =]

e

27

Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

- i non-smooth, weakly dominate solution
,,,,,,,,,,,,,,, % * evenly distributed weights evenly do
i NOT lead to distributed solutions
fol-- T o ' * might easily loose diversity
z* | 3 ! o
f1
weighted Tchebycheff

g(xiw,z") = max wilfi(x — 5]

1/wq 1/wm, )T

The search direction for w = (w1, - -+ ,wy,) " is W = T sy =m
(w1 m) (Zi:1 L/w; 211 L/wi

[12]Y. Qi, et al,,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

PE . non-smooth, weakly dominate solution
,,,,,,,,,,,,,,, o * evenly distributed weights evenly do
NOT lead to distributed solutions
fol- T - | * might easily loose diversity
7" | 3 :
fi
weighted Tchebycheff
glxlw,z") = max,
1/wy 1/Wm 7
The search direction for w = (w1, - - - , W)’ is W = (=m y U —=m )
(tx m) Dimg 1/wi > /wi

27-4

[12]Y.Qi, et al,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

« evenly distributed weights evenly do
NOT lead to distributed solutions

Jop---- N * might easily loose diversity [17]

PF * non-smooth, weakly dominate solution:

h

weighted Tchebycheff

g(x|w,z") = 1I§I§ﬁ§>§nwi|fi(x =z

ceccl L ¥ Evol. Comput, 22(2):296-313,2018.

= [17] S. Jiang, et al., “Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms”, IEEE Trans.
é %

28
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

-~
P Drawback:

« evenly distributed weights evenly do
NOT lead to distributed solutions
* might easily loose diversity [18]

* non-smooth, weakly dominate solution§

weighted Lp scalarizing [12]
g xlw) = Qo Nilfilx) = 2)7)7
1=1

1

Uy

Comput., 20(6): 821-837,2016.

gorithms Using Pareto Adaptive Scalarizing Methods”, IEEE Trans. Evol.

29
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Revisit Weighted Tchebycheff (cont.)

®© Weighted Tchebycheff

PF * non-smooth, weakly dominate solutio

* evenly distributed weights evenly do
NOT lead to distributed solutions

* might easily loose diversity [17]

- 5

fiyw

weighted Tchebycheff

gxlw, %) = max wilfi(x - =]

&, [17]S.Jiang, et al,, “Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms”, IEEE Trans.
GECCH U’"‘“ Evol. Comput,, 22(2): 296-313,2018. 28
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff
nl Drawback:

* non-smooth, weakly dominate solutiol

* evenly distributed weights evenly do
NOT lead to distributed solutions

* might easily loose diversity [18]

Pareto adaptive scalarizing to choose p

minimize p, pe P
subject to  Vx* : g¥%(x*|w,z*,p)
weighted Lp scalarizing [12] < g¥4(x*|w,z*, p)

g d(xw) = (O Nl fi(x) — 2)P)»
I=1

1
Uy
| > ?&—WTMMWBMWgoN(th Using Pareto Adaptive Scalarizing Methods”, IEEE Trans. Evol.
Geccl ¥ Comput,20(6):821-837,2016. 29
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Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff

>

Pe1
f <L W=(05,0.5)

v

0

weighted Lp scalarizing [12]

g xlw) = (Y Nl fi(x) — 25)P)»

* non-smooth, weakly dominate solution:

« evenly distributed weights evenly do
NOT lead to distributed solutions

» might easily loose diversity [18]

Pareto adaptive scalarizing to choose p
minimize p, pe€ P
subject to  VxF : g¥d(x*|w,z*, p)

< g (x"|w, 2%, p)

I=1
1
i = (;)vp >1
> m’_fwﬂgrm'ﬁemﬁ!m'wgorithms Using Pareto Adaptive Scalarizing Methods”, IEEE Trans. Evol.
GecclS*¥  Comput,20(6):821-837,2016. 29
29-3
Revisit Weighted Sum
® Weighted sum
. « only useful for convex PFs while not
w all Pareto-optimal solutions can be
. found if the PF is not convex.
J2 i,
z* S~ .
f
weighted sum
m
glx|w) = " w; x fi(x)
i=1
30
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Revisit Weighted Sum

® Weighted sum

\_PF

w

* only useful for convex PFs while not

all Pareto-optimal solutions can be
found if the PF is not convex.

h
weighted sum

g(x|w) = Zwi X fi(x)

30

30-1

Revisit Weighted Sum

® Weighted sum

"\, PF

fat,

* The superior region is constantly1/2,
whereas itis1/2™ for the Lp scalarizing

* MOEA/D with weighted sum have
better convergence (given convex PF)

h
weighted sum

gx[w) = wi x fi(x)
=1

22(1):3-18,2018.

=
0N
Gecce ¥

>

[19] R.Wang, et al., “Localized Weighted Sum Method for Many-Objective Optimization”, |EEE Trans. Evol. Comput.,

31




Revisit Weighted Sum Revisit Weighted Sum

® Weighted sum ® Weighted sum

* The superior region is constantly1/2, . pE * The superior region is constantly1/2,
whereas it is1/2™ for the Lp scalarizing 4 whereas it is1/2™ for the Lp scalarizing
* MOEA/D with weighted sum have N * MOEA/D with weighted sum have
fo better convergence (given convex PF) Rl U™ better convergence (given convex PF)
Ve . Localised weishted sum
) o Chabyshov || o
N 2 7* \\ N\ L
h fi

weighted sum

g(xw) = w; x fi(x)

i=1

weighted sum

g(x|w) = " w; x fi(x)

i=1

[19] R. Wang, et al., “Localized Weighted Sum Method for Many-Objective Optimization”, [EEE Trans. Evol. Comput.,

[19] R. Wang, et al,, “Localized Weighted Sum Method for Many-Objective Optimization”, IEEE Trans. Evol. Comput.,
22(1):3-18,2018. 31

Gecc L 22(1):3-18,2018. 30

Boundary Intersection Boundary Intersection

® Penalty-Based Intersection (PBI) [7]
A AW

® Penalty-Based Intersection (PBI) [7]

* *
g(x|w,z*) = dy + 0ds - g(x|w,z*) = dy + 0d>
8
E Y #\T.
4 - _ (FEx) —z) " wl|
PE s dy =
4 - [Iwl]
S ’ a >~ w
faf" / z < _ N
A d = |[F(x) - (2" + di )|
- N N S [lwll
- A & :
d / ! @K) fx)
/
e\ f@)
- ' I ! 3
I / H
) i A= (0505) i H
H , H s H
- i+ di‘measures’ the convergence i di‘measures’ the convergence H
fi ™ can be replaced by other measure [20] /i (Minimize) ™ can be replaced by other measure [20]
i+ da'measures’ the diversity i+ da'measures’ the diversity H
H Inverted PBI [22] H H
H = can be replaced by angle [20,21] H = can be replaced by angle [20,21] H
i+ 0 controls the contour and trade-offs: i« 0 controls the contour and trade-offs:
[7] Q- Zhang and H. Li, MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput, |1 (6): [7] Q- Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput, |1 (6):
712-731,2007. 712-731,2007.
[20] R. Cheng, et al.,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, IEEE Trans. Evol. Comput., [20] R. Cheng, et al.,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, IEEE Trans. Evol. Comput.,
20(5): 773-791,2016. 20(5):773-791,2016.
[21] Y. Xiang, et al., “A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization”, IEEE Trans. Evol. [21] Y. Xiang, et al., “A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization”, IEEE Trans. Evol.
Comput, 21(1): I31-152,2017. Comput, 21(1): 131-152,2017.
[22] H. Sato, “Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs”, J. Heuristics, #,  [22] H.Sato, “Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAS”, J. Heuristics,
21:819-849,2015. 32 GECC (S 21:819-849,2015. 32
>
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Boundary Intersection

@ Penalty-Based Intersection (PBI) [7]
Ay W

g(x|w, 2" = d; — 0dy
_ () — 2" w|

[[wll

dy

o = |F(x) — (2" + dy o)l

[lwll

2= (0505)7 _
i« di‘measures’ the
/i (Minimize) = can be replaced by other measure [20]
* d2'measures’ the diversity
Inverted PBI [22] = can be replaced by angle [20,21] H
* 0 controls the contour and trade-offs:

[7] Q Zhang and H. Li, "MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput., | 1(6):
712-731,2007.

[20] R. Cheng, et al,,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, IEEE Trans. Evol. Comput.,
20(5): 773-791,2016.

[21] Y. Xiang, et al., "A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Obijective Optimization”, IEEE Trans. Evol.
Comput, 21(1): 131-152,2017.

[22] H. Sato, “Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAS”, . Heuristics,
21:819-849,2015. N
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Constrained Decomposition

® The improvement region of WS, TCH and PBI is too large
¢ Gives a solution large chance to update many agents: hazard to diversity

¢ Add a constraint to the subproblem to reduce the improvement region [23]

minimize g(x|w,z*)
subject to (a’, F(x) — z*) < 0.56"

[23] L. Wang, et al.,“Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm”, |[EEE
Trans. Evol. Comput., 20(3): 475-480, 2016. 33
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Constrained Decomposition

® The improvement region of WS, TCH and PBI is too large
* Gives a solution large chance to update many agents: hazard to diversity

'S o V;
. \ A
0| | ,17] f ﬂ/ T - 7

¢ Add a constraint to the subproblem to reduce the improvement region [23]

minimize g(x|w,z*)
subject to (a’,F(x) — z*) < 0.50°

[23] L.Wang, et al.,“Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm”, [EEE
Trans. Evol. Comput,, 20(3): 475-480, 2016. 33
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Subproblem Can Be Multi-Objective ...

® MOP to MOP (M2M)
¢ Decompose a MOP into K (K > 1) constrained MOPs [24].

minimize F(x) = (fi(x), -, fm(x))T
subject to x €

[24] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
Subproblems”, IEEE Trans. Evol. Comput., 18(3): 450-455, 2014. 34
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Subproblem Can Be Multi-Objective ...

© MOP to MOP (M2M)
¢ Decompose a MOP into K (K > 1) constrained MOPs [24].
minimize F(x) = (f1(x), -, fm(x))T
subject to x € Q
F(X) € Qy

minimize F(x) = (f1(x)," , fmn (%))
subject to x € Q

i

Y [24] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
¥ Subproblems”, IEEE Trans. Evol. Comput., 18(3): 450-455,2014. 34

Tt
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Subproblem Can Be Multi-Objective ...

minimize F(x) = (f1(x), - , fm (%))
subject to x €

o MOP to MOP (M2M)

¢ Decompose a MOP into K (K > 1) constrained MOPs [24].

subject to x € Q
F(X) €

34-2

minimize F(x) = (f1(x), -, fm(x))T

U, = {F(x) € R™|(F(x), w') < (F(x),w’) forany j=1,--- , K}

Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014.

Subproblem Can Be Multi-Objective ...

® MOP to MOP (M2M)
¢ Decompose a MOP into K (K > 1) constrained MOPs [24].
minimize F(x) = (f1(x), -, fm(x))T
subject to x € Q
F(X) € O

minimize F(x) = (f1(x),  , fm(x))T
subject to x € Q)

QU = {F(x) € R"|(F(x),w") < (F(x),w’) for any j=1,--- ,K}

)
0 02 04 06 08 1
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Subproblem Can Be Multi-Objective ...

minimize F(x) = (fi(x), -, fm(x))T
subject to x €

© MOP to MOP (M2M)

¢ Decompose a MOP into K (K > 1) constrained MOPs [24].

subject to x € Q)
F(X) € Qy

[24] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective

minimize F(x) = (f1(x), -, fn(x))T

U = {F(x) € R™|(F(x), w') < (F(x),w’) for any j=1,--- , K}

0 02 04 06 08 1

i il
=, [24] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective = [24] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
GECC % Subproblems”, IEEE Trans. Evol. Comput., 18(3): 450-455,2014. 34 Gecc L *¥®  Subproblems”, IEEE Trans. Evol. Comput., 18(3): 450-455, 2014. 34
> S
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Subproblem Can Be Multi-Objective ...

o MOP to MOP (M2M)
¢ Decompose a MOP into K (K > 1) constrained MOPs [24].

minimize F(x) = (f1(x)," - , fm (%))
subject to x € Q)

F(X) € Qy

minimize F(x) = (f1(x)," , fmn (%))
subject to x € Q

Q% = {F(x) € R™|(F(x),w') < (F(x),w?) for any j=1,---,K}
* Each agent is an EMO algorithm.

[24] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
Subproblems”, IEEE Trans. Evol. Comput., 18(3): 450-455,2014.

34

34-6
Outline
® Current Developments
¢ Search methods
R 36
36
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Dynamic Resource Allocation

@ Are all subproblems equally important?
* Some regions in the PF/PS are easier than the others.

¢ Different agents require different amounts of computational resources.
® Dynamic resource allocation (DRA) in MOEA/D [25]

¢ Utility function to measure the likelihood of improvement
» e.g. fitness improvement over AT

o = gi(xithT) - QI(xi)
' (Xi_aT)

¢ Allocation mechanism
» e.g. probability of improvement
a ul+e
= .
max;j—i,.. N{u/} +€

[25] A. Zhou, et al,, “Are All the Subproblems Equally Important? Resource Allocation in Decomposition-Based
Multiobjective Evolutionary Algorithms”, IEEE TEVC, 20(1): 52-64,2016.

35

35

Search Methods

@ Offspring reproduction in MOEA/D
¢ Neighbourhood defines where to find mating parents
¢ Any genetic operator can be used
»  GA [7], DE [26], PSO [27], guided mutation [28], ...

@ Neighborhood
O Other SOPs

S
S

o

% o decision space

[7] Q. Zhang et al., "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput.
11(6): 712-731,2007.

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II”, IEEE
Trans. Evol. Comput., |3(2): 284-302, 2009.

[27] S. Martinez, et al.,“A multi-objective PSO based on decomposition, in GECCO 201 1.
[28] C. Chen, et al, “Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization”, CEC 2099
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Search Methods

@ Offspring reproduction in MOEA/D
¢ Neighbourhood defines where to find mating parents
¢ Any genetic operator can be used
* Any local search can be used

» simulated annealing [29], interpolation [30], tabu search [31], GRASP [32],
Nelder-Mead [33], ...

@ Neighborhood
O Other SOPs

AN
SN

KSR
SRR

S

Ss

O e

%e © decision space

[29] H. Li, et al, “An adaptive evolutionary multi-objective approach based on simulated annealing”, Evol. Comput. 19(4):
561-595,201 1.

[30] K. Sindhya, “A new hybrid mutation operator for multiobjective optimization with differential evolution”, Sofc Comput.,
15:2041-2055,201 1.

[31] A Alhindi, et al., “Hybridisation of decomposition and GRASP for inatorial multiobjecti
[32] A.Alhindi, et al., “MOEA/D with Tabu Search for multiobjective permutation flow shop schedi
[33] H. Zhang, et al.,“Accelerating MOEA/D by Nelder-Mead method”, CEC 2017.

e op ", UKCI 2014.
uling problems”, CEC 2014.

38
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Search Methods (cont.)

® Using Probability Collective in MOEA/D [39] :

* Instead of a point-based search, probability
collective aims to fit a probability distribution highly
peaked around the neighbourhood of PS

K K
o - 9o Qo.(2)
.
o R \.
x| o ° 0). X X
o »
- °
. °
1=
= u
~ x
Xy X1

» Fit a Gaussian mixture model using solutions
associated with each subproblem

» Search is based one sampling or local search
upon the fitted model

[39] D. Morgan, et al, “MOPC/D: A new probability collectives algorithm for multiobjective optimisation”,
MCDM'I3, 17-24,2013

39

40
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Search Methods

® Offspring reproduction in MOEA/D
¢ Neighbourhood defines where to find mating parents
¢ Any genetic operator can be used
¢ Any local search can be used
¢ Probabilistic model can be used
» Memory
= Each agent records historical information, i.e. elites
*» Model building and solution construction

= Each agent can build ‘local model’, e.g. ACO [34], EDA [35],

cross entropy [36], graphical model [37], CMA-ES [38],
based on memory of itself and its neighbour

= New solutions are sampled from these models
= NOTE: too many models may be too expensive
» Memory update

= Offspring update each agent’s and its neighbour’s memory I

[34] L. Ke, et al,, “MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony”, IEEE Trans
Cybern.,43(6): 1845-1859,2013.

[35] A. Zhou, et al, “A Decomposition based Estimation of Distribution Algorithm for Multiobjective Traveling Salesman
Problems”, Computers & Mathematics with Applications, 66(10): 1857-1868,2013.

[36] I. Giagkiozis, et al., “Generalized decomposition and cross entropy methods for many-objective optimization”, Inf. Sci., 282:
363-387,2014.

[37] M. de Souza, et al.,, “MOEA/D-GM: Using probabilistic graphical models in MOEA/D for solving combinatorial optimization
problems”, arXiv:1511.05625,2015.

[38] H. Li, et al.,“Biased Multiobjective Optimization and D

position Algorithm”, IEEE Trans. Cybern., 47(1): 52-66,2016.

39

Search Methods (cont.)

® Expensive optimisation

¢ Building surrogate model for expensive objective function
» e.g Gaussian process (Kriging) [40,41], RBF [42], ...

Z:

R
%5 TS AXY/
N

O
‘?f:‘:‘:&?ﬁ

B

e /
:::;‘:‘:‘!\3:303'
%

[40] Q. Zhang, et al., “Expensive Multiobjective Optimization by MOEA/D with Gaussian Process Model”, IEEE Trans.
Evol. Comput, 14(3): 456-474,2010.

[41] T. Chugh, et al, “A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally
Expensive Many-Objective Optimization”, 22(1): 129-142,2018.

[42] S. Martinez, et al., “MOEA/D assisted by RBF Networks for Expensive Multi-Objective Optimization Problems”,
GECCO 2013. 41
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Search Methods (cont.)

@ Adaptive operator selection as a multi-armed bandits [43]

o Strike the balance between the exploration and exploitation
»  Exploration: acquire new information (diversity)
»  Exploitation: capitalise on the available knowledge (convergence)

EA . AOS
i Credit Register
Operator | Operator e
Application ! Selection "\q{c\ perator
| Operator 2
]
| e
1 - o AR
Impac?t —— Qredlt )/V Operator K
Evaluation ! Assignment
i
|

e

Y

GeccqgJ

g [43] K. Li, et al,, “Adaptive operator selection with bandits for multiobjective evolutionary algorithm based on
L decomposition”, IEEE Trans. Evol. Comput., 18(1): 114-130,2014. 4

42

Mating Selection

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
»  Select mating parents purely from neighbouring agents (simple MOEA/D)

» Focusing on the neighbourhood is too
much exploited

» Give some chance to explore in the
whole population [25]

0 02 04 06 08 1 12
h

=, [26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
Geccoly * 1I”, IEEE Trans. Evol. Comput., 13(2): 284-302, 2009. 44
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Outline

® Current Developments

¢ Collaboration
» Mating selection

43

43

Mating Selection

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

» Focusing on the neighbourhood is too
much exploited

» Give some chance to explore in the
whole population [25]

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
11, IEEE Trans. Evol. Comput., 13(2): 284-302, 2009. 44
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Mating Selection

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

» Focusing on the neighbourhood is too
much exploited

» Give some chance to explore in the
whole population [25]

0 02 04 06 08 1 12
fl

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
11, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 44
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
»  Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)

» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

[44] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., 16(3): 442-446,2013. 45
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...

¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

= 0.6

0 02 04 06 08 1 1.2
h

[44] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., 16(3): 442-446,2013. 45
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

06

0 02 04 06 08 1 12
hi

[44] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., 16(3): 442-446,2013. 45
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

—
P
N
.
'/
/

Build an ensemble of neighbourhood sizes
and chooses the appropriate one based
on their historical performance. [44]

)
0 02 04 06 08 1 1.2
i

[44] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., |6(3): 442-446,2013. 45
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...

¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
»  Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [45]
» Compute the niche count of each solution

08 within agent /s neighbour
= 06 » Select mating parents from outside of the
neighbour if solutions are overly crowded
041/
0.2

[45] S. Jiang, et al., “An improved multiobjective optimization evolutionary algorithm based on decomposition for
complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016. 46
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...
¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)

» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

—

=06
Build an ensemble of neighbourhood sizes
and chooses the appropriate one based
on their historical performance. [44]

0 02 04 06 08 1 1.2
h

[44] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., 16(3): 442-446,2013. 45

45-5

Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...

¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [45]
» Compute the niche count of each solution

08 within agent i’s neighbour
= 06 » Select mating parents from outside of the
neighbour if solutions are overly crowded
0.4
0.2

0 02 04 06 08 1 1.2
fi

[45] S. Jiang, et al,, “An improved multiobjective optimization evolutionary algorithm based on decomposition for
complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016. 46
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
¢ Tournament selection, genotype neighbours, ...

¢ MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [45]
» Compute the niche count of each solution
within agent i’s neighbour
» Select mating parents from outside of the
neighbour if solutions are overly crowded

[45] S. Jiang, et al,, “An improved multiobjective optimization evolutionary algorithm based on decomposition for
complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016. 46
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Replacement

® Replacement: update the parent population
¢ Steady-state evolution model (oracle MOEA/D)
¢ Update as many neighbouring subproblems as it can (oracle MOEA/D)

» The replacement strategy of the oracle MOEA/D
is too greedy

Offspring is only allowed to replace a limited
number of parents [26]

* Pros: Good for diversity

* Cons: convergence may be slow

v

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
II”, IEEE Trans. Evol. Comput., 13(2): 284-302, 2009. 48
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Outline

® Current Developments

¢ Collaboration

» Replacement

47
47
Replacement
® Replacement: update the parent population
¢ Steady-state evolution model (oracle MOEA/D)
¢ Update as many neighbouring subproblems as it can (oracle MOEA/D)
» The replacement strategy of the oracle MOEA/D
is too greedy
» Offspring is only allowed to replace a limited
number of parents [26]
* Pros: Good for diversity
* Cons: convergence may be slow
[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
1I”, IEEE Trans. Evol. Comput., 13(2): 284-302, 2009. 48
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Replacement

® Replacement: update the parent population
o Steady-state evolution model (oracle MOEA/D)
¢ Update as many neighbouring subproblems as it can (oracle MOEA/D)

» The replacement strategy of the oracle MOEA/D
is too greedy

» Offspring is only allowed to replace a limited
number of parents [26]
* Pros: Good for diversity
* Cons: convergence may be slow

0
0 02 04 06 08 1 12
N

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
11, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 48
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Replacement (cont.)

® Matching-based selection [46, 47]
¢ Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

we°~
o P

/ w;. where to go?

wl?

selection — matching

[46] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput, 18(6): 909-923,2014.

[47] M.Wu, et al.,“Matching-Based Selection with Ir lete Lists for D
|EEE Trans. Evol. Comput., 21(4): 554-568,2017.

ion Multi-Objective Optimization”,
49
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Replacement (cont.)

® Matching-based selection [46, 47]

* Subproblems and solutions are two sets of agents
¢ Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

w2~
o "7

o
/ wie@ Where to go?

Wl?

[46] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput,, 18(6): 909-923,2014.

[47] M.WA, et al,,“Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
IEEE Trans. Evol. Comput,, 21(4): 554-568, 2017. 49
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Replacement (cont.)

® Matching-based selection [46, 47]
¢ Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

1 1
we w
S w2?°o ? w2’
o /
o /
! 3 Where to go? diversity 3,
/
P 2N
//Yg o/
convergence Leow!
) o

selection — matching

[46] K. Li, et al,, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput,, 18(6): 909-923,2014.

[47] M.Wu, et al., “Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
|EEE Trans. Evol. Comput., 21(4): 554-568,2017. 49
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Replacement (cont.)

® Matching-based selection [46, 47]

¢ Subproblems and solutions are two sets of agents
¢ Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

4 W2’OO
o /
/

e}
/ wi@ Where to go?

selection — matching

[46] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput., 18(6): 909-923,2014.

[47] M.Wu, et al.,“Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
|EEE Trans. Evol. Comput., 2| (4): 554-568, 2017. 49
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Replacement (cont.)

® Matching-based selection (extension) [48]
¢ l|dentify the inter-relationship between subproblems and solutions

»  Find the related subproblems to each solution (e.g. fitness)
» Find the related solutions for each subproblem (e.g. closeness)

¢ Selection mechanism: each subproblem chooses its favourite solution

Wl

[48] K. Li, et al., “Interrelationship-based selection for decomposition multiobjective optimization”, IEEE Trans. Cybern.
45(10):2076-2088,2015. 50

50
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Replacement (cont.)

® Matching-based selection [46, 47]

* Subproblems and solutions are two sets of agents
¢ Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

Wl?

choose which one?

wzrc‘o
o YO o where to go? » A unified perspective to look at selection
/ we go » A generational evolution model for MOEA/D
¥ What is convergence!
= Aggregation function, ...
v What is diversity?
= Perpendicular distance, angle ...
¥ Mechanism to match
= Stable matching, ...

selection — matching

[46] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput,, 18(6): 909-923,2014.

[47] M.WA, et al,,“Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
IEEE Trans. Evol. Comput,, 21(4): 554-568, 2017. 49
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Replacement (cont.)

® Matching-based selection (extension):
¢ Global replacement [49]

> If the newly generated offspring is way beyond the current neighbourhood ...
» Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring
» Compete with solutions associated with this ‘best agent’

« MOEA/D-DU [50]

» Update the newly generated offspring’s ‘nearest’ subproblems

0 02 04 06 08 1 12

/i
[49] Z.Wang, et al.,“Adaptive Replacement Strategies forlMOEA/D", IEEE Trans. Cybern., 46(2): 474-486,2016.
[50] Y. Yuan, et al., “Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers”, IEEE
Trans. Evol. Comput., 20(2): 180-198,2016. 5




Replacement (cont.)

® Matching-based selection (extension):
¢ Global replacement [49]
»  If the newly generated offspring is way beyond the current neighbourhood ...
»  Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring
» Compete with solutions associated with this ‘best agent’
« MOEA/D-DU [50]

» Update the newly generated offspring’s ‘nearest’ subproblems

0 02 04 06 08 1 12

f
[49] Z.Wang, et al.,“Adaptive Replacement Strategies forlMOEA/D", |EEE Trans. Cybern., 46(2): 474-486,2016.
[50] Y. Yuan, et al,, “Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers”, IEEE
Trans. Evol. Comput., 20(2): 180-198,2016. 51

Replacement (cont.)

® Adversarial decomposition [51]
¢ Using single subproblem formulation and fixed search directions towards the
ideal point for all subproblems is restricted.
* Maintain two co-evolving and complementary populations by using different
subproblem formulations along two sets of adversarial search directions

[51T M. W, et al, “Evolutionary Many-Objective Optimization Based on Adversarial Decomposition”, IEEE Trans.
Cybern., accepted for publication, 2018.
52

52
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Replacement (cont.)

® Matching-based selection (extension):
¢ Global replacement [49]
»  If the newly generated offspring is way beyond the current neighbourhood ...
» Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring
» Compete with solutions associated with this ‘best agent’
« MOEA/D-DU [50]

> Update the newly generated offspring’s ‘nearest’ subproblems

i
0 02 04 06 08 1 12

/i
[49] Z.Wang, et al.,“Adaptive Replacement Strategies forlMOEA/D", IEEE Trans. Cybern., 46(2): 474-486,2016.
[50] Y. Yuan, et al,, “Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers”, IEEE
Trans. Evol. Comput,, 20(2): 180-198,2016. 51

Outline

® Current Developments

¢ Preference incorporation
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Preference Incorporation

® Multi-criterion decision-making (MCDM) is a long standing topic
and well-established field [16].

® Decomposition provides a natural way to incorporate and express
decision maker’s preference information [52].
¢ Change the distribution of weight vectors towards the region of interest (ROI).

Biased distribution
with boundary

Uniform distribution
(no preference)

Biased distribution
without boundary

[16] K. Miettine, “Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999.
[52] A. Mohammadi, “Integrating user preferences and decomposition methods for many-objective optimization,” in
CEC’14: Proc. of the 2014 IEEE Congress on Evolutionary Computation, 2014, pp. 421-428.

54

54

Preference Incorporation (cont.)

® Preference incorporation: change the distribution of weight vectors

o Preference learning during optimizaiton [54, 55]

: Preference
Consultation o
Elicitation

Optimization

04 06 08 1
i

[54] K. Li, “Progressive Preference Learning: Proof-of-Principle Results in MOEA/D”, EMO’19: Proc. of International
Conference on Evolutionary Multi-Criterion Optimization, pp. 631-643,2019.

[55] K. Li, et al., “Interactive Decomposition Multi-Objective Optimization via Progressively Learned Value Func(iong'6
|EEE Trans. Fuzzy Systems, accepted for publication, 2019.

56
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Preference Incorporation (cont.)

@ Preference incorporation: change the distribution of weight vectors
¢ Non-uniform mapping scheme [53]

[53] K. Li, et al.,“Integration of Preferences in Decomposition Multiobjective Optimization”, IEEE Trans. Cybern., 48(12):
3359—3370,2018.
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@ Resources
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Resources

@ |EEE CIS task force on decomposition-based techniques in EC

g IEEE Computational Intelligence Society

IEEE CIS Task Force on Decomposition-based Techniques in
Evolutionary Computation

Objectives

technique is to transion I complex problem
used for sl

e, the decomposi
challenges posed by

The key object sk fo gener jon-based idea and 1o promate s reated research, including s
development, education and understanding of s sub topic areas
the task ol
+ make studer ers, end-users, developers, and consul the sate-of the-art

. and specia issues injourals

Anticipated Interests
This task force will focus on all aspects, including theory, practice and applications, of the decomposiion-based technique in
ol

Topics of intrestincluding but are not limited o the following:
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Resources (cont.)
® Three survey papers
A Survey of Multiobjective Evolutionary
Algorithms Based on Decomposition
Anupam Trivedi, Member, IEEE, Dipti Srinivasan, Senior Member, IEEE,
Krishnendu Sanya, nd Abhitocp Ghosh
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Resources (cont.)

®© Website of MOEA/D: https://sites.google.com/view/moead/home

MOEA/D Home History  Refere Resources  Researchers  Related  Q

MUEA/D

cooperatively.

msjor conferences fromthe fieldin  regular bsis

News and upcoming events

1.1UH<J 0
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Future Directions

® Big optimisation
* Many objectives
> Is approximating the high-dimensional PF doable?
» Problem reformulation (dimensionality reduction)
» Visualisation
»
* Many variables (large-scale)
> Decomposition from decision space (divide-and-conquer): dependency structure analysis
» What is the relationship between the decomposed variable and subproblem?
» Sensitivity analysis for identifying important variables
»
¢ Distributed and parallel computing platform
® EMO + MCDM: Human computer interaction perspective
* Subproblem is another way to represent decision maker’s preference
» e.g. weighted scalarizing function, simplified MOP
¢ How to help decision maker understand the solutions and inject appropriate
preference information?

* How to use preference information effectively?

GECCOgr 62

62

Future Directions (cont.)

® Theoretical studies
¢ Convergence analysis
« Stopping condition
¢ From an equilibrium perspective?
.
® Applications
¢ Engineering, e.g. water, manufacturing, renewable energy, healthcare ...
¢ Search-based software engineering
.
® Any suggestions?

s [57] B. Huberman, et. al.,“An Economics Approach to Hard Computational Problems”, Science,

% 275(5296):51-54, 1997.

GECC 64

64
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Future Directions (cont.)

® How to make the collaboration more effective?
¢ “In case of two agents for one problem, collaboration is useful” [56]
¢ How about a multi-agent system and cooperative game?
® Automatic problem solving: meta-optimisation/learning perspective
¢ |s the current MOEA/D the perfect algorithm structure?
¢ Use artificial intelligence to design algorithm autonomously
¢ Landscape analysis and problem feature engineering
¢ Algorithm portfolio: choose the right algorithm structure for the right problem

® Data-driven optimisation
¢ Build and maintain a surrogate for each subproblem

* Subproblem has knowledge, e.g. solution history, knowledge can be shared
among neighbourhood: transfer learning or multi-tasking?

GECC

g [56] B. Huberman, et. al., “An Economics Approach to Hard Computational Problems”, Science, 275(5296): 51-54,
) 1997.
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Thank you for your participation and any questions?
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