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�Fundamental Concepts of Fitness Landscapes
• Motivation for analysing fitness landscapes

• Basics of fitness landscapes

• Features of fitness & violation landscapes

�Local Optima Networks (LONs)
• Definition of Nodes & Edges

• Detecting Funnels

• Visualisation & Metrics

�Case Studies
• LONs applied to feature selection for classification

• Landscape-aware algorithm selection for constraint-handling

�Closing

Outline

Demo

• Sampling

• Constructing LONs
• Visualisation

• Metrics

Download Materials
lonmaps.com
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� When classical techniques are not feasible & 

metaheuristics are needed:

• Problem complexity is too large (not of the required 

structure for classical techniques, too many variables).

• When there is no objective function in mathematical 

form.

• Objective function exhibits noise or uncertainty.

� “Massive optimisation”

• Large scale optimisation (many dimensions)

• Any-objective optimisation (single-, multi- many-
objective)

• Cross-domain optimisation (continuous / combinatorial 

/ mixed)

• Expensive optimisation (costly / simulation-based 
black-box evaluations)

� Many many metaheuristic approaches…

4

Complex Optimisation
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General Algorithm Selection Problem
(Rice, 1976)

Trial-and-

error 
approach to 
finding the 

best 
algorithm 

Research areas:

• Feature 
extraction 
(characterising

problems)
• Analysis and 

design of 
problems

• Understanding 

algorithm 
behaviour

• Performance 
prediction

• Algorithm 

selection

� Surface of selective values 

(Wright, 1932).

� No axes, units or labels.

� Commentary 56 years 
later: 

• “useless for mathematical 

purposes”

• Aim: provide an intuitive 

picture of evolutionary 
processes taking place in 

higher dimensional space.
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Wright’s fitness landscape

1889 - 1988

� We now have (useful) formalised mathematical models.

� Essential elements: search space, fitness function, notion 

of neighbourhood or accessibility.

� Intuitively, a fitness landscape is a visualisation of the 

terrain capturing how fitness changes between 
neighbouring solutions.

� Idea of “valleys”, “peaks”, “ridges”, “plateaus”, etc.

� One fitness function, many fitness landscapes (even for 
real-valued spaces).

� Example:  Step benchmark function (same function, two 
different landscapes).

7

Fitness landscapes today

8

Features of fitness landscapes (1)

1078



� Modality (number of optima) is frequently 

referred to as affecting difficulty, but too 
simplistic. 

� Example landscapes both with three optima.

� Top landscape: global basin is wider and 
deeper than local basins. 

� Bottom landscape: global basin narrow and 
local basins deep.

� Consider simple PSO with 2 particles: top 

landscape not deceptive, bottom landscape is 

deceptive.

� Distribution & relative sizes of basins of 

attraction more important than modality.

� Funnels vs ruggedness.

9

Features of fitness landscapes (2)

10

Constrained optimisation spaces

� How do constraints impact on the landscape?

� Can view the landscape i.t.o fitness or level of violation.

� CEC 2010 Benchmark suite, problem C01:

11

Fitness and Violation Landscapes

Fitness landscape Violation landscape

� Metaheuristics do not naturally handle constraints, so a constraint-

handling technique has to be added on.

� Many different approaches to handling constraints:

• Avoid infeasible regions (repair / prevention).

• Use penalties: adapt fitness function to guide search away from 
infeasible regions.

• Feasibility ranking: rules of preference using objectives and constraints.

• Multi-objective optimisation (constraints treated as objective to be 
minimised).

� What landscape does each approach explore?

12

Approaches to constraint handling
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� Six approaches: no constraint handling, death penalty, weighted 

penalty, feasibility ranking, epsilon feasibility ranking, bi-objective.

� Above constraint handling techniques used with evolutionary 

algorithms performed both the worst and the best on a large set of 
problems: 142 problem instances (70 combinatorial, 72 continuous).

13

Which constraint handling technique is better?

• K.M. Malan and I. Moser. Constraint handling guided by landscape analysis in 
combinatorial and continuous search spaces. Evolutionary Computation, 27(2), 2019.

14

Algorithm selection for constraint handling 
approaches?

Your favourite EC algorithm 

+
Death penalty

Weighted penalty

Feasibility ranking
ε-Feasibility ranking

Bi-objective

Which features 

make sense in 
this context?Constrained 

optimisation
problems

� What proportion of the space is feasible?

� How disjoint are the feasible areas?

� How correlated are the fitness and violation landscapes? 

Do they “pull” in the same direction?

� What proportion of the solutions are both feasible and fit?

15

Features of constrained landscapes

� Some features require just a random sample, without neighbourhood 

(e.g. ratio of feasible solutions).

� To characterise how disjoint the feasible areas are, we use a “walk” 

through the search space.

� Can be random or directed in some way, depending on the purpose 
of the study.

� Multiple hill climbing walks:

• More representative of the search process than random walks.

• Ensures that the sample contains good quality solutions (especially 
important when some problems have an over-representation of poor 

solutions). 

� Initial solutions must be distributed across the space:

• Use Latin-hypercube sampling in continuous spaces to prevent over-
sampling of the centre of the search space.

16

Sampling to 
characterise features Image: 

pixabay
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� Feasibility ratio (FsR) estimates the size of the feasible space in 

relation to the overall search space.

� Given a sample of n solutions, if there are nf feasible solutions, then 

� Ratio of feasible boundary crossings (RFBx) quantifies how disjoint 

the feasible areas are.

� Given a sequence of n solutions, x1, x2, … , xn obtained by a walk 

through the search space, a binary string b = b1, b2, …, bn is defined 

such that bi = 0 if xi is feasible and bi = 1 if xi is infeasible, then

where

17

Metrics for constrained landscapes

K.M. Malan, J.F. Oberholzer, and A.P. Engelbrecht, A.P. Characterising Constrained 
Continuous Optimisation Problems. IEEE CEC 2015.

� Fitness violation correlation (FVC):

• Based on a sample of solutions resulting in 
fitness-violation pairs, the FVC is the 

Spearman’s rank correlation coefficient 
between the fitness and violation values.

� Ideal zone (IZ) metrics:

• Based on the scatterplot of fitness-violation 
pairs of a sample of solutions: “ideal zone” is 
the bottom left corner for a minimisation 

problem.

• A small proportion of solutions in the ideal 
zone could indicate narrow basins of 

attraction in a penalised landscape. 

• 25_IZ: proportion of points below the 50% 
percentile for both fitness and violation.

• 4_IZ: proportion of points below the 20% 
percentile for both fitness and violation.

18

Metrics for constrained landscapes (2)

� 142 problem instances (half combinatorial, half continuous):

• Samples generated using multiple hill climbing walks from random 
starting positions.

• Size: 1% of computational budget used for solving.

• Samples used as the basis for five landscape metrics.

• Spearman’s correlation coefficient between metrics and success/failure.

19

Can features predict success / failure?

• K.M. Malan and I. Moser. Constraint handling guided by landscape analysis in 
combinatorial and continuous search spaces. Evolutionary Computation, 27(2), 2019.

• DP failure associated 

with low feasibility
• NCH does well when 

fitness and violation 

are correlated.
• Others have weak 

correlations.

20

Dig deeper – split dataset

When there is no measurable feasibility (FsR = 0):

• BO correlates positively with 4_IZ metric
When there is measurable feasibility (FsR > 0):

• WP correlates positively with FVC

• BO correlates negatively with RFBx
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� Predicting when one technique more suited than another 

technique.

21

Decision tree induction sometimes useful

Prediction in fuzzy terms:

When FsR is zero, if FVC 
is high, then εFR will 

probably perform better 

than FR.

If there are very few feasible solutions, it is not helpful to ignore the 

constraint violation early on in the search process (unless the 
fitness and violation are correlated)

� Your initial investigation shows some links between problem features 

and algorithm performance.

� Next step: design a landscape-aware approach that exploits this 

knowledge ….

� See the last case study of the tutorial.

22

The next steps

Image: 

pixabay

LOCAL OPTIMA NETWORKS

• Overview 

• Definition of nodes 

• Definition of Edges: basin, escape, monotonic, crossover

• Visualisation & Metrics

23

• P. K. Doye. The network topology of a potential energy landscape:    
a static scale-free network. Physical Review Letter, 2002.

• G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. A study of NK 
landscapes' basins and local optima networks. GECCO 2008

• Nodes: local optima 

according to a hill-
climbing heuristic

• Edges: possible 
transitions between 
optima

Local Optima Networks (LONs)
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� Space S, Neigborhood N(s), fitness f(s)

�h(s) stochastic operator that associates 

each solution s to its local optimum (Alg. 1)

�The basin of attraction of a local optimum 
li ∈ L is the set Bi = {s ∈ S | h(s) = li}

�Nodes (L). A local optima is a solution l

such that ∀ s ∈ N(s), f(s) ≤ f(l)

�Basin Edges (E). Two local optima are 

connected if their basins of attraction 

intersect. At least one solution within a basin 

has a neighbour within the other basin.

�LON Model. Directed graph LON = (L, E)

LON original model

NK landscape
N=18, K=2

wij proportion of transitions 

from solutions s ∈ Bi to 
solutions s’ ∈ Bj

25

�Account for the chances of escaping a local 

optimum after a controlled mutation (e.g. 1 or 2 
bit-flips in binary space) followed by hill-climbing

�Given a distance function d and integer value D,

there is and edge eij between li and lj if a solution s 

exists such that d(s,li) ≤ D and h(s) = lj

�wij cardinality of {s ∈ S | d(s,li) ≤ D and h(s) = lj}

�Sampled networks. There is an edge eij between 
li and lj if lj can be obtained after applying a 

perturbation to li followed by hill-climbing. 

Weights are estimated by the sampling process.

Escape edges
NK landscape
N=18, K=2

D = 1

D = 2

26

Complex network tools 

� Force directed layout
• Position nodes in 2D

• Edges of similar length

• Minimise crossings

• Exhibit symmetries

• Example algorithms 

– Fruchterman & Reingold

– Kamada & Kawai

� Software packages 
• R igraph

• Gephi

� Network metrics
• Number of nodes and edges

• Number of global optima

• Weight of self-loops

• Avg. fitness of local optima

• Number of connected components

• Avg. path length to a global optimum

• Centrality (PageRank) of global optima 

• Clustering coefficient

� Fractal metrics  

� Funnel metrics

• Number of funnels 

• Normalised size of global funnel

Visualisation Metrics 

27

FUNNELS

• The Big-Valley Hypothesis

• What is a Funnel?

• Characterization of Funnels with LONs

• Number Partitioning and the Phase transition

28
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� Several studies in the 90s. TSP (Boese et al, 1994), NK landscapes 
(Kauffman, 1993), graph bipartitioning (Merz & Freisleben, 1998) 
flowshop scheduling (Reeves, 1999)

� Distribution of local optima is not uniform. Clustered in a big-valley 
(globally convex) structure

� Many local optima, but easy to escape. Gradient at the coarse level leads 
to the global optimum.

The big-valley structure in combinatorial optimisation 

TSP:  big-valley. Local optima 

confined to a small region

(Boese et al , 1994 )

100 cities TSP 
instance,
2,500 2-opt 
local optima

29

“A key concept that has arisen within 

the protein folding community is that of 
a funnel consisting of a set of downhill 
pathways that converge on a single 
low-energy minimum.”

What is a Funnel?

By Thomas Splettstoesser

(link)(www.scistyle.com) - Own 

work

Doye, J. P. K., Miller, M. A., & Wales, D. J . The double-funnel 
energy landscape of the 38-atom Lennard-Jones cluster. 
Journal of Chemical Physics, 1999

Funnels in continuous optimisation
• Multilevel global structure (Locatelli, 2005)

• Dispersion metric (Lunacek &Whitley, 2006, 2008)

• Feature-based detection of (single) funnel structure (Kerschke et al., 2015)

Funnels in combinatorial optimisation
• Related to the big-valley (central-massif) hypothesis  (previous slide)
• The big-valley re-visited (Hains, Whitley & Howe, 2011)

• Characterisation of funnels with Local Optima Networks (our contribution)
30

� Funnels can be loosely defined as groups of local optima, 

which are close in configuration space within a group, but 
well-separated between groups.

� A funnel conforms a coarse-grained gradient towards a low 
cost optimum.

� How to characterise funnels more rigorously using LONs?
• Connected components. Funnels are sub-graphs, connected components 

within LONs.  (EvoCOP, 2016)

• Communities. Funnels are communities within LONs. (GECCO, 2016, 2017)

• Monotonic sequences. Concept from energy landscapes. Conceptually sound 
characterisation, incorporating both grouping and coarse-grained gradient. 
(EvoCOP 2017, 2018; JoH 2017)

Characterisation 
of funnels

31

NPP fitness landscape

• Stadler, P., Hordijk, W., & Fontanari, J. (2003). Phase transition and landscape 
statistics of the number partitioning problem. Physical Review E

• K. Alyahya, J. Rowe (2014). Phase Transition and Landscape Properties of the 
Number Partitioning Problem. EvoCOP.

3

2

What features of the fitness 

landscape are responsible for 
the widely different behaviours?

What features of the fitness 

landscape are responsible for 
the widely different behaviours?

Most fitness landscape metrics 

are insensitive/oblivious to the 
easy/hard phase transition!

Most fitness landscape metrics 

are insensitive/oblivious to the 
easy/hard phase transition!

32
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� Monotonic edges. Keep only non-deteriorating edges 
ls→ le, if f(le) ≤ f(ls)

� Monotonic sequence. Path of connected local optima     
l1→l2→l3 … →ls ,f(li) ≤ f(li-1)

� Sink. Natural end of the sequence, when there is no 
adjacent improving local optima

� Definition of Funnel

• Aggregation of all monotonic sequences ending at the 

same point (sink). 

• Basin of attraction level of local optima

Characterisation of funnels with LONs

Sink. Node 

without outgoing 
edges

S set of sinks

33

�Full enumeration and extraction of LONs

�N = {10, 15, 20}, k in [0.4, 1.2] step 0.1

�30 instances for each N and k

�LON. 1-flip local search, 2-flip perturbation  (D = 2)

�MLON. Monotonic LON, worsening edges pruned 

�CMLON. compressed MLON, LON plateaus 

contracted in a single node 

�Empirical search performance: ILS success rate

Methodology

34

k = 0.4

N = 104, G = 34, E = 2844 N = 104, G = 34, E = 2010 N = 14, G = 1, E = 35

N =10

N=104, G = 4, E = 2514 V=104,G = 4, E=1386 N = 96, G = 2, E = 1290

k = 1.0

35

LON MLON CMLON

k = 0.4

36

k = 0.6

k = 0.8 k = 1.0

N = 20

CMLON

36

1085



LON metrics & Search Performance

(Ochoa, Veerapen,  Daolio, 
Tomassini. EvoCOP 2017)

37

CASE STUDIES

• Travelling Salesperson Problem (TSP) and multiple funnels

• Exploiting knowledge of the global structure

• Increasing perturbation strength 

• Models including recombination 

• Feature Selection for Classification 

38

Travelling Salesperson Problem

• Nodes. Lin-Kernighan

• Edges. Double-bridge

TSP heuristic, Chained Lin-Kernighan
(Martin, Otto, Felten, 1992)
• Form of Iterated Local Search
• Diversification & Intensification stages

Global minimum

Random initial solution

Local search

Perturbation

39

Sampling and constructing LONs with escape edges 

C755 Clustered Cities

Funnels: 1, Success: 100%

DIMACS random instances 

E755 Uniform Cities

Funnels: 4, Success: 13%

(Ochoa & Veerapen, JoH 2018)

TSP Synthetic Instances
Funnels as monotonic sequences

40
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DIMACS random instances 

Same layout, 3D projection where z coordinate is fitness

TSP Synthetic Instances

E755 Uniform Cities

Funnels: 4, Success: 13%

C755 Clustered Cities

Funnels: 1, Success: 100%

41

2D layout and 3D projection where z coordinate is fitness

TSPLIB City Instance att532

att532 (cities in the US)

Funnels: 2, Success: 44%

42

�Instances of several combinatorial optimisation 

problems have a multi-funnel structure

�Sub-optimal funnels act as traps to the search 

process

�Can we devise mechanisms for escaping sub-

optimal funnels?

• Restarts

• Stronger perturbation in ILS implementations

• Crossover

Exploiting knowledge of the global structure

43

TSP Uniform E755 

TSP Clustered C755 

p = 1 p = 5 p = 10

44

34%
54%

29%

43% 32% 3%

(McMenemy, Veerapen &

Ochoa. EvoCOP 2018)

Increasing perturbation strength

1087



� Hydrid EAs which incorporate a local search 

component to generate local optima.

� Two types of edges

• Crossover (followed by local search)

• Perturbation (followed by local search)

LONs for Hybrid EAs

Crossover

Perturbation

45

(Chicano, Whitley, Ochoa, Tinos. 
GECCO 2017)

Grey-box Optimisation

DRILS Deterministic 
Recombination (PX) + ILS

� Grey-box hybrid EA, 1 million variables NK

Contrasting LONs from two solving methods

DRILS PX +ILSHierarchical GA, Partition Crossover (PX)

(Chicano, Whitley, Ochoa, Tinos. GECCO 2017)
46

�7 real-world datasets from UCL ML & Open ML, 

with up to 16 features 

�Search space: binary strings, subset of features, 2n

�Fitness function: classification accuracy

• k-Nearest Neighbour (k-NN) algorithm

• Cohen’s Kappa statistic

�Fully enumerated LONs (1-bitflip, Escape D = 2)

�To test problem difficulty, 3 features selection 

methods:  filter, sequential forward selection (SFS)

and simple GA wrapper

47

Binary feature selection for classification

(Mostert, Malan, Ochoa, Engelbrecht EvoCOP 2019)

48

Feature selection: vowel recognition dataset

noptima: 42, nglobals: 4

SFSpr: 1.00, GApr:0.98, GAsr: 0.7

ncoptima: 15,  ncglobal: 1  

neutral:  0.64, str_global: 0.50

12 features (numeric - extracted from speech) , 11 classes (vowels of British English) 

(Mostert, Malan, Ochoa, Engelbretch EvoCOP 2019)

LON CMLON

212 = 

4,096
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Feature selection: zoo dataset

(Mostert, Malan, Ochoa, Engelbrecht EvoCOP 2019)

16 features (B: feathers, aquatic, etc.; I: no.legs), 7 classes (type of animal: mammal, bird, etc.)

LON
CMLON

noptima: 4,938, nglobals: 2

SFSpr: 0.83, GApr:0.99, GAsr: 0.13

ncoptima: 1,342, ncglobal: 1

neutral: 0.73, str_global: 0.001

216 = 

65,536

�Four global optima vowel dataset

• 0011111100100 

• 0111111100100 

• 1011111100100 

• 1111111100100 

�The first two features seem irrelevant

�Checking the dataset confirms that!

50

Feature selection: irrelevant features

Speaker Sex Feature_0 Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 Feature_6 Feature_7 Feature_8 Feature_9 Class

Andrew Male -3.639 0.418 -0.67 1.779 -0.168 1.627 -0.388 0.529 -0.874 -0.814 hid

Andrew Male -3.327 0.496 -0.694 1.365 -0.265 1.933 -0.363 0.51 -0.621 -0.488 hId

Andrew Male -2.12 0.894 -1.576 0.147 -0.707 1.559 -0.579 0.676 -0.809 -0.049 hEd

Andrew Male -2.287 1.809 -1.498 1.012 -1.053 1.06 -0.567 0.235 -0.091 -0.795 hAd

Andrew Male -2.598 1.938 -0.846 1.062 -1.633 0.764 0.394 -0.15 0.277 -0.396 hYd

Andrew Male -2.852 1.914 -0.755 0.825 -1.588 0.855 0.217 -0.246 0.238 -0.365 had

51

Feature selection: vowel recognition dataset 
after removing irrelevant features

noptima: 13, nglobals: 1

SFSpr: 1.00, GApr:0.98, GAsr: 0.8

ncoptima: 12, ncoptima: 1 

neutral: 0.08, str_global: 0.59

(Mostert, Malan, Ochoa, Engelbrecht EvoCOP 2019)

LON CMLON

210 = 

1,024

52

� More accessible (visual) 

approach to heuristic 
understanding

� Global structure 
impacts search

� Real-world problems 
are neutral and have 
multiple-funnels

� Sampling & Visualisation 

� Characterisation of funnels

� New LON metrics can 

improve performance 
prediction.

� Using knowledge to 
select/configure algorithms

Conclusions Contributions

lonmaps.com - Website with LON resources

LONs
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CASE STUDY 2: 
LANDSCAPE-AWARE 

CONSTRAINT HANDLING 

53

Image: pixabay

Overall approach:

� Benchmark suite of training instances: characterise instances using 
landscape analysis based on sampling.

� Solve the problem instances using different constraint handling techniques 
(CHTs) with the same base algorithm and rank the performances of CHTs on 
training instances.

� Perform data mining on training set to model the relationship between 
problem features and winning algorithm approaches.

� Formulate high-level rules for selecting appropriate CHTs.

� Take a different set of problem instances as the test set.

� Solve them by switching to the CHT that is predicted to be the best, given the 
landscape characteristics experienced during search (online landscape 

analysis).

� Compare the landscape-aware approach to the individual CHTs.

54

Landscape aware constraint handling

• K.M. Malan, Landscape-aware Constraint Handling Applied to Differential Evolution. 
TPNC 2018, LNCS 11324, pp. 176-187.

� Limited to real-valued minimisation problems:

� Equality constraints re-expressed as inequality constraints (ɛ = 10-4):

� CEC 2010 Competition on Constrained Real-Parameter 
Optimization: 

• 18 problems, scalable to any dimension.

• Training data set: nine odd numbered functions in 5D, 10D, 15D, 20D, 

25D and 30D (54 instances).

• Testing data set: nine even numbered functions in 5D, 10D, 15D, 20D, 
25D and 30D (54 instances).

55

Benchmark suite

� Differential evolution:

• Established, popular population-based metaheuristic for real-
valued optimisation.

• Performed well in CEC Constrained Real-Parameter Optimisation 
competitions: CEC 2006, CEC2010.

56

Base algorithm: Differential Evolution
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� 54 training instances characterised based on samples.

� Approach to sampling:

• Sample size: 200 x D (1% of computational budget for solving the 
problem) generated for each instance using multiple hill climbing 

walks.

• From a random initial position, neighbours sampled (from a 

Gaussian distribution with mean = current position and std

deviation = 5% of the range of domain of search space).

• Walk terminated if no better neighbour found after sampling 100 
random neighbours.

� Sample used as the basis for calculating five landscape 

metrics: FsR, RFBx, FVC, 25_IZ, 4_IZ.

57

Feature extraction of training set

Base algorithm: DE/rand/1, with uniform crossover, a population size of 

100, a scale factor of 0.5, and a crossover rate of 0.5.

1. Weighted Penalty:

• Combine constraint violation as a penalty in the objective function (50% 
penalty, 50% objective value).

2. Feasibility Ranking (Deb, 2000):

• Two feasible solutions compared on objective value

• Feasible solution always preferred to an infeasible solution

• Two infeasible solutions compared by level of constraint violation.

3. ε-Feasibility Ranking (Takahama & Sakai, 2006):

• Like Deb’s rules, but with a tolerance (ε) to constraint violations that 
reduces over time.

4. Bi-objective:

• Constraint violation treated as a 2nd objective.

• Non-dominated sorting of NSGA II (Deb et al., 2002).

58

Constraint handling techniques

� Classic DE run on training instances with each CHT 30 times. 

� Computational budget: 20 000 x D.

� A run of an algorithm regarded as feasible if a feasible solution found 

within the budget of function evaluations.

� Two algorithms compared using CEC2010 competition rules:

• If two algorithms have different success rates, the algorithm with the 
higher success rate wins.

• If two algorithms have the same success rate > 0, the algorithm with the 
superior mean fitness value of feasible runs wins.

• If two algorithms have success rate = 0, the algorithm with the lowest 

mean violation wins.

59

Measuring performance on training set

Image: pixabay
60

Example performance on training set
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� Training dataset for a classification problem:

• 54 problem instances with 5 features (landscape metrics based on 
sampling).

• Binary performance class for each algorithm: the best or not.

� Use data mining to predict when each CHT will be the best:

• C4.5 algorithm used to induce decision trees using the full training 
dataset.

• Rules extracted for predicting when each algorithm is expected to be the 
best.

61

Deriving CHT selection rules

� Landscape information collected during search:

• Path of each individual in the population is treated as a “walk”: position, 
objective value & constraint values stored in a queue.

• With each new generation, if the new position differed from previous 
solution, the new child solution appended to the walk of that individual.

• OLA_limit: parameter for queue length.

� Switching constraint handling using general rules (derived from data 
mining):

• After a set number of iterations (SW_freq parameter), the landscape 

metrics are calculated. 

• Based on the landscape profile, the CHT is switched to the predicted 
best strategy (using the rules derived previously through data mining).
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Online landscape analysis
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Sample run

Fitness landscape Violation landscape

� Performance of six constraint handling approaches on 54 test 

problem instances  (rank: 1 – 6):
• Four base constraint handling techniques: WP, FR, εFR, BO.

• RS: Random switching between above 4 techniques.

• LA: Landscape-aware switching based on online landscape features.

� Parameters: SW_freq = 10 x D, OLA_limit = 10 x D.
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Results
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� There is value in utilising a range of constraint-handling techniques.

� Proposed switching technique:

• Pre-processing landscape analysis step to derive rules for predicting 
when each constraint handling technique will perform the best.

• Rules applied during search using features extracted from the search 
path (no additional sampling or fitness evaluations needed).

� Results show that the proposed landscape-aware approach 
performed better than the constituent approaches when used in 

isolation.

� Similar approach to landscape-aware search can be used in other 

contexts.
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Case study conclusion

� Fitness landscape analysis has come a long way in the last 10 years

• Different perspectives of landscapes: local scale (e.g. ruggedness), 
global scale (e.g. funnels) 

• Different landscapes (e.g. fitness and violation landscapes). 

� We showed how local optima networks can be used

• To visualise global structure

• To characterise funnels

� Case studies demonstrated

• Using LONs to analyse funnels of TSP

• Exploiting knowledge of global structure to configure search algorithms.

• Using LONs to gain insight into the feature selection problem

• How Rice’s general algorithm selection framework can be used to 
implement landscape-aware search in the context of constraint handling 
techniques for evolutionary algorithms
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