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Introduction

Multiobjective optimization problem
Minimize

f : X → F
f : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

• X is an n-dimensional decision space
• F ⊆ Rm is an m-dimensional objective space (m ≥ 2)

Conflicting objectives→ a set of optimal solutions

• Pareto set in the decision space
• Pareto front in the objective space
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Introduction

Visualization in multiobjective optimization
Useful for different purposes [19]

• Analysis of solutions and solution sets
• Decision support in interactive optimization
• Analysis of algorithm performance

Visualizing solution sets in the decision space

• Problem-specific
• If X ⊆ Rm, any method for visualizing multidimensional
solutions can be used

• Not the focus of this tutorial
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Introduction

Visualizing solution sets in the objective space

• Interested in sets of mutually nondominated solutions called
approximation sets

• Different from ordinary multidimensional solution sets
• The focus of this tutorial

Visualization of multiobjective problem landscapes

• Important for problem understanding, but few approaches exist
• Multiobjective cost landscapes [16]
• Cumulated gradient field landscapes [26]

• The focus of this tutorial
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Introduction

Challenges of visualizing solution sets in the objective space

• High dimension and large number of solutions
• Limitations of computing and displaying technologies
• Cognitive limitations

7
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Introduction

Visualization can be hard even in 2-D
Stochastic optimization algorithms

• Single run→ single approximation set
• Multiple runs→ multiple approximation sets
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The Empirical Attainment Function (EAF) [20] or the Average Runtime
Attainment Function (aRTA) [4] can be used in such cases
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Introduction

This tutorial does not cover

• Visualization of a few solutions for decision making purposes
(see [36])

• Visualization in the decision space
• General multidimensional visualization methods not previously
used on approximation sets

This tutorial covers

• Visualization of entire sets in the objective space
• Single approximation sets [2]
• Repeated approximation sets [3, 4]

• Visualization of multiobjective landscapes

9

Visualizing approximation sets Visualizing approximation sets

A taxonomy of visualization methods
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A taxonomy of visualization methods [1]

Methods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance
at a time

Showing
performance
over time
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Visualizing approximation sets

Visualizing single approximation sets

Methodology

Evaluating and comparing visualization methods

• No established methodology for evaluating or comparing
visualization methods

• Propose benchmark approximation sets (analog to benchmark
problems in multiobjective optimization)

• Visualize the sets using different methods
• Observe which set properties are distinguishable after
visualization

• Only applicable to methods showing individual solutions or
individual solution properties

11

Benchmark approximation sets

Three different sets that can be instantiated in any dimension

• Spherical with a clustered distribution of solutions (more at the
corners and less at the center)

• Linear with a uniform distribution of solutions
• Knee-shaped with an even distribution of solutions

Size of each set

• 2-D: 50 solutions
• 3-D: 500 solutions
• 4-D: 500 solutions

12
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Benchmark approximation sets

Spherical Linear Knee-shaped
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Benchmark approximation sets

An additional set with redundant objectives

• Adapted from [18]
• 12 objectives
• Can be instantiated for any number of 10n solutions (here 100)
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Desired properties of visualization methods

Demonstration on the 4-D spherical, linear and knee-shaped sets

• Preservation of the
• Dominance relation between solutions
• Front shape
• Objective range
• Distribution of solutions

• Robustness
• Handling of large sets
• Simultaneous visualization of multiple sets
• Scalability in number of objectives
• Simplicity

Demonstration on the 12-D approximation set

• Showing relations between objectives

15

Visualizing single approximation sets Methods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]

16
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Scatter plot matrix

Most often

• Scatter plot in a 2-D space

• Matrix of all possible combinations of objectives

• m objectives→ m(m−1)
2 different combinations

Alternatively

• Scatter plot in a 3-D space

• m objectives→ m(m−1)(m−2)
6 different combinations

17

Scatter plot matrix

Spherical Linear Knee-shaped
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Scatter plot matrix

Spherical Linear Knee-shaped
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Parallel coordinates

• m objectives→ m parallel axes

• Solution represented as a polyline with vertices on the axes

• Position of each vertex corresponds to that objective value

• No loss of information
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Parallel coordinates

Spherical Linear Knee-shaped
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Parallel coordinates

Original
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Chord diagram

• Similar to parallel coordinates

• m objectives→ m arcs
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Chord diagram
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Chord diagram
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Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains
all points in the objective space that are weakly dominated by any
solution in A.

Interactive decision maps

• Visualize the surface of the EPH, not the actual approximation
set

• Plot a number of axis-aligned sampling surfaces of the EPH

• Color used to denote third objective

• Fixed value of the forth objective

26

Interactive decision maps

f4 = 0.2
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Visualizing single approximation sets Methods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]
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Radial coordinate visualization

Also called RadViz
• Inspired from physics

• Objectives treated as anchors,
equally spaced around the
circumference of a unit circle

• Solutions attached to anchors with
‘springs’

• Spring stiffness proportional to the
objective value

• Solution placed where the spring
forces are in equilibrium

f1

f2

f3

f4
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Radial coordinate visualization

Spherical Linear Knee-shaped
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Hyper-radial visualization

• Solutions preserve distance (hyper-radius) to the ideal point

• Distances are computed separately for two subsets of objectives

• Indifference curves denote points with the same preference

31

Hyper-radial visualization

Spherical Linear Knee-shaped
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Level diagrams

• m objectives→ m diagrams

• Plot solutions with objective fi on the x axis and distance to the
ideal point on the y axis
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Level diagrams

Spherical Linear Knee-shaped
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Prosections

• Visualize only part of the objective space

• Dimensionality reduction by projection of solutions in a section

• Need to choose prosection plane, angle and section width
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Prosections

Spherical Linear Knee-shaped
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Prosections

Spherical and Linear
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Visualizing single approximation setsMethods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]
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Distance and distribution charts

• Plot solutions against their distance to the Pareto front and
distance to other solutions

• Distance chart
• Plot distance to the nearest non-dominated solution

• Distribution chart
• Sort solutions w.r.t. first objective
• Plot distances between consecutive solutions
• For the first/last solution, compute distance to first/last
non-dominated solution

• k solutions→ k + 1 distances

• All distances normalized to [0, 1]

39

Distance and distribution charts

Spherical Linear Knee-shaped
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Distance and distribution charts

Spherical Linear Knee-shaped
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Hyper-space diagonal counting

• Inspired by Cantor’s proof that shows |N| = |N2| = |N3| . . .

(1, 1) (2, 1)

(1, 2)

(3, 1)

(2, 2)

(1, 3)

(4, 1)

(3, 2)

(2, 3)

. . .

• Discretize each objective (choose a number of bins)

• In the 4-D case
• Enumerate the bins for objectives f1 and f2

• Enumerate the bins for objectives f3 and f4

• Plot the number of solutions in each pair of bins
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Hyper-space diagonal counting

Spherical Linear Knee-shaped
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Visualizing single approximation setsMethods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]
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Sammon mapping

• A non-linear mapping

• Aims to preserve distances between solutions
• d∗

ij distance between solutions xi and xj in the objective space
• dij distance between solutions xi and xj in the visualized space

• Stress function to be minimized

S =
∑

i

∑
j>i

(d∗
ij − dij)

2

• Minimization by gradient descent or other (iterative) methods
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Sammon mapping

Spherical Linear Knee-shaped
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Isomap

• Assumes solutions lie on some low-dimensional manifold and
the distances along this manifold should be preserved

• Creates a graph of solutions, where only the neighboring
solutions are linked

• The geodesic distance between any two solutions is calculated
as the sum of Euclidean distances on the shortest path between
the two solutions

• Uses multidimensional scaling to perform the mapping based
on these distances
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Isomap

Spherical Linear Knee-shaped
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Isomap

Spherical Linear Knee-shaped
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Distance- and dominance-based mappings

Both mappings

• Use nondominated sorting to split solutions to fronts
• Project solutions onto the circumference of circles (with circle
radius proportional to front number)

Distance-based mapping
• Tries to preserve closeness
of solutions

• Two solutions are very close
if their relations to other
solutions are mostly equal

Dominance-based mapping
• Aims at preserving
dominance relations among
solutions

• All x ≺ y can be shown
correctly

• Tries to minimize cases where
x ⊀ y is not shown correctly
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Distance- and dominance-based mappings

Distance-based mapping Dominance-based mapping
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Visualizing single approximation setsMethods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]
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Self-organizing maps

• Self-organizing maps (SOMs) are neural networks

• Nearby solutions are mapped to nearby neurons in the SOM

• A SOM can be visualized using the unified distance matrix

• Distance between adjacent neurons is denoted with color
• Similar neurons→ light color
• Different neurons (cluster boundaries)→ dark color

53

Self-organizing maps

Spherical Linear Knee-shaped
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Aggregation trees

• Binary trees that show relationships between objectives

• Iterative clustering of objectives based on their harmony

• Computation of different types of conflict

• Percentages quantify the conflict between objectives

• Colors used to show type of conflict
• global conflict (black)
• local conflict on ’good’ values (red)
• local conflict on ’bad’ values (blue)

• Can be used to sort objectives in other representations (parallel
coordinates, radial charts, heat maps)
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Aggregation trees

Spherical Linear Knee-shaped
f3 + f1 + f4 + f2 − 91.51%

f3 + f1 − 74.52%

f3 f1

f4 + f2 − 73.99%

f4 f2

f4 + f2 + f3 + f1 − 97.92%

f4 + f2 − 76.86%

f4 f2

f3 + f1 − 75.91%

f3 f1

f2 + f1 + f3 + f4 − 95.76%

f2 + f1 + f3 − 79.79%

f2 + f1 − 67.52%

f2 f1

f3

f4
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f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 + f5 + f7 + f11 + f3 − 100%

f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 + f5 + f7 − 26%

f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 + f5 − 24%

f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 − 3.2%

f8 + f6 + f4 + f2 + f12 + f10 + f9 − 2%

f8 + f6 + f4 + f2 + f12 + f10 − 0%

f8 + f6 + f4 + f2 − 0%

f8 + f6 − 0%

f8 f6

f4 + f2 − 0%

f4 f2

f12 + f10 − 0%

f12 f10

f9

f1

f5

f7

f11 + f3 − 24%

f11 f3

Aggregation trees
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Visualizing approximation sets

Visualizing repeated approximation sets

Visualizing repeated approximation setsMethods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]

• Showing performance at a time with the Empirical Attainment
Function (EAF) [20]

• Showing performance over time with the Average Runtime
Attainment Function (aRTA) [4]

58

Empirical attainment function

Goal-attainment

• Approximation set A
• A point in the objective space z is attained by A when z is
weakly dominated by at least one solution from A
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Empirical attainment function

EAF values [20]

• Algorithm A, approximation sets A1,A2, . . . ,Ar

• EAF of z is the frequency of attaining z by A1,A2, . . . ,Ar

• Summary (or k%-) attainment surfaces
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• Visualization with line plots and heat maps
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Empirical attainment function

Differences in EAF values [32]

• Algorithm A, approximation sets A1,A2, . . . ,Ar

• Algorithm B, approximation sets B1,B2, . . . ,Br

• Visualize differences between EAF values
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• Visualization with heat maps
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Visualization of 3-D EAF

Need to compute and visualize a large number (over 10 000) of
cuboids

Exact case

• EAF values: Slicing [3], Visualization of facets [12, 21]
• EAF differences: Slicing, Maximum intensity projection [48, 3]

Approximated case

• EAF values: Grid-based sampling [27], Slicing, Direct volume
rendering [13, 3]

• EAF differences: Slicing, Maximum intensity projection, Direct
volume rendering
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Benchmark approximation sets

Two groups of spherical approximation sets

• 5 spherical approximation sets with a clustered distribution of
solutions (different radii, 100 solutions in each)

• 5 spherical approximation sets with a uniform distribution of
solutions (different radii, 100 solutions in each)

Clustered spherical Uniform spherical
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Exact 3-D EAF values and differences

Slicing

• Visualize cuboids intersecting the slicing plane
• Need to choose coordinate and angle

r
1

z z
′

o

o
′

f1

f2

f3

ϕ
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Exact 3-D EAF values and differences

Slicing

Clustered Uniform Difference

φ = 5◦
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φ = 45◦
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Approximated attainment surfaces

Grid-based sampling
Repeat for all fifj, i < j (i.e. f1f2, f1f3 and f2f3):

• Construct a k × k grid on the plane fifj
• Compute intersections between the attainment surface and the
axis-aligned lines on the grid

Clustered Uniform
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66

Visualizing repeated approximation setsMethods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]

• Showing performance at a time with the Empirical Attainment
Function (EAF) [20]

• Showing performance over time with the Average Runtime
Attainment Function (aRTA) [4]
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Average Runtime Attainment Function

aRTA value

• Algorithm A run r times
• All solutions that are nondominated at creation are recorded
• aRTA(z) is the average number of evaluations needed to attain z

aRTA ratio

• Algorithms A and B
• Visualize ratio between aRTA(z) values for A and B
•
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Benchmark approximation sets

Two groups of sets mimicking convergence to a spherical front

• 5 sets mimicking logarithmic convergence to a spherical front
with a clustered distribution (100 solutions each)

• 5 sets mimicking linear convergence to a spherical front with a
linear distribution (100 solutions each)

Clustered spherical with Uniform spherical with
logarithmic convergence linear convergence
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Average Runtime Attainment Function

Grid-based sampling

Clustered Uniform Ratio
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Visualizing problem landscapes
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Visualizing problem landscapes

General idea

• 2-D decision space (projection) approximated with a k × k grid
• Color (or the third dimension) used to show a value

Visualizing ranks

• Multiobjective cost landscapes [16]

Visualizing cumulative gradients

• Cumulated gradient field landscapes [26]
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Benchmark problems

Two problems from the bbob-biobj test suite [5]

• Double sphere problem (F1 = (f1, f1) in 2-D, instance 1)
• Double Rastrigin problem (F46 = (f15, f15) in 2-D, instance 4)

Double sphere problem Double Rastrigin problem
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Visualizing ranks

• Rank = number of grid points that dominate the current point
• All nondominted points have rank = 0
• 1000 × 1000 grid
• Visualize rank + 1 in logarithmic scale

Double sphere problem Double Rastrigin problem
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Visualizing cumulative gradients

• From a grid point, follow the path in the direction of the
bi-objective gradient

• Sum all bi-objective gradient values along the path
• 1000 × 1000 grid

Double sphere problem Double Rastrigin problem
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Summary

Summary
Methods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel Coordinates [25]

– Radar Chart

– Chord Diagram [29]

– Heat Map [39]

– Interactive Decision
Map [33]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [23]

– 3-D Radial Coordinate
Visualization [24]

– Tetrahedron Coordinates
Model [8]

– Polar Plots [22]

– Hyper-Radial
Visualization [11]

– Level Diagrams [9]

– Prosection Plots [2]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [7]

– Pareto Shells [45]

– Hyper-Space Diagonal
Counting [6]

– Tree Map [47]

– Trade-off Region Map [38]

Optimization
based

– Principal Component
Analysis [49]

– Sammon Mapping [43]

– Neuroscale [14]

– Multidimensional
Scaling [46]

– Isomap [31]

– Seriated Heatmap [46]

– Two-Stage Mapping [30]

– Distance-Based and
Dominance-Based
Mappings [15]

Showing aggregated
properties

– Self-Organizing Map [37]

– Aggregation Tree [18]

– MoGram [42]

Repeated
approximation sets

Showing
performance
at a time

– Line Plots [17]

– Heat Maps [32]

– Visualization of Facets [21]

– Grid-Based Sampling [27]

– Slicing [3]

– Maximum Intensity
Projection [3]

– Direct Volume
Rendering [3]

Showing
performance
over time

– Grid-Based Sampling [4]
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Summary

• Visualization in multiobjective optimization useful for various
purposes

• Customized methods are needed to address the peculiarities of
approximation set visualization as well as problem landscape
visualization

• New visualization methods should first be analyzed using some
approximation sets with known properties
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