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Overview

Scientific experimentation

+ Invariance
Statistical Analysis

- A practical experimentation session
Approaching an unknown problem

- Performance Assessment
What to measure
How to display
Aggregation
Empirical distributions

Do not hesitate to ask questions!
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Why Experimentation?

- The behaviour of many if not most interesting algorithms is

- not amenable to a (full) theoretical analysis even when applied to

simple problems
calling for an alternative to theory for investigation

not fully comprehensible or even predictable without (extensive)

empirical examinations
even on simple problems
comprehension is the main driving force for scientific progress
If it disagrees with experiment, it's wrong. And that simple statement
is the key to science. — R. Feynman

+ Virtually all algorithms have parameters
like most (physical/biological/...) models in science
we rarely have explicit knowledge about the “right” choice
this is a big obstacle in designing and benchmarking algorithms

- We are interested in solving black-box optimisation problems
which may be “arbitrarily” complex and (by definition) not well-understood
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Scientific Experimentation (dos and don’ts)

What is the aim? Answer a question, ideally quickly and

comprehensively
consider in advance what the question is and in which
way the experiment can answer the question

What are the dos and don’ts?
¢ what is most helpful to do?
¢ what is better to avoid?
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Scientific Experimentation (dos and don’ts)

What is the aim? Answer a question, ideally quickly (minutes, seconds)

and comprehensively
consider in advance what the question is and in which
way the experiment can answer the question

- do not (blindly) trust in what one needs to rely upon (code, claims, ...)

without good reasons
check/test “everything” yourself, practice stress testing (e.g.
weird parameter setting) which also boosts understanding
one key element for success
interpreted/scripted languages have an advantage
Why Most Published Research Findings Are False [loannidis 2005]

practice to make predictions of the (possible/expected) outcome(s)
to develop a mental model of the object of interest
to practice being proven wrong, to overcome confirmation bias

« run rather many than few experiments iteratively, practice online
experimentation (see demonstration)
to run many experiments they must be quick to implement and run,
ideally seconds rather than minutes (start with small dimension/budget)
develops a feeling for the effect of setup changes
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Scientific Experimentation (dos and don’ts)

* run rather many than few experiments iteratively, practice online

experimentation (see demonstration)
to run many experiments they must be quick to implement and run,
ideally seconds rather than minutes (start with small dimension/budget)
develops a feeling for the effect of setup changes

run any experiment at least twice
assuming that the outcome is stochastic
get an estimator of variation/dispersion/variance

- display: the more the better, the better the better
figures are intuition pumps (not only for presentation or publication)
it is hardly possible to overestimate the value of a good figure
data is the only way experimentation can help to answer questions,
therefore look at them, study them carefully!

- don’t make minimising CPU-time a primary objective
avoid spending time in implementation details to tweak performance
prioritize code clarity (minimize time to change code, to debug code, to maintain code)
yet code optimization may be necessary to run experiments efficiently
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Scientific Experimentation (dos and don’ts)

+ don’t make minimising CPU-time a primary objective
avoid spending time in implementation details to tweak performance
yet code optimization may be necessary to run experiments efficiently

- Testing Heuristics: We Have it All Wrong [Hooker 1995]
“The emphasis on competition is fundamentally anti-intellectual and does not build
the sort of insight that in the long run is conducive to more effective algorithms”

- Itis usually (much) more important to understand why algorithm A
performs badly on function f, than to make algorithm A faster for

unknown, unclear or trivial reasons
mainly because an algorithm is applied to unknown functions, not to f,
and the “why” allows to predict the effect of design changes

- there are many devils in the details, results or their interpretation

may crucially depend on simple or intricate bugs or subtleties
yet another reason to run many (slightly) different experiments
check limit settings to give consistent results
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Scientific Experimentation (dos and don’ts)

- there are many devils in the details, results or their interpretation

may crucially depend on simple or intricate bugs or subtleties
yet another reason to run many (slightly) different experiments
check limit settings to give consistent results

- Invariance is a very powerful, almost indispensable tool
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Invariance: binary variables

Assigning 0/1 (for example minimize Z Z; VS Z 1—a;)
2 [

+ is an “arbitrary” and “trivial” encoding choice and

- amounts to the affine linear transformation x; — —x; + 1
this transformation or the identity are the coding choice in each variable
in continuous domain: norm-preserving (isotropic, “rigid”) transformation

+ does not change the function “structure”

- all level sets {x | f(x) = const} have the same size (number of
elements, same volume)

- the same neighbourhood
+ no variable dependencies are introduced (or removed)

Instead of 1 function, we now consider 2**n different but equivalent functions
2**n is non-trivial, it is the size of the search space itself
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Invariance: binary variables

Permutation of variables
- is another “arbitrary” and “trivial” encoding choice and

- is another norm-preserving transformation

- does not change the function “structure” (as above)

- may affect the neighbourhood depending on the operators (recombination,
mutation)

Instead of 1 function, we now consider n! different but equivalent functions
n!> 2" is much larger than the size of the search space
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Invariance Under Order Preserving Transformations

f=g20h

f=h

f=g10h

Invariance Under Rigid Search Space Transformations

A practical guide to experimentation
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function value
function value
function value

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the
transformation with any order preserving (strictly increasing) g.

Invariances make

e observations meaningful as a rigorous notion of generalization

e algorithms predictable and/or "robust”
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for example, invariance under search space rotation
(separable vs non-separable)

Nikolaus Hansen, Inria

A practical guide to experimentation

596




Invariance Under Rigid Search Space Transformations

f=hRasto R flevel sets in dimension 2 f=hoR

for example, invariance under search space rotation
(separable vs non-separable)
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Invariance

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

@ Empirical performance results
» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ Invariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole
class of functions

Consequently, invariance is of greatest importance for the
assessment of search algorithms.
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Measuring Performance

Empirically

convergence graphs is all we have to start with

the right presentation is important!
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Displaying Three Runs
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not like this (it’s unfortunately not an uncommon picture)

why not, what’s wrong with it?
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Displaying Three Runs

semilogy(f)
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better like this (shown are the same data),

0 100 200
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Displaying Three Runs

semilogy(f - min(f) + le-11)
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f-offset = -3.14159265359 + le-11

100 200 300 400 500
iteration

even better like this: subtract minimum value over
all runs
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Displaying 51 Runs

don't hesitate to display all data (the appendix is your friend)
10°

function value

9
f-offset = -1.8758742
10-11 i I I
0 200 400 600

. iteration
* : final value

observation: three different "modes", which would be difficult to

represent or recover in single statistics
19
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4.65665203e-08 5.01580767e-08 ...]

4.04686177e-08

There is more to display than convergence graphs

4.38294341le-08

cma.plot()

Figure 328
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Aggregation: Which Statistics?

function value

| f-offset = -3.14159265359 + le-11

0 100 200 300 460 500
iteration

600 700
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Aggregation: Which Statistics?
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iteration

mean/average function value

» tends to emphasize large values

guide to experimentation

More Caveats on Averages/Expectations

to reliably estimate an expectation (from the
average) we need to make assumptions on the tail
of the underlying distribution

these can not be implied from the observed data

AKA: the average is well-known to be (highly) sensitive to
outliers (extreme events)

rare events can only be analyzed by collecting a
large enough number of data

Nikolaus Hansen, Inria
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Aggregation: Which Statistics?
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iteration

geometric average function value exp(mean;(log(f;))) :
* reflects "visual" average
* depends on offset




Aggregation: Which Statistics?
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iteration

average iterations
* reflects "visual" average
* here: incomplete

Aggregation: Which Statistics?
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. L. . iteration
the median is invariant

 unique for uneven number of data
* independent of log-scale, offset...
median(log(data))=log(median(data))
i same when taken over x- or y-direction

600 700

Implications

¢ use the median as summary datum
unless there are good reasons for a different statistics
out of practicality: use an odd number of repetitions

* more general: use quantiles as summary data
for example out of 15 data: 2nd, 8th, and 14th
value represent the 10%, 50%, and 90%-tile

Nikolaus Hansen, Inria
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Two More Examples

10" 10°
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function evaluations x 10 function evaluations

Comparison of 4 algorithms using the "median run"
and the 90% central range of the final value on two
different functions (Ellipsoid and Rastrigin)

caveat: this range display with simple error bars
fails, if, e.g., 30% of all runs "converge"
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Statistical Analysis

“The first principle is that you must not fool yourself, and you
are the easiest person to fool. So you have to be very careful
about that. After you've not fooled yourself, it's easy not to
fool other[ scientist]s. You just have to be honest in a
conventional way after that. ”

— Richard P Feynman
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Statistical Analysis

“experimental results lacking proper statistical analysis must be
considered anecdotal at best, or even wholly inaccurate”

— M. Wineberg
Do you agree (sounds about right) 9 runs of two algorithms
or disagree (is taken a little over 10° 968 —— algorithm A
the top) with the quote? 1ot algorithm B
10724
) g 103
an experimental result (shown §
are all data obtained): 5 107
E
2 105
Do we (even) need a statistical 10+
is?
analysis”? 1071
10_8 E T T T = T S T T
0 50 100 150 200 250 300
evaluations
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Rare Events

- The obvious: if we consider rare events to be important,
we have to sample many data

105 4 —— detection probability=0.63
detection probability=0.9
—— detection probability=0.99
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probability of rare event
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Statistical Significance: General Prodecure

first, check the relevance of the result, for example of the

difference which is to be tested for statistical significance
this also means: do not explorative testing (e.g. test all pairwise combinations)
any ever so small difference can be made statistically
significant with a simple trick,
but not made significant in the sense of important or meaningful

prefer “nonparametric” methods
not assuming that the data come from a parametrised
family of probability distributions

p-value = significance level = probability of a false positive

outcome, given HO is true YN
smaller p-values are better
<0.1% or <1% or <5% is usually considered as statistically significant

given a found/observed p-value, fewer data are better
more data (almost inevitably) lead to smaller p-values, hence
to achieve the same p-value with fewer data, the between-difference
must be larger compared to the within-variation

Nikolaus Hansen, Inria 32
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*+ p-value = significance level = probability of a false positive

outcome, given HO is true
smaller p-values are better
<0.1% or <1% or <5% is usually considered as statistically significant

- given a found/observed p-value, fewer data are better
more data (almost inevitably) lead to smaller p-values, hence
to achieve the same p-value with fewer data, the between-difference
must be larger compared to the within-variation
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Statistical Significance: General Prodecure

- first, check the relevance of the result, for example of the

difference which is to be tested for statistical significance
this also means: do not explorative testing (e.g. test all pairwise combinations)
any ever so small difference can be made statistically
significant with a simple trick,
but not made significant in the sense of important or meaningful

- prefer “nonparametric” methods
not assuming that the data come from a parametrised
family of probability distributions

* p-value = significance level = probability of a false positive

outcome, given HO is true FESEas
smaller p-values are better
<0.1% or <1% or <5% is usually considered as statistically significant

- given a found/observed p-value, fewer data are better
more data (almost inevitably) lead to smaller p-values, hence
to achieve the same p-value with fewer data, the between-difference
must be larger compared to the within-variation
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Statistical Significance: Methods

- use the rank-sum test (aka Wilcoxon or Mann-Whitney U test)
- Assumption: all observations (data values) are obtained

independently and no equal values are observed
The “lack” of necessary preconditions is the main reason to use the rank-sum test.
even a few equal values are not detrimental
the rank-sum test is nearly as efficient as the t-test which requires normal distributions

- Null hypothesis (nothing relevant is observed if): Pr(x <y) = Pr(y

<X)
HO: the probability to be greater or smaller (better or worse) is the same
the aim is to be able to reject the null hypothesis

- Procedure: compute the sum of ranks in the ranking of all
(combined) data values

Outcome: a p-value
the probability that the observed or a more extreme data set was generated under the
null hypothesis; the probability to mistakenly reject the null hypothesis

Nikolaus Hansen, Inria
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Statistical Significance: How many data do we need?

AKA as test efficiency
Rank Sum Test

1004 @ ® n=m
° ny=5
1071 4 ®

10*2 4
10-34
1044
1075 L 4

1076 4 ®

ni .
1 [ ]
min l|:|1 1—|—n2 ®

2 4 6 8 10
ny (number of data in first group)

- assumption: data are fully “separated”, that is, Vi, j : z; < y; or Vi, j : z; > y; (two-sided)

possible (minimal) two-sided p-value

1077 4

1078 4

12 14

- observation: adding 2 data points in each group gives about one additional order of magnitude

« use the Bonferroni correction for multiple tests
simple and conservative: multiply the computed
p-value by the number of tests .
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Statistical Significance: How many data do we need?

* In the best case: at least ten (two times five) and

two times nine is plenty
minimum number of data to possibly get two-sided
p < 1%: 5+5 or 4+6 or 3+9 or 2+19 or 1+200
and p < 5%: 4+4 or 3+5 or 2+8 or 1+40

- | often take two times 11 or 31 or 51
median, 5%-tile and 95%-tile are easily accessible
with 11 or 31 or 51... data

n=le, p=7e3

- Too many data make statistical significance
meaningless §
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Statistical Significance: How many data do we need?

n=1e4, p=7e-3

. 1.0 A I -
p //
two empirical distributions ’
0.8
0.6
0.4
. o =0.997,1.008
Amean = 0.034
0.2 A median = 0.044
]13;<median(y) =51.6%
004 - _ Ly median(z) = 51.9%
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Statistical Analysis

“experimental results lacking proper statistical analysis must be
considered anecdotal at best, or even wholly inaccurate”

— M. Wineberg
Do you agree (sounds about right) 9 runs of two algorithms
or disagree (is taken a little over 100488 — algorithm A
the top) with the quote? - algorithm B
1072 4
. Y 10734
an experimental result (shown 3
are all data obtained): 5 10741
g
2 10754
Do we (even) need a statistical ~— 104
is?
analysis? 107
10_8 E T T S S T T
0 50 100 150 200 250 300
evaluations
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Jupyter IPython notebook

%pylab nbagg
import cma
cma.fmin(cma.ff.tablet, 20 * [1], 1);

Populating the interactive namespace from numpy and matplotlib
(6_w,12)-aCMA-ES (mu_w=3.7,w_1=40%) in dimension 20 (seed=344737, Wed Jul 5 16:09:44 2017)
Iterat #Fevals function value axis ratio sigma min&max std t[m:s]

1 12 2.637846492377813e+03 1.0e+00 9.49e-01 9e-01 1le+00 0:00.0
2 24 3.858353384747645e+04 1.1e+00 9.13e-01 9e-01 9e-01 0:00.0
3 36 1.589934793439056e+04 1.2e+00 8.94e-01 9e-01 9e-01 0:00.0
100 1200 1.805167565570186e+02 6.6e+00 2.52e-01 6e-02 3e-01 0:00.1
200 2400 9.260486860109009e+01 4.2e+01 2.79e-01 1le-02 4e-01 0:00.3
300 3600 8.460045942108286e+00 2.0e+02 3.20e-01 4e-03 4e-01 0:00.4
400 4800 5.352841113616880e-02 5.2e+02 4.71e-02 2e-04 5e-02 0:00.5
500 6000 1.169838413517761e-04 8.7e+02 2.61le-03 3e-06 2e-03 0:00.7
600 7200 2.232682824828931e-08 9.9e+02 5.00e-05 4e-08 3e-05 0:00.8
700 8400 1.483610308401096e-12 1.2e+03 4.61e-07 3e-10 2e-07 0:00.9
736 8832 2.696542797455203e-14 1.2e+03 1.03e-07 5e-11 5e-08 0:01.0
termination on tolfun=le-11 (Wed Jul 5 16:09:46 2017)
final/bestever f-value = 1.422957e-14 1.422957e-14
incumbent solution: [ -1.01044748e-11 -3.22608195e-08 -8.75163241le-10 -3.66834969e-08
2.35485309e-08 -9.59521093e-10 4.23137381e-08 6.92049899%e-09 ...]
std deviations: [ 5.07976963e-11 4.52415829e-08 4.67529085e-08 4.36659472e-08

4.04686177e-08 4.38294341e-08 4.65665203e-08 5.01580767e-08 ...]

cma.plot()

Figure 328

|foest, med, worst|, f— min(f), o, axis ratio Object Variables (curr best, 20-D, popsize~12)
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8 X161=4,7507
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4.65665203e-08 5.01580767e-08 ...]

4.04686177e-08 4.38294341e-08

cma.plot()

ngm 328 J
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Questions?
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Jupyter IPython notebook

v # download&install anaconda python
# shell cmd "conda create" in case a different Python version is needed
# shell cmd "pip install cma" to install a CMA-ES module (or see github)
# shell cmd "jupyter-notebook" and click on compact-ga.ipynb
from _ future_ import division, print_function
$pylab nbagg

Populating the interactive namespace from numpy and matplotlib

See https://github.com/nikohansen/GECCO-2019-experimentation-guide-notebooks

- Demonstrations
- A somewhat typical working mode

A parameter investigation

A practical guide to experimentation
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Approaching an unknown problem

- Problem/variable encoding
for example log scale vs linear scale vs quadratic transformation

- Fitness formulation
for example Y, |z;] and Y, z? have the same optimal
(minimal) solution but may be very differently “optimizable”.

- Create sections plots (f vs x on a line)
one-dimensional grid search is cheap

- Try to locally improve a given (good) solution

- Start local search from different initial solutions.
Ending up always in different solutions? Or always in the same?

-+ Apply “global search” setting

+ see also http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#practical

A practical guide to experimentation
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Questions?
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Performance Assessment

+ methodology: run an algorithm on a set of test
functions and extract performance measures from

the generated data
choice of measure and aggregation

- display

subtle display changes can make a huge difference

+ there are surprisingly many devils in the details

Nikolaus Hansen, Inria

46

A practical guide to experimentation

Why do we want to measure performance?

- compare algorithms and algorithm selection (the

obvious)
ideally we want standardized comparisons

* regression testing after (small) changes
as we may expect (small) changes in behaviour,
conventional regression testing may not work

- understanding of algorithms

to improve algorithms
non-standard experimentation is often preferable or necessary

Nikolaus Hansen, Inria
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fixed target

quality indicator (to be minimized)

;
number of function evaluations

 for aggregation we need comparable data

* missing data: problematic when many runs lead to missing data
« fixed target approach misses out on bad results (we may correct for this to some extend)
« fixed budget approach misses out on good results
Nikolaus Hansen, Inria
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Performance Measures for Evaluation

Generally, a performance measure should be

e quantitative on the ratio scale (highest possible)
“algorithm A is two times better than algorithm B”
as “performance(B) / performance(A) = 1/2 = 0.5”
should be meaningful statements

e assuming a wide range of values

e meaningful (interpretable) with regard to the real
world
transfer the measure from benchmarking to real world

runtime or first hitting time is the prime candidate
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Aggregation: Fixed Budget vs Fixed Target

: 3 !
[fixedtarget ] T\ g

quality indicator (to be minimized)

;
number of function evaluations

 for aggregation we need comparable data

* missing data: problematic when many runs lead to missing data
« fixed target approach misses out on bad results (we may correct for this to some extend)
« fixed budget approach misses out on good results
Nikolaus Hansen, Inria
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Fixed Budget vs Fixed Target

Fixed budget => measuring/display final/best f~values
Fixed target => measuring/display needed budgets (#evaluations)
Number of function evaluations:

- are quantitatively comparable (on a ratio scale)
ratio scale: “Ais 3.5 times faster than B”,
A/B = 1/3.5 is a meaningful notion

- the measurement itself is interpretable independently of the function
time remains the same time regardless of the underlying problem
3 times faster is 3 times faster is 3 times faster on every problem

- there is a clever way to account for missing data
via restarts

=> fixed target is (much) preferable
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The Problem of Missing Values

: 3 !
[fixedtarget ] T\ Ny |

quality indicator (to be minimized)

;
number of function evaluations

 for aggregation we need comparable data

* missing data: problematic when many runs lead to missing data
« fixed target approach misses out on bad results (we may correct for this to some extend)
« fixed budget approach misses out on good results
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The Problem of Missing Values

how can we compare the following two algorithms?

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1, slow convergence

function (or indicator) value

number of evaluations
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The Problem of Missing Values

Consider simulated (artificial) restarts using the given
independent runs

Algo Restart A:

| |
I L

- ——|RTx
ps(Algo Restart A) =1
Algo Restart B:

—|RT:
ps(Algo Restart B) =1

Caveat: the performance of algorithm A critically depends
on termination methods (before to hit the target)
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The Problem of Missing Values

The expected runtime (ERT, aka SP2, aRT) to hit a target
value in #evaluations is computed (estimated) as:
unsuccessful runs

count (only) in the
nominator

#evaluations(until to hit the target)

#successes
odds ratio

ERT =

Nunsucc

= avg(evalssycc) + x avg(evalsynsuce)

succ

NUHSUCC

~ an(eVaISsucc) + X an(eVaISsucc)

succ

_ NSUCC + NUF‘ISUCC

x avg(evalSsyce)
NSUCC

= xavg(evals
success rate 9( suce)

defined (only) for #successes > 0. The last three lines are
aka Q-measure or SP1 (success performance).
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Empirical Distribution Functions

Empirical cumulative distribution functions (ECDF,
or in short, empirical distributions) are arguably the
single most powerful tool to “aggregate” data in a
display.
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Data and Performance Profiles Benchmarking with COCO
COCO — Comparing Continuous Optimisers
* is a (software) platform for comparing continuous optimisers in a black-box
- so-called Data Profiles (Moré and Wild 2009) are seenario .
L. . K . . k https://github.com/numbbo/coco
empirical distributions of runtimes [# evaluations] to
achieve a given single target + automatises the tedious and repetitive task of benchmarking numerical
. . . optimisation algorithms in a black-box setting
usually divided by dimension + 1
- advantage: saves time and prevents common (and not so common) pitfalls
- so-called Performance profiles (Dolan and Moré COCO provides
2002) are empirical distributions of relative runtimes
[# evaluations] to achieve a given single target * experimental and measurement methodology _
. . . main decision: what is the end point of measurement
normalized by the runtime of the fastest algorithm
on the respective problem - suites of benchmark functions
single objective, bi-objective, noisy, constrained (in beta stage)
- data of already benchmarked algorithms to compare with
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COCO: Installation and Benchmarking in Python

### get and install the code
git clone https://github.com/numbbo/coco.git # get coco using git
cd coco

python do.py run-python
python do.py install-postprocessing # install post-processing

# install Python experimental module cocoex
=)

w nnnn

import os, webbrowser
from scipy.optimize import fmin
import cocoex, cocopp

# prepare

output_folder =
suite = cocoex.Suite("bbob",
observer = cocoex.Observer ("bbob",

"scipy-optimize-fmin"

nn wu
’

"result_folder: " + output_folder)

# run benchmarking

for problem in suite: # this loop will take several minutes
observer.observe(problem) # generates the data for cocopp post-processing
fmin(problem, problem.initial_ solution)

# post-process and show data
cocopp.main(observer.result folder) # re-run folders look like
webbrowser.open("file://" + os.getcwd() + "/ppdata/index.html")

"...-001" etc
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Benchmark Functions
should be
+ comprehensible

- difficult to defeat by “cheating”
examples: optimum in zero, separable

- scalable with the input dimension

* reasonably quick to evaluate
e.g. 12-36h for one full experiment

reflect reality
specifically, we model well-identified difficulties
encountered also in real-world problems

Nikolaus Hansen, Inria
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The COCO Benchmarking Methodology

- budget-free
larger budget means more data to investigate
any budget is comparable
termination and restarts are or become relevant

- using runtime as (almost) single performance measure
measured in number of function evaluations

- runtimes are aggregated
- in empirical (cumulative) distribution functions

- by taking averages

geometric average when aggregating over different problems
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Benchmarking Results for Algorithm ALG on the bbob Suite

Home

Runtime distributions (ECDFs) per function

Scaling with dimension for selected targets

Tables for selected targets
Runtime distribution for selected targets and f-distributions

Runtime loss ratios

Runtime distributions (ECDFs) over all targets
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Using Theory

“In the course of your work, you will from time to time encounter the
situation where the facts and the theory do not coincide. In such
circumstances, young gentlemen, it is my earnest advice to respect the
facts.”

— Igor Sikorsky, airplane and helicopter designer
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Using Theory in Experimentation

- shape our expectations and objectives

- debugging / consistency checks
theory may tell us what we expect to see

* knowing the limits (optimal bounds)
for example, we cannot converge faster than optimal
trying to improve is a waste of time

- utilize invariance
it may be possible to design a much simpler experiment and
get to the same or stronger conclusion by invariance considerations
change of coordinate system is a powerful tool
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