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«  Evolutionary  Robotics   aims 
to  apply  evolutionary 
computation  techniques  to 
evolve  the  overall  design  or 
controllers,  or  both,  for  real 
and  simulated  autonomous 
robots » 
Patricia  A.  Vargas,  Ezequiel  A.  Di 
Paolo,  Inman  Harvey  and  Phil 
Husbands,  2014,  The  Horizons  of 
Evolutionary Robotics, MIT Press

Motivations: robotics

• Building robots with embodied intelligence 
• Learning with state-of-the-art black-box optimization tools

Pfeifer, R., & Bongard, J. (2006). How the body shapes the way we think: a new view of intelligence.  
MIT press. 

Stulp, F. and Sigaud, O. (2013). Robot Skill Learning: From Reinforcement Learning to Evolution Strategies. 
Paladyn Journal of Behavioral Robotics. Vol 4 No 1 Pages 49-61.
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Motivations: biology

• ER as a model:  
• modeling evolutionary dynamics, in particular of groups 
• studying the emergence of features 

• ER as a tool: optimization and analysis of computational models

Liénard, J. and Girard, B. (2014). A Biologically Constrained Model of the Whole Basal Ganglia Addressing the 
Paradoxes of Connections and Selection. Journal of Computational Neuroscience. Vol 36 No 3 Pages 445--468.

Long, J. (2012). Darwin’s Devices: What Evolving Robots Can Teach us about the History of Life 
and the Future of Technology. Basic Books.  

Evolutionary Robotics 
main principles
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Doncieux S, Bredeche N, Mouret J-B and Eiben AE (2015)  Evolutionary robotics: what, why, and where to. 
Front. Robot. AI 2:4. doi: 10.3389/frobt.2015.00004 

Main features of 
Evolutionary Robotics

Selective 
pressure

priority to task 
resolution or task resolution 

secondary (or absent)

Focus control and morphology

Implementation simulation or real world

Space centralized or distributed

Time off-line or on-line

Overview
Selective 
pressure

priority to task 
resolution or task resolution 

secondary (or absent)

Focus control and morphology

Implementation simulation or real world

Space centralized or distributed

Time off-line or on-line

Part I: Fitness function and influence of selection pressure: 
What do you need to know about evaluation and selection to 

make an ER experiment successful ?  
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Overview
Selective 
pressure

priority to task 
resolution or task resolution 

secondary (or absent)

Focus control and morphology

Implementation simulation or real world

Space centralized or distributed

Time off-line or on-line

Part II: Evolution for physical robots and the reality gap 
How to make it work on real robots ?

Overview
Selective 
pressure

priority to task 
resolution or task resolution 

secondary (or absent)

Focus control and morphology

Implementation simulation or real world

Space centralized or distributed

Time off-line or on-line

Part III: Embodied evolution and collective robotics systems 
Evolution without a fitness for the design of distributed robotics 

systems and for modeling evolution of group dynamics.  

Fitness function and 
influence of selection 

pressure
S. Doncieux

Example 1:  
obstacle avoidance

• Fitness: 
1

nbcoll + 1

https://github.com/doncieux/navigation 
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Problem ! Example 1:  
obstacle avoidance

• How to deal with it ? 

• Change fitness:  

• Make the robot move 
by default 

• …

https://github.com/doncieux/navigation 

1

nbcoll + 1
∗ v̄

Example 2: 
Collect ball experiment

Starting Positions

Ball

Basket

Switch

Door

Fitness= nbball

https://github.com/doncieux/collectball https://github.com/doncieux/collectball
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Problem !

Fi
tn

es
s

Example 2: 
Collect ball experiment

https://github.com/doncieux/collectball

• How to deal with it ? 

• Decompose the 
problem 

• Add fitness terms 

• Enhance 
exploration

The challenges  
of selective pressures

Goal of the evolutionary process: 

Generating behaviors that solve the task 

The selective pressures must: 

1. Define the target 

2. Drive the search process towards it 

Requirement: 

Minimizing a priori knowledge about how to solve 
the task

Can we deal with issues in goal definition 

and exploration in a task agnostic manner?

How is fitness evaluated ?
Genotype: 

• vector of parameters 
• neural network 
• …
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How is fitness evaluated ?
The genotype describes a policy:

πx : S → A

S: state space 
A: action space 
m: transition function

ω1

ω4

ω6
ω7

ω5

ω3

ω2

Example:       =neural networkπx

How is fitness evaluated ?

fit(x) = f(τ)

• The fitness depends on the 
genotype x and on the fitness 
function f() 

• … but also on: 

•   

•   

•   

• environment

s0

τ

T

e

Beyond black-box optimization

To solve the challenges, the selective process can 
take into account:

Goal refiner Process helper

Two challenges, two kinds of solutions:

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review of selective pressures for 
evolutionary robotics. Evolutionary Intelligence, Springer Berlin Heidelberg, publisher. Vol 7 No 2 Pages 71-93.

s0 τ Te

Multi-objectivization: a convenient 
tool to modify selective pressures

• Goal refiners & process helpers as new 
objectives 

• At the end of the run: 
• Goal refiners: taken into account 
• Process helpers: ignored

a
Solutions
dominating a

Solutions
neither dominated 
nor dominating a

Solutions
dominated by a

Solutions neither 
dominated nor 
dominating a

Search space
Dominated
solutions

Non-dominated
solutions

Pareto front

f(g) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f1(g)
f2(g)
...

fn(g)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭
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Solution to goal definition issues:  
add « goal refiners »

Goal refiner

A goal refiner aims at changing the optimum(s) of the fitness 
function by adding new requirements. 

Typical challenges that can be addressed: 
• Overfitting & generalisation 
• Reality gap

Overfitting

Encouraging reactivity

Lehman, J., Risi, S., D’Ambrosio, D., & O Stanley, K. (2013). Encouraging reactivity to create robust 
machines. Adaptive Behavior, 21(6), 484-500.

• Encouraging robot controllers to react to sensor 
stimuli 

• Proposition: maximizing the mutual information 
between sensors and effectors:

I(X,Y ) =

∫

Y

∫

X

p(x, y)log

(

p(x, y)

p(x)p(y)

)

dxdy

A goal refiner to overcome 
overfitting

Lehman, J., Risi, S., D’Ambrosio, D., & O Stanley, K. (2013). Encouraging reactivity to create robust 
machines. Adaptive Behavior, 21(6), 484-500.

Fitness: 
1. distance to the 

goal 
2. reactivity 

Multi-objective EA: 
NSGA-II 

Neuroevolution 
(HyperNEAT)
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Solution to exploration issues:  
add « process helpers »

A process helper intends to increase the efficiency of the search process 
without changing the optimum(s) of the fitness function. 

• Novelty based fitness: 

              are the k-nearest neighbors 
in pop+archive 

• Archive augmented with individuals 
having a high novelty

Novelty search

ρ(x) =
1

k

k

∑
i=0

dist(x, μi)

{μ0, …, μk−1}

Lehman, J., & Stanley, K. O. (2010). Abandoning Objectives: Evolution Through the Search for Novelty 
Alone. Evolutionary Computation, 19(2), 189–223.

Random  genotypes
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Novelty search
Maze navigation experiment, robot end position

Starting point Random sampling: 
10000 individuals

Novelty search: 
100 gen x 100 Indiv. 

Novelty search asymptotically behaves like a  
uniform random search in the behavior space

Doncieux, S., Laflaquière, A., Coninx, A. (2019). Novelty Search: a Theoretical Perspective. In Proceedings of 
the 2019 Annual Conference on Genetic and Evolutionary Computation. ACM.

Collect ball experiment

https://github.com/doncieux/collectball

Fitness objectives: 
1. nbball 
2. Behavioral diversity 

(Archive-free Novelty) 

Multi-objective EA: 
NSGA-II 

Neuroevolution

Mouret, J.-B. and Doncieux, S. (2012). Encouraging Behavioral Diversity in Evolutionary Robotics: an 
Empirical Study. Evolutionary Computation. Vol 20 No 1 Pages 91-133.

Gomes, J., Mariano, P., & Christensen, A. L. (2015, July). Devising effective novelty search algorithms: A 
comprehensive empirical study. In Proceedings of GECCO (pp. 943-950). ACM.

Many different definitions of Novelty Search
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Dealing with goal definition 
and exploration at once

• Changing views: 

• Exploration as a priority: generate all solutions of interest 

• Performance as a secondary, local pressure 

Illumination or Quality Diversity algorithms

• Main ideas: 

• Process helper: selection mostly driven by behavior novelty  

• Goal refiner: a posteriori selection of the most appropriate 
solution

Looking for the 
optimal solution

Looking for a large set of 
original and efficient solutions

Pugh, J. K., Soros, L. B., & Stanley, K. O. (2016). Quality diversity: A new frontier for evolutionary 
computation. Frontiers in Robotics and AI, 3, 40.

Mouret, J. B., & Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv:1504.04909.

•
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MAP-Elites

Cully, A., & Demiris, Y. (2018). Quality and diversity optimization: A unifying modular framework. IEEE 
Transactions on Evolutionary Computation, 22(2), 245-259.

QD algorithms

Kim, S., Coninx, A. & Doncieux, S. (2019) From exploration to control: learning object 
manipulation skills through novelty search and local adaptation. arXiv:1901.00811

Kim, S., Coninx, A. & Doncieux, S. (2019) From exploration to control: learning object 
manipulation skills through novelty search and local adaptation. arXiv:1901.00811
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Conclusion on selective 
pressures

• The definition of the fitness is 
critical 

• Beyond black box optimization 

• Multi-objective framework 
convenient: multi-objectivization

• QD/Illumination algorithms

Evaluation
Genotype

Phenotype

Behavior

Initial conditions

Environment

Fitness

Random generation

Selection

Variation

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review of selective pressures for 
evolutionary robotics. Evolutionary Intelligence, Springer Berlin Heidelberg, publisher. Vol 7 No 2 Pages 71-93.

Inria Nancy-Grand Est

Jean-Baptiste Mouret

Evolution, 
simulators, 

and the reality 

Image: A. Cully / UPMC

No simulator

!2

Floreano, Dario, and Francesco Mondada (1996). "Evolution of homing navigation in a real mobile robot." 
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 26.3: 396-407.

Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing 
machines . MIT press.

locomotion

No simulator

!3

Hornby, G. S., Takamura, S., Yamamoto, 
T., & Fujita, M. (2005). Autonomous 
evolution of dynamic gaits with two 
quadruped robots. Robotics, IEEE 
Transactions on, 21(3), 402-410.

Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, 
J., & Lipson, H. (2011). Evolving robot gaits in hardware: 
the HyperNEAT generative encoding vs. parameter 
optimization. In Proc. of ECAL, pp. 890-897.
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No simulator

!4

Starting Time (1 run) Robot DOFs Param.

Chernova and Veloso (2004) random 5 h quadruped 12 54

Zykov et al. (2004) random 2 h hexapod 12 72

Berenson et al. (2005) random 2 h quadruped 8 36

Hornby et al. (2005) non-falling 25 h quadruped 19 21

Mahdavi and Bentley (2006) random 10 h snake 12 1152

Barfoot et al. (2006) random 10 h hexapod 12 135

Yosinski et al. (2011) random 2 h quadruped 9 5

Pros

- (almost) no reality gap

- can exploit unknown physics


Cons

- slow (too slow?)

- will not be faster next year

- never 100% real 
- require priors (controller) 

evolving walking 

controllers

Brodbeck L, Hauser S, Iida F (2015) Morphological Evolution of Physical Robots through Model-Free Phenotype 
Development. PLoS ONE 10(6): e0128444. https://doi.org/10.1371/journal.pone.0128444 (creative commons)

… in the real world
Evolving morphologies

!5

Kuehn, T. and Rieffel, J. (2012) Automatically Designing and Printing Objects with EvoFab 0.2'', 
Proceedings of the 13th International Conference on the Synthesis and Simulation of Living Systems (ALife 
XIII), pp. 372-378 

Evolving 3D programs for 3D printers

!6

useful tools?
Using simulators

!7

Evolution is a slow process (millions of years?)

… but computers are faster every year

Can we ‘accelerate time’?

We now have many "good" simulators:
- ODE (library): www.ode.org
- Bullets (library): bulletphysics.org
- Dart (library): https://github.com/dartsim/dart 
- [Gazebo (GUI): gazebosim.org]
- [V-Rep (GUI): www.coppeliarobotics.com]
- … 

S. Ivaldi et al. (2014). Tools for dynamics simulation of robots: a survey based on user feedback.  
Proc. of Humanoids

J.-.B. Mouret and K. Chatzilygeroudis (2017). 20 Years of Reality Gap: a few Thoughts about 
Simulators in Evolutionary Robotics. GECCO workshop (SimER) — 2017
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… or what always happens with simulators and robots
The reality gap

!8

Controller: 2 parameters

Jakobi, Nick. "Running across the reality gap: Octopod locomotion evolved in a minimal simulation." 
Evolutionary Robotics. Springer Berlin Heidelberg, 1998.

Koos, Mouret & Doncieux. 

IEEE Transactions on Evolutionary Computation. 2012 

Reality vs simulation

!9
Mouret, J. B., Koos, S., & Doncieux, S. (2013). Crossing the reality gap: a short introduction to 
the transferability approach. arXiv preprint arXiv:1307.1870.

But they can agree (sometimes)!

!10

The reality gap

!11

- Any simulation has a validity domain
- Human experts know this validity domain
- … but evolution does not have this common sense

Results found in simulation have a low probability of 
working similarly in reality 
➠ One of the main problems of ER as a design tool 
“Sim2Real" in “deep learning” 

What can we do? 

no simulator
better simulator
avoid non-transferable solutions
robust controllers
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Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 406, 
974–978.

evolve in simulation, then do a few generations with the robot

Finish evolution in reality

!12

Pro: can help fine-tuning the 
solution obtained in simulation

Con: “local search” in the 
vicinity of the solutions found 
in simulation
➠ cannot find something 

completely different

General idea: minimize the difference between 
simulation and reality (supervised learning)
➠  Miglino et al.: measure the exact response of the infrared 

sensors (Khepera)

!13

Improving simulators

Miglino et al. (1995)“Evolving mobile robots in simulated and real environments." Artificial life 2.4: 417-434.

Moeckel et al. (2013) "Gait optimization for roombots modular robots—Matching simulation and reality." 
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on (IROS), 2013.

Zagal, J. C., and J. Ruiz-Del-Solar (2007) "Combining simulation and reality in evolutionary robotics." Journal of 
Intelligent and Robotic Systems 50.1.

➠Moeckel et al.: optimize the 
parameters of an ODE 
simulator (22 parameters) ; PSO

Multimedia Contents

Model Ident
113

Part
A
|
6
.1

6. Model Identification
John Hollerbach, Wisama Khalil, Maxime Gautier

This chapter discusses how to determine the kine-

matic parameters and the inertial parameters

of robot manipulators. Both instances of model

identification are cast into a common framework

of least-squares parameter estimation, and are

shown to have common numerical issues relating

to the identifiability of parameters, adequacy of

the measurement sets, and numerical robustness.

These discussions are generic to any parameter

estimation problem, and can be applied in other

contexts.
For kinematic calibration, the main aim is to

identify the geometric Denavit–Hartenberg (DH)

parameters, although joint-based parameters

relating to the sensing and transmission ele-

ments can also be identified. Endpoint sensing

or endpoint constraints can provide equivalent

calibration equations. By casting all calibration

methods as closed-loop calibration, the calibra-

tion index categorizes methods in terms of how

many equations per pose are generated.

Inertial parameters may be estimated through

the execution of a trajectory while sensing one

or more components of force/torque at a joint.

Load estimation of a handheld object is simplest

because of full mobility and full wrist force-torque

sensing. For link inertial parameter estimation,

restricted mobility of links nearer the base as well

as sensing only the joint torque means that not

6.1 Overview .............................................. 113

6.2 Kinematic Calibration . ........................... 115

6.2.1 Serial-Link Robot Manipulators ..... 116

6.2.2 Parallel Manipulator Calibration .... 120

6.3 Inertial Parameter Estimation. ............... 122

6.3.1 Link Inertial Parameter Estimation. 122

6.3.2 Load Inertial Parameter Estimation
124

6.3.3 Identificationof Total Joint Drive Gains .............. 126

6.3.4 Link Parameter Estimation

for More Complex Structures.......... 126

6.4 Identifiabilityand Numerical Conditioning .................. 127

6.4.1 Identifiability .............................. 128

6.4.2 Observability ............................... 131

6.4.3 Scaling ........................................ 132

6.4.4 Recursive Least Squares

and the Kalman Filter .................. 134

6.5 Conclusions and Further Reading........... 135

6.5.1 Relation to Other Chapters . ........... 135

6.5.2 Further Reading . .......................... 136

Video-References . ........................................ 136

References ................................................... 137

all inertial parameters can be identified. Those

that can be identified are those that affect joint

torque, although they may appear in complicated

linear combinations.

6.1 OverviewThere are many different kinds of models in robotics,

whose accurate identification is required for precise

control. Examples from the previous chapters include

sensor models, actuator models, kinematic models, dy-

namic models, and flexibility models. System identifi-

cation is the general field concerned with the process

of identifying models from measurements. Generally

speaking, there are two types of models: parametric

and nonparametric models. Parametric models are de-

scribed by a few parameters, which are adequate to

Bongard, Zykov and Lipson (2006). Science.

Koos, S., Mouret,  JB and Doncieux, S. (2009) "Automatic system identification based on coevolution of 
models and tests.” Proc. of IEEE CEC.

The EEA algorithm: active learning of a self-model

Improving simulators

!14
Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB.  (2017) Black-Box Data-
efficient Policy Search for Robotics. Proc. of IEEE IROS 2017.

 = learning the dynamical model of the robot
Learning the simulator from data

1. try the best policy according to the model 
➠ new data
➠ new model (Gaussian processes)

2. find a policy that maximises the fitness according the simulator, Taking the 
uncertainty into account

!15
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System identification + free modelling

Correcting the simulator

!16

We can combine model learning and model identification
➟ effects that can be captured by the simulator will be included by tuning 

the simulator (model identification)
➟ effects that cannot be captured by changing the parameters are 

modelled by the Gaussian processes

xt+1 = xt +M(xt,ut,φM ) + f(xt,ut,φK) +w

Our objective is to find a deterministic policy ,Simulator / model parameters

Chatzilygeroudis K, Mouret JB.  (2018) Using Parameterized Black-Box Priors to Scale Up 
Model-Based Policy Search for Robotics. Proc. of ICRA.

Learning = maximize the likelihood of M+f

Model identification + correction

!17
Chatzilygeroudis K, Mouret JB.  (2018) Using Parameterized Black-Box Priors to Scale Up 
Model-Based Policy Search for Robotics. Proc. of ICRA.

learn a model of the fitness function
Surrogate modelling / Bayesian optimization

• Use data to predict the fitness given the parameters

• No need to sense “states" 

• Work well if a few parameters (< 6)

• Usually do not work on structures (but come to see our talk!)

!18Rieffel, J., & Mouret, J.-B. (2018). Soft tensegrity robots. Soft Robotics.

Model = Gaussian process

EA = CMA-ES

Improving simulators & models
Pros

mix simulation and reality: 
the best of both worlds?

faster than learning without 
a simulator

morphological / env. 
changes

!19

Cons

the simulator will never be 
perfect (generalization)

if the correction cannot be 
applied? (e.g. aerodynamics)

learning a simulator is hard!

Jin, Y. (2005) "A comprehensive survey of fitness approximation in evolutionary computation." Soft 
computing 9.1 (2005): 3-12.
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Jakobi, N. (1997) "Evolutionary robotics and the radical envelope-of-noise hypothesis." Adaptive Behavior 
6.2: 325-368.

the envelope of noise & minimal simulations
Avoiding bad simulations

!20

Simulate only the useful effects
Hide in an “envelope of noise” things that are too hard to 
simulate accurately
➠ keep evolution from exploiting simulation artefacts
➠ goal refiner

Examples: 
➠Khepera robot: add noise to 

the sensors and the 
actuators

➠Octopod robot: minimal 
simulation

2

1

3

4 5

6

8

7

RIGHT SPEEDLEFT SPEED

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

In deep learning: “Domain randomization” 

envelope of noise & minimal simulations
Avoiding bad simulations

Pros

Lightweight simulations

Noise increases 
robustness and 
generalization

!21

Cons

Hard to set-up

What noise? what is 
important?

No surprising dynamic 
effect

Noise makes evolution 
harder

the transferability approach
Avoiding bad simulations

➠ learn the limits of the simulation (supervised learning)
➠ focus the search on well-simulated behaviors
➠ the transferability is a task-agnostic goal refiner

!22

Mouret, Koos & Doncieux (2012). ALIFE workshop. 2012

Koos, Mouret & Doncieux (2012). IEEE TEC. 2012

Koos, Cully & Mouret. (2013). IJRR. 2013

Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality Gap in 
Evolutionary Robotics. IEEE Transaction on Evolutionary Computation, 1, 1–25.

the transferability approach
Avoiding bad simulations

!23

Maximize fitness Maximize fitness
transferability{

15 transfers
(motion capture)
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Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality Gap in 
Evolutionary Robotics. IEEE Transaction on Evolutionary Computation, 1, 1–25.

the transferability approach
Avoiding bad simulations

!24

Maximize fitness Maximize fitness
transferability{

15 transfers
(motion capture)

Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature, 
521(7553), 503-507.

Intelligent Trial & Error
Mapping, then searching

!25

Mapping (offline)

- MAP-Elites algorithm 

(illumination/quality diversity)

- search for the best behavior 

of each family

Adaptation (online)

- Bayesian optimization

- levels of confidence

Cully, Clune, Tarapore & Mouret (2015). Robots that can adapt like animals. Nature.

Intelligent Trial & Error
Mapping, then searching

!26

Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N AT I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E

the transferability approach
Avoiding bad simulations

!27

Pros

Easier to learn the limit 
than to correct/learn the 
simulator

Only a few test on the 
robot: no need for a 
special set-up

Cons

The EA cannot exploit 
phenomena that not 
simulated at all

(e.g. highly-dynamic gaits, 
unknown aerodynamic 
effects, etc.)
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Floreano, D., & Urzelai, J. (2000). Evolutionary robots with on-line self-organization and behavioral fitness. 
Neural Networks, 13(4-5), 431–43.

Urzelai, J., & Floreano, D. (2000) "Evolutionary robots with fast adaptive behavior in new environments." 
Evolvable Systems: From Biology to Hardware. Springer Berlin Heidelberg. 241-251.

evolve controllers with online learning abilities 

Improving robustness

!28

env.eps

66 × 36 mm
envkoala.eps

81 × 37 mm

Example:  neural networks with “adaptives synapses” 

beha

91 ×

Adaptive synapses

f = 0.422, <f> = 0.49910

Lehman, Joel, et al. (2013) "Encouraging reactivity to create robust machines." Adaptive Behavior (2013): 
1059712313487390.

encouraging reactivity
Improving robustness

- quantification of reactivity 
derived from the mutual 
information between sensors 
and actuators

- multi-objective optimization

- even better if combined with 
noise

!29

the reality gap
Conclusion

➠ No simulator: possible but slow (swarm?)

➠ Finishing evolution on the physical robot: similar optima

➠ Improving simulators: not always enough data to learn

‣   system identification

➠ Avoiding badly simulated solutions

‣  add noise to sensors and actuators: hard to tune

‣  minimal simulations: requires expert knowledge

‣  learn the transferability function

➠ Improving robustness: no guarantee

‣ add online learning abilities

‣ encourage reactivity

!30

1

2

3

4

5

the reality gap
Conclusion

• No perfect approach to cross the reality gap

• Avoiding simulation is materially challenging and slow

• No perfect simulation

• Simulators should give their confidence (and not only a prediction of the 
fitness)

➠ it depends on the scientific question!

- show the potential of a new encoding? a new selective pressure? 
simulation might be enough

- solve challenging robotics problem? this needs to work on real robots

!31
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Evolutionary robotics for collective robotics 

A 30-minute overview 
GECCO 2019

(Symbrion, EU FP7, 2008-2013)

Note on citation policy: for a given topic, I cite either 
or both the seminal reference and a recent one. E.g.: 
[Nolfi and Floreano. 2000][Doncieux et al. 2015] for 
referring to general resources on evolutionary 
robotics. Non-first authors may be omitted for clarity.

Thymios at SU Kilobots at SU Wolf pack hunting (wikipedia)

nicolas.bredeche@upmc.fr

 2Definitions

Collective robotics: multiple robots, acting together, to achieve a common goal. 

Swarm robotics: collective robotics with large population of “simple” robots (i.e. 
limited computation and communication capabilities). It is a distributed system.

H2020 COLLMOTSmavNET@EPFL SSR/Harvard

nicolas.bredeche@upmc.fr

 3

H. Hamman (2018) pp.10
interference

Bucket brigade

nicolas.bredeche@upmc.fr

 4

Attraction Orientation Repulsion

Reynolds (1987) Flocks, herds and schools: a distributed behavioral model

Positive and negative feedbacks 
	 positive feedback: attraction and orientation rules 
	 negative feedback: repulsion rule

Boids model

Remark: assume constant speed and limited scope
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Phase transition  5

from: Vicsek et al. (2012) Collective motion from: Cechlinger et al. (2016)

Self-organization: a spontaneous process where global 
coordination arises out of local interactions between components 
of a system (e.g. nest building in ants/termites/bees, coordinate 
movements in herd/swarm/schools).

From: West, Griffin, Gardner (2007) Current Biology

Cooperative behaviour: a behaviour that provides a benefit to 
another individual and that has evolved at least partially because 
of this benefit 
as defined in West, Griffin, Gardner (2007)

Illustrations from: D. R. Rubenstein (2010) and wikipedia nicolas.bredeche@upmc.fr

 8Definitions

Scope of this talk: distributed collective robotics  

sensing and actions, and possibly learning, are distributed over the population 
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Collective robotics  9

• Scope [Nettleton et al., 2003], adapted from [Capitan et al. 2013] 
‣ no central control 

‣ no global communication facility 

‣ no local knowledge of the team global topology 

• (Obvious) advantages 
‣ Robustness through redundancy  

‣ Parallelising actions wrt a task 

‣ Parallelising learning/optimisation (if any)

nicolas.bredeche@upmc.fr

Methods

• Hand design controller for collective robotics 
‣ Hand design w/ empiric approach [Mataric 1992][Rubenstein 2014]… 
‣ Hand design w/ (limited) theoretical proofs [Gauci 2014]… 
‣ Software architecture for multi-robot systems [Parker 2008]… 

• Learning in multi-agent systems 
‣ Assume joint payoff but decentralized actions and observations 
‣ A lot of assumptions (Markovian environment, discrete space, etc.) 
‣ Powerful theoretical results [Bernstein 2002][Amato 2014]… 
‣ … but limited practical works (very few robots, individual learning)

 10

from: AAMAS 2011 Tutorial on decision making in MAS (Doshi, Rabinovich, Spaan, Amato)

The “nerd herd” 
[Mataric, 1992]

self-assembling kilobots 
[Rubenstein, 2014]

self-aggregation with e-pucks
[Gauci 2014]

nicolas.bredeche@upmc.fr

Evolutionary robotics for collective robotics

• What ER offers 
• Automated design method 

• Variety of search space (ℝn, graphs) 

• Applicable to the real world  

• Multi-objective search, multiple selection pressure (incl. diversity) 

• What are the limits of ER (…more on that later) 
• Reality gap (at least for classic off-line ER) 

• Lack of theoretical grounding for collective adaptive dynamics 

• Too much emphasis on “logical” control (w.r.t. “morphological” control)

 11

nicolas.bredeche@upmc.fr

Outline  12

en
gin

ee
rin

g
bio

log
y

1. ER as an optimisation method 

2. ER as an on-line learning method 

3. ER as an individual-based modelling method 

4. Future of ER for collective robotics
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 13

ER as an optimisation method for collective robotics

“classic” evolutionary robotics

nicolas.bredeche@upmc.fr

Optimisation for collective robotics

• What? 
‣ Off-line design method : classic “evolutionary robotics” method 

‣ Optimize in centralized fashion, then used in a distributed fashion 

• Expected result 
‣ A set of policies (possibly similar) that can be used within a 

population of robots to solve a task

 14

[Nolfi, Floreano 2000][Doncieux et al. 2015]

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

continue stop end.

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

 15Evolutionary Robotics for multi-robot systems

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

Swarm-bots, 2001-2005 Symbrion and Replicator, 2008-2013Swarmanoid, 2006-2010

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

Decoding Evaluation

 16

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

Evolutionary Robotics for multi-robot systems
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Decoding

 17

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

Evolutionary Robotics for multi-robot systems

1

2

3

Evaluation

nicolas.bredeche@upmc.fr

Team composition and levels of selection  18

Waibel et al. (2009)

nicolas.bredeche@upmc.fr

Task specialisation with homogeneous team  19

Experimental setup
Homogeneous team of 4 robots

100 teams, 2000 generations
 3 evaluations per team

team fitness: #foraged_items
nicolas.bredeche@upmc.fr

 20

 Take-home message for “classic” ER 
  

Team composition and level of selection matter 
Homogeneous team can perform task specialisation 

[Waibel et al., 2009, TEC]
[Nitschke et al., 2012, GPEM]
[Lichocki et al., 2013, IEEE TEC]
[Tuci et al., 2014, Neural Comp. and Apps.]
[Gomez et al., 2015, AAMAS]
[Bernard et al., 2015, ECAL]
[Bernard et al., 2016, ALIFE]
[Ferrante et al., 2015, PCB]
(…)
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 21

ER as an on-line learning method for collective robotics

“embodied” evolutionary robotics

nicolas.bredeche@upmc.fr

Embodied evolution: distributed on-line learning  22

• What? 
‣ On-line adaptation with limited communication and computation 

‣ Optimise and use in a distributed fashion 

• Expected result 
‣ A distributed on-line algorithm for lifetime learning

Watson et al. (2002), Bredeche et al. (2018)

Mating
not close enough

Selection

Variations

Replacement

Evaluation Reservoir 
of 

genomes

Active 
genome

listen

broadcast

nicolas.bredeche@upmc.fr

Embodied evolution: distributed on-line learning

• Obvious advantages 
• On-line 

• No reality gap (by definition) 
• Parallel search (by definition) 

• Distributed 
• Robustness to failure through redundancy 
• Scalability through its distributed nature

 23

Watson et al. (2002), Eiben et al. (2010)

Mating
not close enough

Selection

Variations

Replacement

Evaluation Reservoir 
of 

genomes

Active 
genome

listen

broadcast

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

 24

[Floreano, 2002] 
[Bongard, 2006] 

[Haroun, 2006] 
[Walker,  2006] 

[Bongard, 2006] 
[Bredeche, 2009] 

[Christensen, 2010] 
[Karafotias, 2011]

[Nordin, 1997] 
(and others)

[Ficici, 1999][Watson, 2002] 
[Smith, 2000] 

[Simoes, 2001] 
[Wischmann, 2007] 

[Nehmzow, 2002] 
[Vogt, 2010] 
[Silva, 2013] 

[Fernandez Perez, 2014] 
[Haasdijk, 2014] 

[Fernandez Pérez, 2015] 
[Hart, 2015] 

[Heinerman, 2015] 
[Heinerman, 2016] 
[Montanier, 2016] 
[Bredeche, 2017] 
[Boumaza, 2017] 

[Hart, 2017]

[Usui, 2003] 
[Elfwing, 2005] 

[Perez,2008] 
[Weel, 2012]

[Eiben, Haasdijk, Bredeche, 2010] [Bredeche, Haasdijk, Prieto - in preparation]
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< 
a = +0.31 
b = +0.11 
c = -1.42 
d = +1.6
e = -0.14
f = 0.55
g = -1.17
h = +0.97 
>

{genome,fitness value}^n

e.g.: linear combination of inputs and 
weights, artificial neural networks, etc.

genome of controller
e.g.: ℝn

A vanilla algorithm

This list is used to store (unique) 
copies of genomes from robots 
passing nearby with their current 
fitness value at the time of 
encounter

 25

motor1 = a*IR1 + b*IR2 + c*IR3  + d*IR4 + e 
motor2 = f*IR1 + g*IR2 + h*IR3 + i*IR4 + j

IR = Infrared sensors

radio range

Embodied evolution in a nutshell

: energy item
Objective function

Reservoir of genomes

E.g.: #energy items foraged

Controller

Genome

In the general case, the fitness 
value is computed thanks to an 
embodied objective function, that 
is: each robot individually assess 
its own performance

Example with a foraging task
nicolas.bredeche@upmc.fr

Embodied evolution in a nutshell  26

f=0
f=0
f=0

f=1
f=1
f=1

f=2
f=1
f=1

f=3
f=1
f=1

At this point, each robot... 

1 - forgets its own genome 

2 - perform selection among received 
genomes wrt fitness values 

3 - apply variation (cross-over and/or 
mutation) on the selected genome 
(e.g. gaussian mutation) 

4 - use new genome to set up new 
control architecture

A vanilla algorithm

Example with a foraging task

nicolas.bredeche@upmc.fr

 27

Embodied evolutionary robotics illustrated

nicolas.bredeche@upmc.fr

 28

[Bredeche et al. 2010]

best at 
mating

best at 
foraging

Multiple selection pressures!
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Ecological selection pressure

environment w/o constraint

http://www.youtube.com/watch?v=_ilRGcJN2nA
x10

environment w/o constraint foraging energy is required

Selected (3) trajectories among 100 robots under different constraints

Bredeche, Montanier (2010)

Ecological selection pressure (cont.)

nicolas.bredeche@upmc.fr

 32

 Take-home message for embodied ER 

Selection pressure comes from both the environment and the task 

[Bredeche et al., 2010, PPSN]
[Haasdijk et al, 2014, Plos One]
[Hart et al., 2015, GECCO]
[Perez et al., 2015, ALIFE]
[Steyven et al., 2016, PPSN]
[Montanier et al., 2016, Frontiers in AI and Robotics]
(...)
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 33

ER as an individual-based modelling tool

evolutionary robotics applied to biology

nicolas.bredeche@upmc.fr

• Relevance as a modelling and simulation method 
• vs. mathematical modelling 

• simulates mechanistic aspects 

• vs. in vitro studies (or in vivo observations) 
• simulates longer evolutionary timescale

 34

« So far, we have been able to study only one evolving system and we cannot 
wait for interstellar flight to provide us with a second. If we want to discover 
generalizations about evolving systems, we have to look at artificial ones. »

nicolas.bredeche@upmc.fr

 35

Decoding Evaluation

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

ER as a tool for individual-based modeling and simulation

Evolution of altruistic cooperation

nicolas.bredeche@upmc.fr
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Decoding Evaluation

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

ER as a tool for individual-based modeling and simulation

Evolution of signalling
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Decoding Evaluation

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

ER as a tool for individual-based modeling and simulation

Evolution of swarming

nicolas.bredeche@upmc.fr

 38

Take-home message for individual-based modelling with ER 

Mechanistic constraints plays an important role in natural evolution 

[Plos Comp. Bio. 2016]

(Waibel et al., 2011, Plos Biology)
(Bernard et al., 2016, Plos Computational Biology)
(Olson et al., 2013, GECCO)
(Olson et al., 2013, Royal society Interface)
(...)

ER for collective robotics
What about the future?

nicolas.bredeche@upmc.fr

• What is missing? 
• Lack of impact in other communities (AAMAS, DARS, etc.) 

• We don’t fully understand the evolutionary dynamics of coll. sys. 

• We don’t understand the physics of coll. systems

 40
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Formalising problems with evolutionary game theory  41

Hare Stag

Hare 1 ; 1 1 ; 0

Stag 0 ; 1 2 ; 2

You hunt
Partner hunts

Payoff-dominant 
equilibrium
Risk-dominant 
equilibrium

A. Bernard, J.B. André, N. Bredeche. To Cooperate or Not to Cooperate: Why Behavioural Mechanisms 
Matter. PloS Computational Biology (2016) 

What theory predicts What ER reveals
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Morphological computation and active matter  42

individual motion~1000 walking grains collective motion

J. Deseigne, S. Leonard, O. Dauchot H. Chaté, Vibrated polar disks: spontaneous motion, binary collisions, 
and collective dynamics, Soft Matter, 8, 5629 (2012). 

4 mm

nicolas.bredeche@upmc.fr

 43

Take-home message for the future 

The fields of evolutionary game theory and active matter are strongly 
relevant to our field 

[Plos Comp. Bio. 2016]
.

nicolas.bredeche@upmc.fr

Conclusion

‣ Context: collective adaptive systems in open environments 

‣ Two scopes: 

‣ ER as a design tool for making artificial systems 

‣ ER as a modelling tool for understanding natural systems 

‣ Two methods: 

‣ off-line optimisation problem: use classic ER 

‣ distributed on-line learning: use embodied ER

 44
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Evolutionary Robotics tutorial
Conclusion

N. Bredeche, S. Doncieux, J.-B. Mouret

Some software tools
• SFERES2:       https://github.com/sferes2  

• Software framework in modern C++ 
• As fast as specific code 
• Modules available to evolve robots, examples: 

• Neural network module:        https://github.com/sferes2/nn2 
• Simple simulation of a 2-wheeled robot:        https://github.com/sferes2/fastsim 

• Code of many experiments on http://pages.isir.upmc.fr/evorob_db  
• Basic experiments to starting playing with ER: 

• Two-wheeled robot maze navigation & obstacle avoidance:       https://github.com/
doncieux/navigation  

• Collect ball experiment:        https://github.com/doncieux/collectball 
• NEAT & HyperNEAT packages:      http://eplex.cs.ucf.edu/neat_software/

Mouret, J.-B. and Doncieux, S. (2010). SFERESv2: Evolvin' in the Multi-Core World.
WCCI 2010 IEEE World Congress on Computational Intelligence,  

Congress on Evolutionary Computation (CEC). Pages 4079--4086.
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Evolutionary Robotics 
Community

• Dedicated conferences/tracks:
• Complex Systems track in ACM Genetic and Evolutionary Computation 

Conference (GECCO) 
• Evolutionary robotics track at IEEE-WCCI (World Congress on Computational 

Intelligence)/IEEE-CEC (Congress on Evolutionary Computation) 
• EvoROBOT track in EvoSTAR 

• Dedicated journals:
• Frontiers in Robotics and AI, Evolutionary Robotics specialty section  
• Evolutionary Intelligence, Springer 

• Mailing lists: 
• General: evoderob@listes.upmc.fr 
• On NEAT: neat@yahoogroups.com 

Resibots
Jean-Baptiste Mouret
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