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« Evolutionary Robotics aims
to apply evolutionary
computation  techniques  to
evolve the overall design or
controllers, or both, for real
and  simulated  autonomous
robots »

Patricia A. Vargas, Ezequiel A. Di
Paolo, Inman Harvey and Phil
Husbands, 2014, The Horizons of
Evolutionary Robotics, MIT Press

» Building robots with embodied intelligence

* Learning with state-of-the-art black-box optimization tools

Pfeifer, R., & Bongard, J. (2006). How the body shapes the way we think: a new view of intelligence.
MIT press.

Stulp, F. and Sigaud, O. (2013). Robot Skill Learning: From Reinforcement Learning to Evolution Strategies.
Paladyn Journal of Behavioral Robotics. Vol 4 No 1 Pages 49-61.
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Motivations: biology
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* ER as a model:
* modeling evolutionary dynamics, in particular of groups
» studying the emergence of features

* ER as a tool: optimization and analysis of computational models

Long, J. (2012). Darwin’s Devices: What Evolving Robots Can Teach us about the History of Life
and the Future of Technology. Basic Books.

Liénard, J. and Girard, B. (2014). A Biologically Constrained Model of the Whole Basal Ganglia Addressing the
Paradoxes of Connections and Selection. Journal of Computational Neuroscience. Vol 36 No 3 Pages 445--468.

Main features of
Evolutionary Robotics

Selective priority to task task resolution
pressure resolution secondary (or absent)
Focus control and morphology
Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line
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Evolutionary Robotics

main principles

Evaluation Initial conditions
‘ Random generation ‘ < e
Variation J - 1 O
ﬁ Environment
Genotype T —z
=
(Evaluation| —— >
Fitness %
J Phenotype A |
_00110100111 l
Genotype
Fitness

Doncieux S, Bredeche N, Mouret J-B and Eiben AE (2015) Evolutionary robotics: what, why, and where to.
Front. Robot. Al 2:4. doi: 10.3389/frobt.2015.00004

Overview

priority to task
resolution

Selective
pressure

task resolution
secondary (or absent)

Part I: Fitness function and influence of selection pressure:
What do you need to know about evaluation and selection to
make an ER experiment successful ?



Overview

Implementation simulation or real world

Part ll: Evolution for physical robots and the reality gap
How to make it work on real robots ?

Fitness function and
influence of selection
pressure

S. Doncieux

Q SORBONNE /;S'R
UNIVERSITE
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Overview

Space centralized or distributed

Part lll: Embodied evolution and collective robotics systems
Evolution without a fitness for the design of distributed robotics
systems and for modeling evolution of group dynamics.

Example 1:
obstacle avoidance

e Fitness: m

) https:/github.com/doncieux/navigation



Example 1:

|
Problem ! obstacle avoidance

* How to deal with it ?

b

* Change fitness: ﬁ*u \
* Make the robot move
by default

() https://github.com/doncieux/navigation

Example 2:
Collect ball experiment
) () e =)

©)

Fitness= nbpall . | ]

@ Starting Positions @ .
Switch
(] Ball
\\ Door
=] Basket —

) https:/qgithub.com/doncieux/collectball ) https://qithub.com/doncieux/collectball
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Fitness

Example 2:
|
Problem ! Collect ball experiment

* How to deal with it ?

speed x4
* Decompose the
problem
* Add fitness terms
* Enhance
exploration
() https:/qgithub.com/doncieux/collectball
The challenges e
. How is fitness evaluated ?
of selective pressures
Goal of the evolutionary process: G Genotype:
* vector of parameters

e neural network

- a priori knowledge about how to solve
the task
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How is fitness evaluated ?

The genotype describes a policy:
r,:S—>A

Example: 7T =neural network

‘ S: state space

m A: action space
m: transition function

Beyond black-box optimization

To solve the challenges, the selective process can
take into account:

Two challenges, two kinds of solutions:

L A
Goal refiner Process helper /

PN

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review of selective pressures for
evolutionary robotics. Evolutionary Intelligence, Springer Berlin Heidelberg, publisher. Vol 7 No 2 Pages 71-93
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How is fitness evaluated ?

fit(x) = f(7)
« The fitness depends on the
genotype x and on the fitness

Ty function f()
e ... butalso on:

)

- T

. T

» environment €

Multi-objectivization: a convenient
tool to modify selective pressures

ﬁ Search space

Dominated
solutions
[ d
[ ) ° [

° Non-dominated
o ® solutions

o

- »f Pareto front
OI LalisS

f1 (g) . Ssglcrt_ef;nsers & process helpers as new
f2(9) e
f(g) = ) * Atthe end of the run:

* Goal refiners: taken into account

* Process helpers: ignored



Solution to goal definition issues:
add « goal refiners »

A goal refiner aims at changing the optimum(s) of the fitness
function by adding new requirements.

Typical challenges that can be addressed:

» Overfitting & generalisation
* Reality gap

Encouraging reactivity

* Encouraging robot controllers to react to sensor
stimuli

* Proposition: maximizing the mutual information
between sensors and effectors:

= [ oo (5 o

Lehman, J., Risi, S., D’Ambrosio, D., & O Stanley, K. (2013). Encouraging reactivity to create robust
machines. Adaptive Behavior, 21(6), 484-500.
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Overfitting

A goal refiner to overcome
overfitting

Fitness:

1. distance to the
goal

2. reactivity

Multi-objective EA:
NSGA-II

Neuroevolution
(HyperNEAT)

Lehman, J., Risi, S., D’Ambrosio, D., & O Stanley, K. (2013). Encouraging reactivity to create robust
machines. Adaptive Behavior, 21(6), 484-500.



Solution to exploration issues:
add « process helpers »

A process helper intends to increase the efficiency of the search process
without changing the optimum(s) of the fitness function.

Novelty search

Maze navigation experiment, robot end position

(@) (b) NS, behavior = final location
Random genotypes Generation 100
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s
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g
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&
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Novelty search:
100 gen x 100 Indiv.

Random sampling:
10000 individuals

Novelty search asymptotically behaves like a
uniform random search in the behavior space

Doncieux, S., Laflaquiére, A., Coninx, A. (2019). Novelty Search: a Theoretical Perspective. In Proceedings of
the 2019 Annual Conference on Genetic and Evolutionary Computation. ACM.
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Novelty search

Kenneth 0. Stanley - Joel Lehman
Why Greatness

. 1
* Novelty based fitness: p(x) =— Y dist(x, ;)
Cannot Be Planned k=

{1 -1} are the k-nearest neighbors
in pop+archive

* Archive augmented with individuals
having a high novelty

Lehman, J., & Stanley, K. O. (2010). Abandoning Objectives: Evolution Through the Search for Novelty
Alone. Evolutionary Computation, 19(2), 189-223.

Collect ball experiment

Many different definitions of Novelty Search

Gomes, J., Mariano, P., & Christensen, A. L. (2015, July). Devising effective novelty search algorithms: A
comprehensive empirical study. In Proceedings of GECCO (pp. 943-950). ACM.

speed x4

Fitness objectives:

1. nbpai

2. Behavioral diversity
(Archive-free Novelty)

Multi-objective EA:
NSGA-II

Neuroevolution

() https://github.com/doncieux/collectball

Mouret, J.-B. and Doncieux, S. (2012). Encouraging Behavioral Diversity in Evolutionary Robotics: an
Empirical Study. Evolutionary Computation. Vol 20 No 1 Pages 91-133.




Dealing with goal definition
and exploration at once

* Changing views:
» Exploration as a priority: generate all solutions of interest
* Performance as a secondary, local pressure
=P lllumination or Quality Diversity algorithms
* Main ideas:
* Process helper: selection mostly driven by behavior novelty

* Goal refiner: a posteriori selection of the most appropriate
solution

Quality Diversity Search
for Robot Ball Throwing Experiment

ISIR, Sorbonne University

"\ SORBONNE
lSlR' S UNIVERSITE

ssssssssssssssss

Kim, S., Coninx, A. & Doncieux, S. (2019) From exploration to control: learning object
manipulation skills through novelty search and local adaptation. arXiv:1901.00811

QD algorithms

Evaluation in

selection

£ Random simulation
gi c para_mte_ters
.FI lg variation
Looki r the 8%
. . Us
opti lution EE
: [
o

\ 4

Looking for a large set of
original and efficient solutions

archive

Behavioral descriptor

MAP-Elites
Mouret, J. B., & Clune, J. (2015). llluminating search spaces by mapping elites. arXiv:1504.04909.

Pugh, J. K., Soros, L. B., & Stanley, K. O. (2016). Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and Al, 3, 40.

Cully, A., & Demiris, Y. (2018). Quality and diversity optimization: A unifying modular framework. |[EEE
Transactions on Evolutionary Computation, 22(2), 245-259.

Acquisition and adaptation of a robot behavior repertoire
for ball throwinexperiment

Seungsu Kim and Stéphane Doncieux

Institute of Intelligent Systems and Robotics (ISIR)
Sorbonne University

o~
™ SORBONNE
ISIR 2 SITE

Kim, S., Coninx, A. & Doncieux, S. (2019) From exploration to control: learning object
manipulation skills through novelty search and local adaptation. arXiv:1901.00811
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Conclusion on selective Evolution,
pressures simulators,

/2 and the reality

Random generation  |Evaluation
~

* The definition of the fitness is :Genotype

Crlthﬁ' Phenotype Environment H

Jean-Baptiste Mouret
» Beyond black box optimization o k4 ,
@‘ Behavior Inria Nancy-Grand Est

* Multi-objective framework .

convenient: multi-objectivization Fitress

\ v Image: A. Cully / UPMC

* QD/lllumination algorithms Selection

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review of selective pressures for INVENTEURS DU MONDE NUMERIQUE
evolutionary robotics. Evolutionary Intelligence, Springer Berlin Heidelberg, publisher. Vol 7 No 2 Pages 71-93.

I d
' d
lrzzia— @ s @

No simulator No simulator

locomotion

Hornby, G. S., Takamura, S., Yamamoto, Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal,

) T., & Fujita, M. (2005). Autonomous J., & Lipson, H. (2011). Evolving robot gaits in hardware:
Floreano, Dario, and Francesco Mondada (1996). "Evolution of homing navigation in a real mobile robot." evolution of dynamic gaits with two the HyperNEAT generative encoding vs. parameter
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 26.3: 396-407. quadruped robots. Robotics, IEEE optimization. In Proc. of ECAL, pp. 890-897.
Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing Transactions on, 21(3), 402-410.
machines . MIT press. 2 3
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No simulator Evolving morphologies

... in the real world

evolving Walklng Starting  Time (| run) Robot DOFs Param.
controllers
random 5h quadruped 12 54
random 2h hexapod 12 72
random 2h quadruped 8 36
non-falling 25h quadruped |9 21

random 10 h snake 12 1152
random 10 h hexapod 12 135
random 2h quadruped 9 5

- (almost) no reality gap - slow (too slow?)

- can exploit unknown physics - will not be faster next year

- o,
never 100% real Brodbeck L, Hauser S, lida F (2015) Morphological Evolution of Physical Robots through Model-Free Phenotype

- require priors (controller) Development. PLoS ONE 10(6): e0128444. https://doi.org/10.1371/journal.pone.0128444 (creative commons)
4 5

Evolving 3D programs for 3D_printers Using simulators

useful tools?

\ 3 - -
TRl R ;’ —— 7«.\‘4

Evolution is a slow process (millions of years?) =
... but computers are faster every year

Can we ‘accelerate time”?

We now have many "good" simulators:
- ODE (library): www.ode.org g . -

- Bullets (library): bulletphysics.org T
- Dart (library): https:/gith m/dartsim/dar = W s
- [Gazebo (GUI): gazebosim.org] % .

- [V-Rep (GUI): www.coppeliarobotics.com] Y

S. Ivaldi et al. (2014). Tools for dynamics simulation of robots: a survey based on user feedback.

Kuehn, T. and Rieffel, J. (2012) Automatically Designing and Printing Objects with EvoFab 0.2", Proc. of Humanoids
Proceedings of the 13th International Conference on the Synthesis and Simulation of Living Systems (ALife J.-.B. Mouret and K. Chatzilygeroudis (2017). 20 Years of Reality Gap: a few Thoughts about
Xy, pp. 372-378 6 Simulators in Evolutionary Robotics. GECCO workshop (SIimER) — 2017 7
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The reality gap Reality vs simulation

... or what always happens with simulators and robots

1500

1350

1200

1050

©
3
3

Koos, Mouret & Doncieux.
|IEEE Transactions on Evolutionary Computation. 2012

a

3

3
o
3
3

=
3
fitness (distance)

fitness (distance)

eow s
o & &
s & 2
2w
o 8
s 8

Controller: 2 parameters

°

0 0'8.0 0.1 0.2 03 04 05 0.6

%80 01 0.2 03 0.4 05 06

1
b1 )
Jakobi, Nick. "Running across the reality gap: Octopod locomotion evolved in a minimal simulation." Mouret, J. B., Koos, S., & Doncieux, S. (2013). Crossing the reality gap: a short introduction to
Evolutionary Robotics. Springer Berlin Heidelberg, 1998. 8 the transferability approach. arXiv preprint arXiv:1307.1870.

But they can agree (sometimes)! The reality gap

- Any simulation has a
- Human experts know this validity domain

|n > 1300 (reality) - >1300(simu.)|
1350 1500

1200

1350

fitness (distance)

1200 Results found in simulation have a low probability of
1050 working similarly in reality

w One of the main problems of ER as a design tool

080 01 02 03 04 05 0.6
pl

08
0.7]
0.6
05

N 0.4
03
0.9
0.1]

“Sim2Real" in “deep learning”

fitness (distance)

fitness (distance)

200 What can we do?
no simulator

150
. better simulator
avoid non-transferable solutions
0'8.0 0.1 0.2 03 04 05 0.6 pl
P robust controllers

10
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Finish evolution in reality

evolve in simulation, then do a few generations with the robot

JE———

can help fine-tuning the
solution obtained in simulation

“local search” in the
vicinity of the solutions found
in simulation
I m cannot find something

completely different

Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 406,
974-978. 12

Improving simulators

Exploratory Action synthesis

Selt-Model synthesis

First cycle (of 16)

avior synthesis’

Bongard, Zykov and Lipson (2006). Science.
Koos, S., Mouret, JB and Doncieux, S. (2009) "Automatic system identification based on coevolution of

models and tests.” Proc. of IEEE CEC.
14

3
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Zagal, J. C., and J. Ruiz-Del-Solar (2007) "Combining si
Intelligent and Robotic Systems 50.1.

Learnir_lg the simulator from data

arning the dynamical model of the robot

rw

‘ -
I. try the best policy according to the model

m new data

m new model (Gaussian processes)
2. find a policy that maximises the fitness according the simulator,Taking the

uncertainty into account

Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB. (2017) Black-Box Data-
efficient Policy Search for Robotics. Proc. of IEEE IROS 2017.
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Correcting the simulator

System identification + free modelling

Xpp1 = X + M(Xg, 0, @) + f(Xe, 0, ) + W

Simulator / model parameters

Learning = maximize the likelihood of M+f

We can combine model learning and model identification
= effects that can be captured by the simulator will be included by tuning
the simulator (model identification)
= effects that cannot be captured by changing the parameters are
modelled by the Gaussian processes

Chatzilygeroudis K, Mouret JB. (2018) Using Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics. Proc. of ICRA.

Surrogate modelling / Bayesian optimization
learn a model of the fitness function

+ Use data to predict the fitness given the parameters

* No need to sense “states”

« Work well if a few parameters (< 6)

+ Usually do not work on structures (but come to see our talk!)

Model = Gaussian process
EA = CMA-ES

Rieffel, J., & Mouret, J.-B. (2018). Soft tensegrity robots. Soft Robotics. 18
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Model identification + correction

Control rate: |10Hz

Prior (tunable black-box simulator):

Chatzilygeroudis K, Mou‘l"et JB. (2018) Using Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics. Proc. of ICRA. 17

Improving simulators & models

mix simulation and reality:
the best of both worlds?

the simulator will never be
perfect (generalization)

if the correction cannot be
applied? (e.g. aerodynamics)

faster than learning without
a simulator

morphological / env.
changes

learning a simulator is hard!

Jin, Y. (2005) "A comprehensive survey of fitness approximation in evolutionary computation." Soft
computing 9.1 (2005): 3-12.



Avoiding bad simulations

the envelope of noise & minimal simulations

Simulate only the useful effects
Hide in an “envelope of noise” things that are too hard to
simulate accurately

m keep evolution from exploiting simulation artefacts

Examples:

LEFT SPEED RIGHT SPEED

m Khepera robot: add noise to ! !
the sensors and the e
actuators

' Octopod robot: minimal ot
simulation

In deep learning: “Domain randomization”

Jakobi, N. (1997) "Evolutionary robotics and the radical envelope-of-noise hypothesis." Adaptive Behavior
6.2: 325-368. 20

Avoiding bad simulations

the transferability approach

m |earn the limits of the simulation (supervised learning)
m focus the search on well-simulated behaviors
w the transferability is a

Approximation of
transferability
function

MOEA

maximize{

Transferred
individuals

.. reto front
‘..

o®.
o
o

—_—
Transf(x)
Fitness(x)

Fitness according to the simulation

Mouret, Koos & Doncieux (2012). ALIFE workshop. 2012
Koos, Mouret & Doncieux (2012). IEEE TEC. 2012
Koos, Cully & Mouret. (2013). IJRR. 2013 22

Population
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Avoiding bad simulations

envelope of noise & minimal simulations

Lightweight simulations Hard to set-up
What noise?! what is

Noise increases
important?

robustness and

generalization
No surprising dynamic

effect

Noise makes evolution
harder

Avoiding bad simulations

the transferability approach

fitness

Maximize .
transferability

Maximize fitness

Centrol appre
fitness

optimal
in simulation

|5 transfers
(motion capture)

Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality Gap in
Evolutionary Robotics. |IEEE Transaction on Evolutionary Computation, 1, 1-25.

23
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Avoiding bad simulations

the transferability approach

fitness

Maximize .
transferability

Maximize fitness

Control approach - 1 objective

covered distance

in simulation: 1200 mm in 10 seconds in simulation: 1031 mm in 10 seconds

I5 transfers
(motion capture)

Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality Gap in
Evolutionary Robotics. IEEE Transaction on Evolutionary Computation, 1, 1-25.

Mapping, then searching

Intelligent Trial & Error

00:00:16

Behavior-performance

™
i

Forward Speed (m/s)

0.17

Trajectory

s

Cully, Clune, Tarapore & Mouret (2015). Robots that can adapt like animals. Nature.

24

26

446

Mapping, then searching

Intelligent Trial & Error

Offline: Evolution-based Elite reduction Online: prior-based Bayesian optimization

=

A B
Confidence
level
oo Performance
h S 52 Behavioral
simulation R

“" projecti
(undamaged) projection
High-dimensional

search space

Mapping (offline)

- MAP-Elites algorithm
(ilumination/quality diversity)

- search for the best behavior
of each family

Adaptation (online)
- Bayesian optimization
- levels of confidence

Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature,
521(7553), 503-507.

25
Avoiding bad simulations
the transferability approach
Easier to learn the limit The EA cannot exploit
than to correct/learn the phenomena that not
simulator simulated at all
Only a few test on the (e-g. highly-dynamic gaits,
robot: no need for a unknown aerodynamic
special set-up effects, etc.)
27



Improving robustness Improving robustness

encouraging reactivity

- quantification of reactivity
derived from the
between sensors

Example: neural networks with “adaptives synapses”

7,

Most often transfers from Noise

training fail at the first turn
and actuators T

£=0422, <5 =0499

- multi-objective optimization

- even better if combined with
noise

Adaptive synapses

“ gy #

£ 5

Transfers fromv:'Reacti\’Iit.y trai
often noticably react to walls

deo.is'at3: d)
Floreano, D., & Urzelai, J. (2000). Evolutionary robots with on-line self-organization and behavioral fitness. Ylideo | iCkSaeed)

Neural Networks, 13(4-5), 431-43.

Urzelai, J., & Floreano, D. (2000) "Evolutionary robots with fast adaptive behavior in new environments."
Evolvable Systems: From Biology to Hardware. Springer Berlin Heidelberg. 241-251.

Lehman, Joel, et al. (2013) "Encouraging reactivity to create robust machines." Adaptive Behavior (2013):

1059712313487390.
28

Conclusion Conclusion

the reality gap the reality gap

1 " No simulator: possible but slow (swarm?) ,
o i ) o ) * No perfect approach to cross the reality gap

2 " Finishing evolution on the physical robot: similar optima o . . . .
e * Avoiding simulation is materially challenging and slow

" |mproving simulators: not always enough data to learn N Hect simulati
* No perfect simulation

»  system identification
4 f * Simulators should give their confidence (and not only a prediction of the

s Avoiding badly simulated solutions fitness)
. » add noise to sensors and actuators: hard to tune
» minimal simulations: requires expert knowledge m it depends on the scientific question!
> learn the transferability function - show the potential of a new encoding? a new selective pressure?
" |mproving robustness: no guarantee simulation might be enough
5 » add online learning abilities - solve challenging robotics problem!? this needs to work on real robots
g ging P

» encourage reactivity

30
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Definitions 2

Evolutionary robotics for collective robotics

A 30-minute overview

GECCO 2019
\l/mc '_55'“ b ’ ﬁ’ » »
-.: ..'... 64 g 2 > S .
L& -.' :. .'!. ; > SmavNET@EPFL SSR/Harvard H2020 COLLMOT
0‘.‘ //'%, =
XY . Kilobots at SL pack huinfing (wwkﬁdjy
Collective robotics: multiple robots, acting together, to achieve a common goal.
Nicolas Bredeche
Sorbonne Université Swarm robotics: collective robotics with large population of “simple” robots (i.e.
Institut des Systemes Intelligents et de Robotique limited computation and communication capabilities). It is a distributed system.
UPMC - CNRS (UMR 7222)
Paris, France Note on citation policy: for a given topic, | cite either
or both the seminal reference and a recent one. Eg:
http://pagesAisir.upmc.fr/~bredeche [No\ﬁ»and Floreano. 2000][Doncieux et al. 20 \'5] for
P . . referring to general resources on evolutionary
e-mail: nicolas.bredeche@sorbonne-universite.fr robotics. Non-first authors may be omitted for clarity. nicolas.bredeche@upme.fr
Bucket brigade 3 Boids model 4

1 1
/ A
» 08 o 08 A A
[+} o i
= = 4
g o6 g os OPT B
5 5 INF
g 04 g 04 : _
SuP
0.2 0.2 e
sSuB . . . .
0 0 Attraction Orientation Repulsion
0 10 20 30 40 50 60 0 10 20 30 40 50 60
swarm density p swarm density p
(c) (d) Positive and negative feedbacks

Fig. 1.5 Bucket brigade example for swarm performance (robots have to transport objects back
and forth between the left and right side of the robot arena) and typical swarm performance
function over swarm density p = N/A for a fixed area A = 1 (without units). (a) Bucket
brigade, N = 4 robots (b) Bucket brigade, N = 16 robots (¢) Bucket brigade, performance.
(d) Swarm performance showing four regions, SUP: super-linear, SUB: sub-linear, OPT: optimal,

INF: interference
nicolas.bredeche@upmc.fr

H.Hamman (2018) pp.10

positive feedback: attraction and orientation rules
negative feedback: repulsion rule

Remark: assume constant speed and limited scope

nicolas.bredeche@upmc.fr Reynolds (1987) Flocks, herds and schools: a distributed behavioral model
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Phase transition 5

_
nicolas.bredeche@upmc.fr
Cooperation
1
Direct benefits Indirect benefits
Non-enforced Enforced Limited dispersal Kin Greenbeard
discrimination
Conditional Fixed Environmental Genetic
enforcement enforcement cues cues
| | S
Reward Punishment Sanctions Reciprocity Policing Shared Prior
environment assessment
Direct Indirect
reciprocity (reputation-based)
reciprocity

Cooperative behaviour: a behaviour that provides a benefit to
another individual and that has evolved at least partially because
of this benefit

as defined in West, Giriffin, Gardner (2007)

llustrations from: D. R. Rubenstein (2010) and wikipedia From: West, Griffin, Gardner (2007) Current Biology
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Self-organization: a spontaneous process where global
coordination arises out of local interactions between components
of a system (e.g. nest building in ants/termites/bees, coordinate
movements in herd/swarm/schools).

from: Vicsek et al. (2012) Collective motion from: Cechlinger et al. (2016)

Definitions 8

Scope of this talk: distributed collective robotics

_ sensing and actions, and possibly learning, are distributed over the population

nicolas.bredeche@upmc.fr



Collective robotics 9

® SCOPE netteonetar, 200, acptet o [Captan . 20
» no central control
» no global communication facility
» no local knowledge of the team global topology

® (Obvious) advantages
» Robustness through redundancy
» Parallelising actions wrt a task

» Parallelising learning/optimisation (if any)

nicolas.bredeche@upmc.fr

Evolutionary robotics for collective robotics 1

® \What ER offers
e Automated design method
® Variety of search space (Rn, graphs)
® Applicable to the real world

e Multi-objective search, multiple selection pressure (incl. diversity)

e \What are the limits of ER (.. more on that Iater)
® Reality gap (at least for classic off-line ER)
® | ack of theoretical grounding for collective adaptive dynamics

e Too much emphasis on “logical” control (w.rt. “morphological” control)

nicolas.bredeche@upmc.fr

The "nerd herd” self-assembling kilobots
[Mataric, 1992] [Rubenstein, 2014] [Gauci 2014]

self-aggregation with e-pucks

e Hand design controller for collective robotics
» Hand design w/ empiric approach [Mataric 1992][Rubenstein 2014]...
» Hand design w/ (limited) theoretical proofs [Gauci 2014]...
» Software architecture for multi-robot systems [Parker 2008]...

® [ earning in multi-agent systems
» Assume joint payoff but decentralized actions and observations
» A lot of assumptions (Markovian environment, discrete space, etc.)
» Powerful theoretical results [Bernstein 2002][Amato 2014]...
» ... but limited practical works (very few robots, individual learning)

nicolas.bredeche@upmc.fr from: AAMAS 2011 Tutorial on decision making in MAS (Doshi, Rabinovich, Spaan, Amato)

Outline 12

£ 1. ER as an optimisation method

°° 2. ER as an on-line learning method

g 3. ER as an individual-based modelling method
4. Future of ER for collective robotics

nicolas.bredeche@upmc.fr



ER as an optimisation method for collective robotics

“classic’ evolutionary robotics

nicolas.bredeche@upmc.fr

Evolutionary Robotics for multi-robot systems 15

Initial Population
(random solutions)

continue Stop.

Y I
Evaluation Selection —»| Variations Replacement
H A
5
=] =2
g i8
S

it

nicolas.bredeche@isir.upmc.fr

451

Initial Population
(random solutions)

Optimisation for collective robotics

[Nolfi, Floreano 2000][Doncieux et al. 2015]

Y

.

Evaluation

continue sto

Selection

e \Vhat?

—

Variations

-

Replacement

» Off-line design method : classic “evolutionary robotics” method

» Optimize in centralized fashion, then used in a distributed fashion

® Expected result

» A set of policies (possibly similar) that can be used within a
population of robots to solve a task

nicolas.bredeche@upmc.fr

Initial Population
(random solutions)

Evolutionary Robotics for multi-robot systems

v

Evaluation

continue Stopy

description
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ssaully

© Decoding

nicolas.bredeche@isir.upmc.fr
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Evolutionary Robotics for multi-robot systems 17
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Task specialisation with homogeneous team 19
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{BPLOS |steevoms
Evolution of Self-Organized Task
Specialization in Robot Swarms

Eliseo Ferrante'*, Ali Emre Turgut?, Edgar Duéfiez-Guzmén', Marco Dorigo®,
Tom Wenseleers'
DOI:10.1371/joumal.pchi. 1004273  August 6, 2015

nicolas.bredeche@upmc.fr

Experimental setup
Homogeneous team of 4 robots
|00 teams, 2000 generations

3 evaluations per team

team fitness: #foraged_items

452

Team composition

Heter

Team composition and levels of selection

Level of Selection

Individual Team

Select best Select
individuals Dest teams

Select best Select
individuals best teams

Genetic Team Composition and Level of Selection
in the Evolution of Cooperation

Markus Waibel, Member; IEEE, Laurent Keller, and Dario Floreano, Senior Member, IEEE
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

nicolas.bredeche@upmc.fr

Take-home message for “classic” ER

Team composition and level of selection matter
Homogeneous team can perform task specialisation

[Waibel et al,, 2009, TEC]

[Nitschke et al, 2012, GPEM]

[Lichocki et al, 2013, IEEETEC]

[Tuci et al,, 2014, Neural Comp. and Apps.]
[Gomez et al, 2015, AAMAS]

[Bernard et al, 2015, ECAL]

[Bernard et al, 2016, ALIFE]

[Ferrante et al, 2015, PCB]

()

nicolas.bredeche@upmc.fr

Waibel et al. (2009)

20
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ER as an on-line learning method for collective robotics

“embodied” evolutionary robotics

nicolas.bredeche@upmc.fr

Embodied evolution: distributed on-line learning 23

/

Reservoir

of

genomes

Variations "
- I' Active
N Replacement e

Evaluation

« listen

not close enough -
Selection

broadcast

e (Obvious advantages
e On-line
e No reality gap (by definition)
e Parallel search (by definition)
® Distributed
® Robustness to failure through redundancy
e Scalability through its distributed nature

Watson et al. (2002), Eiben et al. (2010)

nicolas.bredeche@upmc.fr
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Embodied evolution: distributed on-line learning 22

4 N \
Evaluation

not close enough -
Selection

Reservoir

of

genomes

« listen

v 4

. Variations '
- I' Active
**+. | Replacement || 8€MM€

broadcast

e \What?
» On-line adaptation with limited communication and computation

» Optimise and use in a distributed fashion

® Expected result
» A distributed on-line algorithm for lifetime learning

nicolas.bredeche@upmc.fr

Wiatson et al. (2002), Bredeche et al. (2018)

24

[Ficici, 1999][Watson, 2002
[Smith, 2000]

— [Simoes, 2001
m [Wischmann, 2007
[Nehmzow, 2002

;"
[Vogt, 2010
[Silva, 2013
" [Fernandez Perez, 2014]
[Haasdijk, 2014

[Fernandez Pérez, 2015]
[Hart, 2015
[Heinerman, 2015
[Heinerman, 2016
[Montanier, 2016
[Bredeche, 2017

[Boumaza, 2017

u [Hart, 2017
on-line,
on-board (intrinsic),
distributed.
[Usui, 2003]
[Elfwing, 2005]
[Perez,2008]
[Weel, 2012]

[Floreano, 2002]

[Bongard, 2006]

[Haroun, 2006]

" [Walker, 2006] :
on-line, L [Bongard, 2006] on-line,

on-board (intrinsic), [Bredeche, 2009] on-board (intrinsic),

" 2 h , 201 e
encapsulated (centralised). e oot distributed and encapsulated.

nicolas.bredeche@isir.upmec.fr [Eiben, Haasdijk, Bredeche, 2010] [Bredeche, Haasdijk, Prieto - in preparation]



Embodied evolution in a nutshell 25
A vanilla algorithm

Controller
e.g.: linear combination of inputs and motort IRt
weights, artificial neural networks, etc. IR2
IR3 IR = Infrared sensors
motor1 = a*IRs + b*IR2 + ¢*IRs + d*IRs + &
motor2 = f*IR1 + g*IR2 + h*IRs + i*IRa + | L
: Reservoir of genomes
Genome : ® g
v radio range - {genome fitness value}*n ‘
@ ° ° This list is used to store (unique)

2 copies of genomes from robots

genome of controller PY passing nearby with their current
egiRr e} fitness value at the time of
O encounter

e Objective function
® :energy item| In the general case, the fitness
value is computed thanks to an
embodied objective function, that
is: each robot individually assess
its own performance
E.g.: #energy items foraged

Example with a foraging task

nicolas.bredeche@upmc.fr

27

[ ] ‘ @ .
) )
® ‘ » ’

FEmbodied evolutionary robotics illustrated

nicolas.bredeche@upmc.fr
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Embodied evolution in a nutshell

A vanilla algorithm

26

genemes:

racelved
a® @

i

Step | :generation starts
(3 robots, empty lists)

s

Backoseep 1+
S goordon s

Step 2 Step 3

Example with a foraging task

nicolas.bredeche@upmc.fr

Step 4 :end of generation

)

At this point, each robot...

-1 - forgets its own genome

2 - perform selection among received
genomes wrt fitness values

3 - apply variation (cross-over and/or
mutation) on the selected genome
(e.g. gaussian mutation)

4 - use new genome to set up new
control architecture

28

best at
foraging

best at
mating

nicolas.bredeche@upmc.fr

Multiple selection pressures!




Ecological selection pressure

http://www.youtube.com/watch?v=_i1RGcINZnA

Environment-driven distributed evolutionary adaptation
in a population of autonomous robotic agents

Nicolas Bredeche, ]-M Montanier; W. Liu, A. F. Winfield
Mathematical and Computer Modelling of Dynamical Systems, Volume 18, Issue 1, 2012

environment w/o constraint

Ecological selection pressure (cont.) 82

energy level

: Y OIS K
/g?gé \ < Z/;\)\/\} < ;i i Take-home message for embodied ER
/ & \( / 7 %ﬂ

environment w/o constraint

Selection pressure comes from both the environment and the task

foraging energy is required

[Bredeche et al,, 2010, PPSN]
[Haasdijk et al, 2014, Plos One]
Selected (3) trajectories among 100 robots under different constraints [Hart et al, 2015, GECCO]
[Perez et al,, 2015, ALIFE]
[Steyven et al, 2016, PPSN]
[Montanier et al,, 2016, Frontiers in Al and Robotics]
()

nicolas.bredeche@upmc.fr
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ER as an individual-based modelling tool
evolutionary robotics applied to biology
nicolas.bredeche@upmc.fr
ER as a tool for individual-based modeling and simulation 35
Evolution of altruistic cooperation
Initial Population
(random solutions)
continue Sto andl

J

Evaluation

»| Variations Replacement

Selection

A

A

description
ssouly

,,,,,,,,,,,,,,,,,,,,,, . N

@). PLos Biology | www.plosbiology.org 1 May 2011 | Volume 9 | Issue 5 | €1000615

A Quantitative Test of Hamilton'’s Rule for the Evolution &
of Altruism

o R V)
%ﬁb%@ Markus Waibel'*, Dario Floreano', Laurent Keller**
N [l' A\ \K 1 Laboratory of Intelligent Systems, Schoo! of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerdand, 2 Depantment of Ecology and Evolution,

Biophore, University of Lausanne, Lausanne, Switzerland N

e

nicolas.bredeche@upmc.fr

34

® Relevance as a modelling and simulation method

® vs. mathematical modelling
e simulates mechanistic aspects

® vs. jn vitro studies (or in vivo observations)
® simulates longer evolutionary timescale

« So far, we have been able to study only one evolving system and we cannot
wait for interstellar flight to provide us with a second. If we want to discover

generalizations about evolving systems, we have to look at artificial ones. »

NATURE - VOL 355 - 27 FEBRUARY 1992
Byte-sized evolution

John Maynard Smith

nicolas.bredeche@upmc.fr

ER as a tool for individual-based modeling and simulation 36

Evolution of signalling

Initial Population

(random solutions)
Historical contingency affects signaling strategies and pd. )
competitive abilities in evolving populations of
simulated robots

e Steffen Wischmann®®, Dario Floreano®, and Laurent Keller™'

P -0cpariment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; and “Laboratory of Intelligent Systems, Ecole Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved December 2, 2011 (received for review March 22, 2011
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ER as a tool for individual-based modeling and simulation 37

Evolution of swarming

Initial Population
(random solutions)

continue Stop,

A |

Evaluation » Selection —>| Variations » Replacement

A

description

JOURNAL Predator confusion is sufficient to evolve
swarming behaviour

Interface

rsif.royalsocietypublishing.org

Randal S. Olson'#, Arend Hintze2*, Fred C. Dyer**, David B. Knoester>*
and Christoph Adami?*

g~ S

nicolas.bredeche@upmc.fr

ER for collective robotics

What about the future?

457

38

Take-home message for individual-based modelling with ER

Mechanistic constraints plays an important role in natural evolution

(Waibel et al, 201 I, Plos Biology)

(Bernard et al., 2016, Plos Computational Biology)
(Olson et al, 2013, GECCO)

(Olson et al, 2013, Royal society Interface)

)

nicolas.bredeche@upmc.fr [Plos Comp. Bio. 2016]

40

e \What is missing?
e | ack of impact in other communities (AAMAS, DARS, etc.)
e \We don't fully understand the evolutionary dynamics of coll. sys.
e \We don’t understand the physics of coll. systems

nicolas.bredeche@upmec.fr



Formalising problems with evolutionary game theory 41 Morphological computation and active matter 42

Partner hunts

You hunt Hare Stag . Paypff—dominant
equilibrium
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What theory predicts ~ ww=ii»>  \What ER reveals

A. Bernard, J.B. André, N. Bredeche.To Cooperate or Not to Cooperate: Why Behavioural Mechanisms

J. Deseigne, S. Leonard, O. Dauchot H. Chaté, Vibrated polar disks: spontaneous motion, binary collision:
Matter. PloS Computational Biology (2016)

and collective dynamics, Soft Matter, 8, 5629 (2012).

nicolas.bredeche@upmc.fr nicolas.bredeche@upmec.fr

“ Conclusion 44
» Context: collective adaptive systems in open environments
» Two scopes:
» ER as a design tool for making artificial systems
» ER as a modelling tool for understanding natural systems
Take-home message for the future » Two methods:
, . . » off-line optimisation problem: use classic ER
The fields of evolutionary game theory and active matter are strongly P P
relevant to our field » distributed on-line learning: use embodied ER
?frontiers ‘;Uggméjgfgsﬁgmnm o L: %
in Robotics and Al do?”?g_%“aeg’g‘,ff,;eggﬁ’_yogglg Evolutionary robotics: what, why, and where to
Embodied Evolution in collective |Stephane Doncieux'?*, Nicolas Bredeche'?, Jean-Baptiste Mouret'? and Agoston E. (Gusz) Eiben®
Robotics: A Review
Nicolas Bredeche'*, Evert Haasdijk? and Abraham Prieto®
nicolas.bredeche@upmc.fr [Plos Comp. Bio. 2016] nicolas.bredeche@upmc.fr
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Some software tools
Floreano, D., and F. Mondada. (1996) Evolution of homing navigation in a

+ SFERES2: () https://github.com/sferes2 ; r
] real mobile robot. |[EEE Transactions on Systems, Man, and Cybernetics,
* Software framework in modern C++ Part B : Cybernetics 26.3 (1996) : 396-407.

« As fast as specific code

Lipson, H., and J B. Pollack. (2000) Automatic design and manufacture of
* Modules available to evolve robots, examples: robotic lifeforms. Nature 406.6799 : 974-978.
* Neural network module: () https://github.com/sferes2/nn2 Watson, R. A., S. G. Ficici, and J. B. Pollack. (2002) Embodied evolution :

* Simple simulation of a 2-wheeled robot: () https:/github.com/sferes2/fastsim Distributing an evolutionary algorithm in a population of robots.
Robotics and Autonomous Systems 39, no. 1: 1-18.

» Code of many experiments on http://pages.isirupmc.fr/evorob db

Hornby, G. S., S. Takamura, T. Yamamoto, and M. Fujita (2005).
Autonomous evolution of dynamic gaits with two quadruped robots.
+ Two-wheeled robot maze navigation & obstacle avoidance: € https:/github.com/ IEEE Transactions on Robotics, 21, no. 3 : 402-410.

doncieux/navigation
» Collect ball experiment: ) https://github.com/doncieux/collectball
* NEAT & HyperNEAT packages:  http://eplex.cs.ucf.edu/neat software/

» Basic experiments to starting playing with ER:

Bongard, J., V. Zykov, and H. Lipson (2006). Resilient machines through
continuous self-modeling. Science 314.5802 :1118-1121.

Lehman, J., and Kenneth O. Stanley (2011). Abandoning objectives :
Evolution through the search for novelty alone. Evolutionary computation
19.2 (2011) : 189-223.

Mouret, J.-B. and Doncieux, S. (2010). SFERESv2: Evolvin' in the Multi-Core World. Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can
WCCI 2010 IEEE World Congress on Computational Intelligence, adapt like animals. Nature, 521(7553), 503-507.
Congress on Evolutionary Computation (CEC). Pages 4079--4086.
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Evolutionary Robotics
Community

- Dedicated conferences/tracks:

» Complex Systems track in ACM Genetic and Evolutionary Computation
Conference (GECCO)

» Evolutionary robotics track at IEEE-WCCI (World Congress on Computational
Intelligence)/IEEE-CEC (Congress on Evolutionary Computation)

* EvoROBOT track in EvoSTAR

- Dedicated journals:

» Frontiers in Robotics and Al, Evolutionary Robotics specialty section
» Evolutionary Intelligence, Springer

-+ Mailing lists:

» General: evoderob@listes.upmc.fr
» On NEAT: neat@yahoogroups.com



