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Introduction
Purpose

The main objectives of this tutorial are to:
1 Inform particle swarm optimization (PSO) practitioners of the

many common misconceptions and falsehoods that are actively
hindering a practitioner’s successful use of PSO; i.e. to

separate fact from fiction with evidence
2 Highlight the existing PSO theory that will greatly improve your

effectiveness with PSO
This knowledge will not only improve your results but also allow you
to develop a better intuition for how PSO actually works.
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Particle Swarm Optimization
Introduction

What is particle swarm optimization (PSO) [8, 13]?
a simple, computationally efficient optimization method
population-based, stochastic search
individuals follow very simple behaviors:

emulate the success of neighboring individuals,
but also bias towards own experience of success

emergent behavior: discovery of optimal regions within a high
dimensional search space
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Particle Swarm Optimization
Main Components

What are the main components?
a swarm of particles
each particle represents a candidate solution
elements of a particle represent parameters to be optimized

The search process:
Position updates

xi(t + 1) = xi(t) + vi(t + 1), xij(0) ∼ U(xmin,j , xmax ,j)

Velocity (step size)
drives the optimization process
reflects experiential knowledge of the particles and
socially exchanged information about promising
areas in the search space
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Particle Swarm Optimization
Inertia Weight PSO

used either the star (gbest PSO) or social (lbest PSO) topology
velocity update per dimension [28]:

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)]

vij(0) = 0 (preferred [11])
w is the inertia weight
c1, c2 are positive acceleration coefficients
r1j(t), r2j(t) ∼ U(0,1)

note that a random number is sampled for each dimension
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Particle Swarm Optimization
Inertia Weight PSO (cont)

yi(t) is the personal best position calculated as (assuming
minimization)

yi(t + 1) =

{
yi(t) if f (xi(t + 1)) ≥ f (yi(t))
xi(t + 1) if f (xi(t + 1)) < f (yi(t))

ŷi(t) is the neighborhood best position calculated as the best
personal best position in particle i ’s neighborhood
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Particle Swarm Optimization
PSO Algorithm

Create and initialize an nx -dimensional swarm, S;
repeat

for each particle i = 1, . . . ,S.ns do
if f (S.xi) < f (S.yi) then

S.yi = S.xi ;
end
for each particle î with particle i in its neighborhood do

if f (S.yi) < f (S.ŷî) then
S.ŷî = S.yi ;

end
end

end
for each particle i = 1, . . . ,S.ns do

update the velocity and position;
end

until stopping condition is true;
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Neighborhood Topologies
Introduction

Neighborhood topologies are used to determine the best positions, or
attractors, which guide the search trajectories of particles [15, 16]:

topologies determine the extent of the search space used to
determine best positions
topologies regulate the speed at which information about best
positions is transferred through the swarm
neighborhoods are based on particle indices, not spatial
information
neighborhoods overlap to facilitate information exchange
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Neighborhood Topologies
Popular Topologies

While many neighborhood topologies have been proposed, the most
popular ones are

Star Topology
(gbest PSO)

Ring Topology
(lbest PSO) Von Neumann Topology
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gbest PSO versus lbest PSO
Problem Statement

Original PSO came in two versions, differing in the neighborhood
topology used to exchange information about best found positions, i.e.

gbest PSO, using a star neighborhood topology, and
lbest PSO, using a ring neighborhood topology

A general opinion emerged from the PSO community that gbest PSO
should not be used, and that lbest PSO should be used due to lbest
PSO’s [9]

better exploration ability,
diminished susceptibility of being trapped in local minima, and
because it does not suffer from premature convergence.

These opinions are based on very limited empirical
evidence and intuitive beliefs about particle behavior
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gbest PSO versus lbest PSO
Two Topologies

gbest PSO and lbest PSO differ in the way that neighborhood best
positions are updated:

gbest PSO uses a star neighborhood topology
each particle has the entire swarm as its neighborhood
ŷi = ŷ for all particles i = 1, . . . ,ns
consequence: all particles are attracted to one global best position

lbest PSO uses a ring topology
each particle’s neighborhood consists of itself and its immediate
two neighbours
neighborhoods overlap
consequence: each particle is attracted to a (initially) different
neighborhood best position
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gbest PSO versus lbest PSO
General Opinions

Much has been said about the advantages and disadvantages of these
two topologies:

gbest PSO should not be used due to premature convergence to
local optima
gbest PSO converges fast due to faster transfer of best positions
throughout the swarm, therefore a strong attraction to one best
position
lbest PSO converges more slowly, and therefore explores more as
it maintains diversity for longer
gbest PSO is more susceptible to being trapped in local minima
gbest PSO is best suited to unimodal problems and should not be
used for multimodal problems
gbest PSO does not perform well for non-separable problems
lbest PSO is superior to gbest PSO in terms of solution
accuracy for the majority of problems
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gbest PSO versus lbest PSO
Empirical Analysis: Algorithm Implementation

Objective: To conduct an extensive empirical analysis to test these
general opinions

Two algorithms were implemented to differ
only in the neighborhood topology used:

synchronous position updates
memory-based personal best position
update
zero initial velocities
no velocity clamping
personal best positions updated only if
they remain within bounds

Control parameter
values:

w = 0.729844
c1 = c2 = 1.49618
30 particles
5000 iterations
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gbest PSO versus lbest PSO
Empirical Analysis: Performance Measures

Performance was quantified over 50 independent runs using
Accuracy:

average quality of best solution over 50 runs after 5000 iterations
Success Rate:

percentage of the 50 independent runs that converged to specific
accuracy levels
1000 accuracy levels have been considered, from best obtained
accuracy, logarithmically scaled to the worst obtained accuracy

Efficiency:
average number of iterations to reach the different accuracy levels

Consistency:
deviation from the average best value
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gbest PSO versus lbest PSO
Empirical Analysis: Statistical Procedure

Accuracy:
paired Mann-Whitney U tests at 0.05 significance level
wins and losses calculated per function class

Success rate:
Mann-Whitney U test applied on success rates over all of the
accuracy levels
indicates success rate profile, over all accuracy levels
a win indicates that the corresponding algorithm had the most
successful runs for most of the accuracy levels

Efficiency:
average number of iterations to reach accuracy levels over all
accuracy levels
a win indicates that the corresponding algorithm
converged faster to most accuracy levels
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gbest PSO versus lbest PSO
Empirical Analysis: Benchmark Suite

59 boundary constrained problems, of the following types
uni-modal
multi-modal
separable, rotated
non-separable
shifted
noisy
composition functions
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gbest PSO versus lbest PSO
Empirical Analysis: Results (cont)

‘>’ indicates gbest better than lbest, ‘<’ gbest worse than lbest, and ‘=’ no
statistically significant difference

Function Number of Accuracy Success Rate Efficiency Diversity
Class Functions > = < > = < > = < > = <

UM S 7 5 0 2 6 0 1 2 0 5 5 0 2
NS 3 2 1 0 2 1 0 2 1 0 2 0 1
N 2 1 0 1 1 1 0 2 0 0 1 0 1
Sh 5 2 3 0 2 3 0 2 3 0 1 0 4
R 1 1 0 0 1 0 0 0 1 0 0 0 1

MM S 6 1 2 3 2 2 2 3 1 2 6 0 0
NS 9 4 1 4 3 4 2 4 3 2 1 0 8
Sh 10 3 4 3 5 5 0 8 1 1 1 0 9
R 4 0 3 1 1 2 1 2 1 1 0 0 4
N 1 0 1 0 0 1 0 0 1 0 0 0 1
C 11 1 2 8 0 4 7 1 5 5 0 0 11

Overall 59 20 17 22 23 23 13 26 17 16 11 0 48

Overall UM 18 11 4 3 12 5 1 8 5 5 9 0 9
Overall MM 41 9 13 19 11 18 12 18 12 11 2 0 39

Overall S 17 7 4 6 9 5 3 12 1 4 5 0 12
Overall NS 42 13 13 16 14 18 10 11 16 9 6 0 36
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gbest PSO versus lbest PSO
Empirical Analysis: Consistency

With reference to consistency:
For 21.7% of the functions did gbest PSO have a significantly
smaller deviation than lbest PSO
For 31.6% of the functions did lbest PSO have a significantly
smaller deviation than gbest PSO

No one of the two topologies can be said to be more consistent than
the other
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gbest PSO versus lbest PSO
Empirical Analysis: Fitness Profiles
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gbest PSO versus lbest PSO
Empirical Analysis: Diversity Profiles
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gbest PSO versus lbest PSO
Observations

The following observations can be made over all the functions:
gbest and lbest PSO performed very similar with respect to
accuracy
gbest slightly better than lbest with respect to success rate and
efficiency
lbest slightly better than gbest with respect to consistency
lbest PSO did not maintain diversity for longer than PSO for all
functions
despite the fact that gbest converges faster, it is not at the cost of
accuracy nor success rate
both gbest PSO and lbest PSO sometimes prematurely
converge
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gbest PSO versus lbest PSO
Observations (cont)

Observations with respect to specific function classes:
gbest and lbest are equally good at separable and non-separable
functions with respect to accuracy
gbest obtained better success rates than lbest PSO for separable
and non-separable functions
for most of the non-separable functions, there is no significant
difference in convergence speed
lbest was more accurate for a number of unimodal functions
lbest more accurate for less than half of the multi-modal functions
lbest did converge faster for a number of unimodal and
multi-modal functions
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gbest PSO versus lbest PSO
Observations (cont)

Which of gbest PSO or lbest PSO is best?

Based on an extensive empirical analysis, the main conclusions are
that

none of the two algorithms can be considered the preferred
algorithm for any of the main function classes
the best choice is very problem dependent
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Velocity Initialization
The Opinions

Velocties have been initialized using any of the following [11]:
vi(0) = 0

Critique: Limits exploration ability, therefore extent to which the
search space is initially covered
Counter argument: Initial positions are uniformly distributed
Flocking analogy: Physical objects, in their initial state, do not have
any momentum

vi(0) ∼ U(−xmin, xmax )nx , where nx is the problem dimension
Argument in favor: Initial random velocities help to improve
exploration abilities of the swarm, therefore believed to obtain better
solutions, faster
Argument against: large initial step sizes cause more particles to
leave search boundaries and for longer:

vi (0) ∼ U(−xmin, xmax )nx −→ xi (1) ∼ U(−2xmin,2xmax )nx

Initialize to small random values
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Velocity Initialization
Fitness Profiles
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Velocity Initialization
Fitness After 1000 Iterations

Zero Init Random Init
Function No Pbest Bound No Pbest Bound
Absolute Value 3.53E-001±2.87E+000 2.46E-001±1.47E+000
Ackley 2.49E+000±1.35E+000 2.68E+000±2.67E+000
Bukin 6 6.20E-002±4.50E-002 6.65E-002±5.56E-002
Griewank 3.72E-002±5.26E-002 3.91E-002±5.57E-002
Quadric 9.04E+001±8.70E+001 1.80E+002±3.15E+002
Rastrigin 6.66E+001±1.71E+001 7.37E+001±2.16E+001
Rosenbrock 2.65E+001±1.53E+001 2.73E+001±1.66E+001
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Velocity Initialization
Diversity Profiles
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Velocity Initialization
Roaming Behavior: Percentage of Infeasible Particles
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Velocity Initialization
Roaming Behavior: Percentage of Infeasible Personal Bests
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Velocity Initialization
Observations

The following general observations are made:
Small random initialization and zero initialization have similar
behaviors
Random initialization

slower in improving the fitness of the best solution
resulted in larger diversity
had more roaming particles, roaming for longer
significantly more best positions left boundaries
took longer to reduce number of particle and best position violations
very slow in increasing number of converged dimensions

Not much of a difference in final accuracies obtained for most of
the problems, with random initialization performing poor for some
functions
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Iteration Strategies
Introduction

Two iteration strategies can be found for PSO [10]:
Synchronous interation strategy

personal best and neighborhood bests updated separately from
position and velocity vectors
slower feedback of new best positions

Asynchronous iteration strategy
new best positions updated after each particle position update
immediate feedback of new best positions
lends itself well to parallel implementation
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Iteration Strategies
Pseudocode

Synchronous Iteration Strategy
Create and initialize the swarm;
repeat

for each particle do
Evaluate particle’s
fitness;

Update particle’s
personal best position;

Update particle’s
neighborhood best
position;

end
for each particle do

Update particle’s
velocity;

Update particle’s
position;

end
until stopping condition is true;

Asynchronous Iteration Strategy
Create and initialize the swarm;
repeat

for each particle do
Update the particle’s
velocity;

Update the particle’s
position;

Evaluate particle’s fitness;
Update the particle’s
personal best position;

Update the particle’s
neighborhood best
position;

end
until stopping condition is true;Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 35 / 109

Iteration Strategies
Another Debate

Should a synchronous iteration strategy (SIS) or an asynchronous
iteration strategy (AIS) be used?
General opinions:

AIS is generally faster and less costly than SIS
AIS generally provides better results
AIS is better suited for lbest PSO, while SIS is better for gbest PSO

Recently, it was shown that SIS generally yields better results than
AIS, specifically unimodal functions, and equal to AIS or better for
multimodal functions
It was also recently stated that the choice of iteration strategy is
very function dependent
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Iteration Strategies
Accuracy Scores

Ranks based on Final Fitness Values

Function Number of gbest PSO lbest PSO GCPSO BBPSO
Class Functions > = < > = < > = < > = <

UM Sep 7 0 0 7 0 1 6 0 0 7 0 1 6
Non-sep 3 1 1 1 0 2 1 0 2 1 0 3 0
Noisy 2 0 0 2 1 1 0 1 0 1 1 0 1
Shifted 5 0 5 0 0 4 1 0 5 0 0 5 0
Rotated 1 0 0 1 0 0 1 0 0 1 0 1 0

MM Sep 6 0 5 1 0 6 0 0 4 2 0 6 0
Non-sep 9 0 7 2 0 9 0 1 7 1 0 9 0
Shifted 10 2 6 2 0 10 0 1 7 2 1 8 1
Rotated 4 0 1 3 0 4 0 1 0 3 1 1 2
Noisy 1 1 0 0 0 1 0 1 0 0 1 0 0
Composition 11 7 4 0 0 11 0 7 3 1 10 0 1

Overall Total 59 11 29 19 1 49 9 12 28 19 14 34 11
Overall UM 18 1 6 11 1 8 9 1 7 10 1 10 7
Overall MM 41 10 23 8 0 41 0 11 21 9 13 24 4
Overall Sep 17 1 7 9 1 10 6 0 7 10 0 10 7

Overall Non-sep 42 10 23 9 0 39 3 12 21 9 13 25 4
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Iteration Strategies
Observations

Unimodal functions: AIS had better accuracy for most functions
Multimodal functions:

No significant difference for most of the functions
For the remainder of the functions, no clear winner
For lbest PSO no significant difference over all the functions –
insensitive to iteration strategy

Separable functions: SIS not the preferred strategy for most of the
functions
Non-separable:

AIS bad for BBPSO
For lbest PSO AIS slightly better than SIS
For gbest PSO, GCPSO, SIS slightly better
However, for most functions no significant difference
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Control Parameters
Introduction

Performance of PSO has been shown to be very sensitive to values
assigned to its control parameters
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Control Parameters
Introduction (cont)

w = 0.7 and c1 = c2 = 1.9
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Control Parameters
Velocity Components

Performance of PSO has been shown to be very sensitive to values
assigned to its control parameters. Where are these control
parameters used?

previous velocity, wvi(t)
inertia component
memory of previous flight direction
prevents particle from drastically changing direction

cognitive component, c1r1(yi − xi)

quantifies performance relative to past performances
memory of previous best position
nostalgia

social component, c2r2(ŷi − xi)

quantifies performance relative to neighbors
envy
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Control Parameters
Inertia Weight, w

Was introduced to control step sizes
Can be used to balance exploration-exploration trade-off

large values – favor exploration
small values – promote exploitation
(depending on the values of c1 and c2)

for w ≥ 1
velocities increase over time
swarm diverges
particles fail to change direction towards more promising regions

for 0 < w < 1
particles decelerate
convergence also dependent on values of c1 and c2
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Control Parameters
Acceleration Coefficients, c1, c2

Weights the contributions of the cognitive and social components:
c1 = c2 = 0?
c1 > 0, c2 = 0:

particles are independent hill-climbers
local search by each particle

c1 = 0, c2 > 0:
swarm is one stochastic hill-climber

c1 = c2 > 0:
particles are attracted towards the average of yi and ŷi

c2 > c1:
promotes exploitation

c1 > c2:
promotes exploration
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Control Parameters
What are good parameters for your problem?

One big challenge with using an optimizer is picking which control
parameters to use.

We are now going to test the ability of the audience to guess
reasonable control parameters.

Interactive demo using CEC2014 benchmark suite.
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Using Theory to Guide PSO Use
Overview

Despite PSO having many emergent and chaotic properties there are
still aspects of its behavior we can predict. We will focus on the
following

The need for per-dimension stochasticity
Stability of particles in the swarm (stochastic convergence)
Particle movement patterns

Influence of dimensionality and the desired movement pattern
Roaming behavior of particles

Effect in low dimensional search spaces versus high dimensional
search spaces
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Using Theory to Guide PSO Use
The Need for Per-dimension Stochasticity

In PSO the source of stochasticity comes from the vectors r1 and r2,
where each component is sampled from the uniform distribution
U(0,1)

However, some practitioners have opted to replace them with
scalars.
This is a fundamentally poor idea, which will be made clear with a
little use of linear algebra
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Using Theory to Guide PSO Use
The Need for Per-dimension Stochasticity

For ease of explanation, consider the situation where velocities are
initialized to 0, and personal best information is derived from the
initialized swarm. An unsimplified discussion can be found here [20]

Let the swarm size be ns and the dimensionality of the search
space be nx .
If we use scalars r1 and r2 all position generated after the first
iteration must be within span(I), where
I = {x0(0),x1(0), . . . ,xns (0)}

Since all position will be a linear combination of

(yi (0)− xi (0)) and (ŷ i (0)− xi (0))

and yi (0) and ŷ i (0) where derived from the initialized positions
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Using Theory to Guide PSO Use
The Need for Per-dimension Stochasticity

Furthermore, since all new positions are generated from the span
of I we will forever search within span(I)

Why is the an issue?
Note that span(I) ⊆ RN , where N = min{ns,nx}
If ns < nx it implies we search within a subspace of our search
space Rnx

Part of the search space is unreachable
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Using Theory to Guide PSO Use
The Need for Per-dimension Stochasticity

If ns ≥ nx the issue is a little more subtle
Firstly the maximum subspace size of span(I) is ns but we have no
guarantee it will be that large.
We could get unlucky with the degree of orthogonality in our initial
set I and still only search a subspace.
Even if we could guarantee that span(I) = Rnx , it is possible to lose
degrees of freedom,

Namely our set from which we can derive new positions loses a
degree of orthogonality.

We cannot recover a lost degree of orthogonality with scalar r1 and
r2.

All the above issue are avoided by simply using vector r1 and r2, where
each component is sampled independently.
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Using Theory to Guide PSO Use
Stability of Particles

From a theoretical perspective, the question of particle convergence is
probably the most heavily analysed aspects of PSO behavior

Yet is often misunderstood
The cause of the confusion, is likely a result of very overloaded
terminology

Specifically the word convergence is ambiguous in a stochastic
context.
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Using Theory to Guide PSO Use
Stability of Particles

In the early works on particle convergence of the inertia PSO by Van
den Bergh [30], and Trelea [29]:

The stochastic components were treated as constants
As a result, the provided criteria of [29, 30] ensure the following
type of particle convergence

Definition (Convergent sequence)

The sequence (st ) in Rn is convergent if there exists an s ∈ Rn such
that

lim
t→∞

st = s (1)
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Using Theory to Guide PSO Use
Stability of Particles

However, if we wish to understand the actual PSO, the stochasticity
cannot be ignored

Which brings up the question of what do we mean by
convergence in a stochastic context?
The simplest type of stochastic convergence is in convergence
expectation namely:

Definition (Order-1 stability)

The sequence (st ) in Rn is order-1 stable if there exists an sE ∈ Rn

such that

lim
t→∞

E [st ] = sE (2)

where E [st ] is the expectation of st .
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Using Theory to Guide PSO Use
Stability of Particles

While converge in expectation is informative, it leaves out part of the
picture, as noted by Poli [24]:

Even if the expectation of a stochastic sequence becomes
constant, the variance may be increasing
Consider the random sequence, defined as

(λt ) where λt ∼ U(−t , t) for all t . (3)

Now, the expectation of λt is zero for every t , which implies that
the sequence (λt ) is order-1 stable

However, the variance of the sequence (λt ) is increasing over time
Clearly (λt ) is not particularly stable
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Using Theory to Guide PSO Use
Stability of Particles

It is for this reason that we need both order-1 and order-2 stability,
defined as

Definition (Order-2 stability)

The sequence (st ) in Rn is order-2 stable if there exists a sV ∈ Rn

such that

lim
t→∞

V [st ] = sV (4)

where V [st ] is the variance of st .

When Sv must equal zero we term this order-2∗ stability
order-2∗ stability cannot be guaranteed for PSO [3]
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Using Theory to Guide PSO Use
Stability of Particles

In literature, some authors refer to the sequence of particle positions
as convergent if it is both order-1 and order-2 stable

However, the meaning of order-1 and order-2 stability is very
different to that of traditional convergence,
because particle that are order-1 and order-2 stable can still
move

Just with a fixed expectation and variance
This can actually be seen as a positive outcome as the swarm can
continue to search, provided that the fixed point of the order-2
moment is not 0

More on this variance later

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 55 / 109

Using Theory to Guide PSO Use
Stability of particles in the swarm

So what are the criteria on control parameters to guarantee
order-1 and order-2 stability?
There exist a number of possibilities in the literature
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Using Theory to Guide PSO Use
Stability of particles in the swarm

The correct region is in fact the curved line segment, AGB
Originally derived by Poli and Bromhead [25] and Jiang [14]
independently:

0 < c1 + c2 <
24
(
1− w2

)
7− 5w

and |w | < 1 (5)

The criteria above has also been empirically verified without the
presence of simplifying assumptions [5]
And re-derived recently using what can be shown to be the
minimal necessary modeling assumptions by Cleghorn and
Engelbrecht [4].
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Using Theory to Guide PSO Use
Stability of particles in the swarm

So why does stability matter?
It tells you where to look for viable parameter configurations
Specifically, it was shown that parameter configurations that
resulted in particle instability almost always caused PSO to
perform worse than random search [7]

A particle is unstable if it violates the criteria of equation (5)
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Using Theory to Guide PSO Use
Stability of particles in the swarm

To illustrate the impact of stability on performance consider:
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Using Theory to Guide PSO Use
Stability of particles in the swarm

Often times people use a variant of PSO
Most theory only applies to the inertia and constriction PSO
However, using the theorem from [4] you can easily derive stability
criteria for all variants that can be rewritten in the form

xk (t + 1) = xk (t)α + xk (t − 1)β + γt (6)

where k indicates the vector component, α and β are well defined
random variables, and (γt ) is a sequence of random variables
Despite the simplicity of equation (6), it caters for a large number
of PSOs, such as:

Fully informed PSO [17], unified PSO [22], fitness-distance-ratio
PSO [23], and multi-guided PSO [26, 27]
Furthermore, the mentioned examples are catered for when using
any arbitrary well defined distributions
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Using Theory to Guide PSO Use
Stability of particles in the swarm

The theorem relies on the non-stagnate distribution assumption,

Definition (Non-stagnant distribution assumption on two
informers)

It is assumed that both y i (t) and ŷ i (t) are random variables sampled
from a time dependent distribution, such that both y i (t) and ŷ i (t) have
well defined expectations and variances for each t and that
lim

t→∞
E [y i(t)], lim

t→∞
E [ŷ i(t)], lim

t→∞
V [y i(t)], and lim

t→∞
V [ŷ i(t)] exist.

Shown to actually be a necessary condition for stability
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Using Theory to Guide PSO Use
Stability of particles in the swarm

The theorem has four parts:

Theorem

(1) Assuming (i t ) converges, particle positions are order-1 stable for
every initial condition if and only if ρ(A) < 1, where

A =

[
E [α] E [β]

1 0

]
and i t =

[
E [γt ]

0

]
(7)

ρ(A) is the spectral radius of the matrix A, ρ (A) = maxλ∈ΣA |λ|, ΣA is the set of
eigenvalues of A
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Using Theory to Guide PSO Use
Stability of particles in the swarm

Theorem

(2) The particle positions are order-2 stable if ρ(B) < 1 and (j t )
converges, where

B =


E [α] E [β] 0 0 0

1 0 0 0 0
0 0 E [α2] E [β2] 2E [αβ]
0 0 1 0 0
0 0 E [α] 0 E [β]

 and j t =


E [γt ]

0
E [γ2

t ]
0
0


under the assumption that the limits of (E [γtα]) and (E [γtβ]) exist
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Using Theory to Guide PSO Use
Stability of particles in the swarm

Theorem

(3) Assuming that x(t) is order-1 stable, then the following is a
necessary condition for order-2 stability:

1− E [α]− E [β] 6= 0 (8)

1− E
[
α2
]
− E

[
β2
]
−
(

2E [αβ] E [α]

1− E [β]

)
> 0 (9)

(4) The convergence of (E [γt ]) is a necessary condition for order-1
stability, and the convergence of both (E [γt ]) and (E [γ2

t ]) is a
necessary condition for order-2 stability
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

To illustrate the power of the presented theorem. Consider again the
inertia PSO velocity update equation

vi (t + 1) = wv i (t)
+ c1r1 ⊗ (y i(t)− x i (t))

+ c2r2 ⊗ (ŷ i(t)− x i (t)) (10)

where ⊗ represents component-wise multiplication. However, now let
θ1 = c1r1, θ2 = c2r2

θ1, θ2, and w be random variables sampled from arbitrary
distribution
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

By applying the presented theorem,

Order-1

− 1 < E [w ] < 1 and 0 <
E [θ1] + E [θ1]

E [w ] + 1
< 2 (11)

Order-2

− 1 <
E [w ]√

1− V [w ]
< 1 (12)

0 < E [θ1] + E [θ1] <
−2(E [w ]2 + V [w ]− 1)

1− E [w ] + (V [θ1]+V [θ2])(1+E [w ])
(E [θ1]+E [θ2])2

(13)
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

Let us consider actually doing such derivations. Consider the fully
informed PSO:

The velocity update equation of FIPS is defined as follows:

v i (t + 1) = wv i (t) +

|Ni |∑
m=1

γm(t)⊗ (ym(t)− x i (t))

|Ni |
(14)

where Ni is set of particles in particle i ’s neighborhood, |Ni | is the
cardinality of Ni , and γm,k (t) ∼ U (0, c1 + c2) for 1 ≤ k ≤ d
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

The approach taken to derive the order-1 stable region is to use
theorem 1 (a). Specifically, for FIPS

A =

∣∣∣∣E [α] E [β]
1 0

∣∣∣∣ it =

∣∣∣∣E [γt ]
1

∣∣∣∣ (15)

where

E [α] = (1 + w)− 1
|N |

|N |∑
m=1

E [θm] = − (1 + w) +
č
2

(16)

E [β] = −w (17)

E [γt ] =
1
|N |

|N |∑
m=1

E [θm]E [ym(t)] =
č

2|N |

|N |∑
m=1

E [ym(t)] (18)
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

By making the non-stagnant distribution assumption on all particle

informers, it follows that it =

∣∣∣∣E [γt ]
1

∣∣∣∣ converges, since a finite sum

of convergent sequences is also convergent.
Then, we need ρ(A) < 1 to use part (1), which corresponds to the
following necessary and sufficient criteria for order-1 stability:

|w | < 1 and 0 < c1 + c2 < 4(w + 1) (19)

Equation (19) corresponds to the order-1 stable region of FIPS
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

In order to obtain the necessary conditions for order-2 stability, part (3)
of the theorem can be used. Specifically,

Conditions for order-1 and order-2 stability of FIPS

|w | < 1 (20)

0 < c1 + c2 <
12|N |

(
1− w2)

3|N |+ 1 + w (1− 3|N |)
(21)
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

In order to confirm that the criteria of equation (20) are in fact
sufficient, we need to show that ρ(B) < 1, where

B =


E [α] E [β] 0 0 0

1 0 0 0 0
0 0 E [α2] E [β2] 2E [αβ]
0 0 1 0 0
0 0 E [α] 0 E [β]

 (22)

Ideally, this should be done analytically but the Eigen values can become
incredibly large (symbolic solvers are not great an inequality problems), so we

Randomly select parameter configurations within the region of equations
(20) and (21) (109 used)

It was found that all of generated configurations satisfy ρ(B) < 1. Which
is strong evidence that the conditions are in fact sufficient as well

Nice research question is to prove when the equivalence between
the necessary and sufficient conditions hold.
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Using Theory to Guide PSO Use
Utilization of Stability Theorem

Lastly, we need to show that j t converges,

j t =


E [γt ]

0
E [γ2

t ]
0
0

 (23)

The convergence follows directly from simple expansion and the use of
the non-stagnant distribution assumption
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Using Theory to Guide PSO Use
Utilization of Stability Theorem
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Using Theory to Guide PSO Use
Roaming Behavior of Particles

The problem of particle roaming is a well known issue of PSO
A particle is said to be roaming if it is moving outside the feasible
space.

Why do particles roam?
It was formally proved by Helwig and Wanka [12] that particles will
leave the search space with overwhelming probability in the first
iteration

when velocities are uniform initialized within [−xmin, xmax ]nx or
initialized to 0.
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Using Theory to Guide PSO Use
Roaming Behavior of Particles

In low dimensional search spaces the roaming problem is not so
severe. Under the “let them fly” approach [2], particles return to the
search space

Fraction of swarm outside search space on F7 (CEC2010 large scale optimization
benchmark) in 10 dimensions
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Using Theory to Guide PSO Use
Roaming Behavior of Particles

However, in high dimensional search spaces the problem of roaming is
highly significant

Fraction of swarm outside search space on F7 (CEC2010 large scale optimization
benchmark) in 1000 dimensions
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Using Theory to Guide PSO Use
Roaming Behavior of Particles

How do we handle the problem of particle roaming in high
dimensions?

Particle variance restriction:
Originally shown by Poli [24], the component-wise variance of the
particle positions can be predicted as

V [xi (t)] =
c(5w + 1)

c(54− 7)− 12w2 + 12
(ŷij (t − 1)− yij (t − 1))2 (24)

where c = c1 = c2

If the variance is restricted, we decrease the likelihood of a
boundary violation
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Using Theory to Guide PSO Use
Roaming Behavior of Particles

How do we handle the problem of particle roaming in high
dimensions?

Boundary constraint handling:
While there exist many boundary constraint handling approaches
they often interact poorly with the explosive PSO dynamics

Continuous reinitialization
Boundary bias, and often most of the swarm is stuck on the boundary
in high dimensional spaces
Movement direction warping

In high dimensions the current best approach is:
a per dimension hyperbolic boundary constraint handling
mechanism [19]

A more complete exploration of approaches can be found in [18]

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 78 / 109

Using Theory to Guide PSO Use
Particle Movement Patterns

While there exists some early research papers on the manner in which
particles move through the search space, they where derived in a
deterministic context [29, 21]

Informative when considering the trajectory of a particle in
expectation, but it does not give us enough information
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Using Theory to Guide PSO Use
Particle Movement Patterns

We can, however, characterize stochastic particle behavior based on
the following two aspects:

Range of motion: from equation (24) we extract the coefficient

Vc =
c(5w + 1)

c(54− 7)− 12w2 + 12
(25)

Base frequency, F , is defined to be the largest amplitude among
the Fourier series coefficients of the particle’s positions throughout
the search [1]:

Particles with small values for F typically exhibit smooth trajectories
Particles with large values for F are prone to more oscillations with
large steps between positions

For a given F and Vc the control coefficients can be derived
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Using Theory to Guide PSO Use
Particle Movement Patterns

Relationship between base frequency, F , and correlation of particle
positions
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Using Theory to Guide PSO Use
Particle Movement Patterns

The ideal movement pattern is very different in low dimensional search
spaces versus high dimensional search spaces.

Optimal frequency-variance combinations
(n=10)

Optimal frequency-variance combinations
(n=100)

The color of a block shows its score, with lighter indicating a better score across the CEC2010 large scale benchmark suite
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Control Parameters
Self-Adaptive Particle Swarm Optimization

Approaches to find the best values for control parameters:
Just use the values published in literature?
Fine-tuned static values
Dynamically changing values
Self-adaptive control parameters

Many dynamic and self-adaptive approaches have recently been
developed

But... more research is needed...

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 83 / 109

Control Parameters
Self-Adaptive Particle Swarm Optimization: Shortcomings

Issues with current self-adaptive approaches:
Most, at some point in time, violate convergence conditions, and
many do so for most of the search process
Converge prematurely, with little exploration of control parameter
space
Introduce more control parameters
Current empirical analysis shows that they do not really result in
improved performance with reference to solution quality
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Approaches
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley

Average solution quality
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average swarm diversity
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average boundary violations per dimension
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average percentage particle position boundary violations
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average percentage personal best position boundary violations
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average global best position boundary violations
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Wasted search effort over 60 functions, in dimensions 30, 40, 50, 60,
80, 90, and 100
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Analysis

Uses the specially-formulated function to study convergence behavior
[6]:

F (x) ∼ U(0,2000)

such that
F (x1) = F (x2) if x1 = x2

the fitness value of each position in the search space is randomly
sampled within the range [0,2000]

complete stagnation is highly unlikely
provides a good benchmark function for studying convergence
behavior
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Analysis (cont)

Performance measures:
Average particle movement, ∆:

quantifies average particle step size
if value does not decrease, particles do not converge

Percentage particles with convergent control parameters, CP:
measures algorithm’s ability to generate convergent parameters

Average parameter movement, ∆p:
average step size in parameter space
quantifies stability of the control parameter values

Percentage particles that violates boundaries, IP:
proportion of particles that violates boundary constraints in at least
one dimension
quantification of wasted search effort
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Analysis (cont)

After 5000 interations:
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Average Particle Movement

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 96 / 109946



Control Parameters
Self-Adaptive Particle Swarm Optimization: %Convergent Parameters
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Control Parameters
Self-Adaptive Particle Swarm Optimization: Parameter Movement

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 98 / 109

Control Parameters
Self-Adaptive Particle Swarm Optimization: Boundary Violations
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Concluding Rekmarks

Yes, PSO has been very successfully applied to solve a wide
range of optimization problems
However, there are a number of aspects about PSO that are not
well understood, and many opinions have been made without
proper analysis
This tutorial have identified a number of these misconceptions,
and have provided guidance on how to optimally implement PSO,
to even furth improve its performance and expands its applications
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