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Introduction Particle Swarm Optimization
Purpose Introduction

The main objectives of this tutorial are to: What is particle swarm optimization (PSO) [8, 13]?
@ Inform particle swarm optimization (PSO) practitioners of the @ a simple, computationally efficient optimization method
many common misconceptions and falsehoods that are actively o lation-based. stochasti h
hindering a practitioner’s successful use of PSO; i.e. to popu ation-based, stoc _as Ic searc _
@ individuals follow very simple behaviors:

o separate fact from fiction with evidence I N ¢ teinhboring individual
Hiahlight th isting P h h il Vi e emulate the success of neighboring individuals,
O Highlight the existing PSO theory that will greatly improve your e but also bias towards own experience of success

effectiveness with PSO . _ _ _ N _
o This knowledge will not only improve your results but also allow you @ emergent behavior: discovery of optimal regions within a high
to develop a better intuition for how PSO actually works. dimensional search space
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Particle Swarm Optimization Particle Swarm Optimization
Main Components Inertia Weight PSO

What are the main components?
© aswarm of particles @ used either the star (gbest PSO) or social (Ibest PSO) topology
@ each particle represents a candidate solution o velocity update per dimension [28]:
@ elements of a particle represent parameters to be optimized
The search process: vi(t+ 1) = wvi(t) + o1 () (t) — x()] + carz () [¥(t) — x(t)]

@ Position updates

@ v;(0) = O (preferred [11])
Xi(t+1) = Xi(t) + Vit + 1), X;(0) ~ U(Xmin, Xmax) © wis the inertia weight
. . @ ¢y, Cp are positive acceleration coefficients
@ Velocity (step size) o ryj(t), rai(t) ~ U(0, 1)
e drives the optimization process ’ ’ . . .
o reflects experiential knowledge of the particles and @ note that a random number is sampled for each dimension
socially exchanged information about promising 5 5
areas in the search space B r
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Particle Swarm Optimization Particle Swarm Optimization
Inertia Weight PSO (cont) PSO Algorithm

Create and initialize an ny-dimensional swarm, S;

repeat
for each particlei =1,...,S.ns do
if /(S.x;) < f(S.y;) then
@ y;(t) is the personal best position calculated as (assuming | Syi = Sx;;
minimization) end
i+ 1) = { Vil !f it + 1)) > F(yi(1)) for Iefze;c(:/; p?)rtl<clf(ls milgvt;;)‘ir:cle/ in its neighborhood do
Xi(t+1) if F(x;(t+1)) < f(yi(t)) Vi -Yi
| Sy; = S.y,',
@ y;(t) is the neighborhood best position calculated as the best end
personal best position in particle i’s neighborhood end
end
for each particlei =1,...,S.ns do
E | update the velocity and position;
. end
i until stopping condition is true;
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Neighborhood Topologies Neighborhood Topologies
Introduction Popular Topologies

While many neighborhood topologies have been proposed, the most
popular ones are
Neighborhood topologies are used to determine the best positions, or

attractors, which guide the search trajectories of particles [15, 16]:

@ topologies determine the extent of the search space used to
determine best positions

@ topologies regulate the speed at which information about best
positions is transferred through the swarm

@ neighborhoods are based on particle indices, not spatial
information

@ neighborhoods overlap to facilitate information exchange

7]

Star Topology Ring Topology G s
(gbest PSO) (Ibest PSO) Von Neuma%mwogy
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gbest PSO versus Ibest PSO gbest PSO versus Ibest PSO
Problem Statement Two Topologies

Original PSO came in two versions, differing in the neighborhood
topology used to exchange information about best found positions, i.e.

@ gbest PSO, using a star neighborhood topology, and
@ Ibest PSO, using a ring neighborhood topology

A general opinion emerged from the PSO community that gbest PSO
should not be used, and that Ibest PSO should be used due to Ibest
PSO’s [9]

@ better exploration ability,
@ diminished susceptibility of being trapped in local minima, and
@ because it does not suffer from premature convergence.

These opinions are based on very limited empirical 5
evidence and intuitive beliefs about particle behavior ol

T
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gbest PSO versus Ibest PSO
General Opinions

Much has been said about the advantages and disadvantages of these
two topologies:
@ gbest PSO should not be used due to premature convergence to
local optima
@ gbest PSO converges fast due to faster transfer of best positions
throughout the swarm, therefore a strong attraction to one best
position
@ Ibest PSO converges more slowly, and therefore explores more as
it maintains diversity for longer
@ gbest PSO is more susceptible to being trapped in local minima
@ gbest PSO is best suited to unimodal problems and should not be
used for multimodal problems
@ gbest PSO does not perform well for non-separable pro IQms

@ Ibest PSO is superior to gbest PSO in terms of solution *;
accuracy for the majority of problems &

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 15/109

gbest PSO and Ibest PSO differ in the way that neighborhood best
positions are updated:
@ gbest PSO uses a star neighborhood topology
e each particle has the entire swarm as its neighborhood
o y; =y forall particles i =1,...,ns
e consequence: all particles are attracted to one global best position
@ Ibest PSO uses a ring topology
e each particle’s neighborhood consists of itself and its immediate
two neighbours
e neighborhoods overlap
@ consequence: each particle is attracted to a (initially) different
neighborhood best position 5
LE
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gbest PSO versus Ibest PSO

Empirical Analysis: Algorithm Implementation

Objective: To conduct an extensive empirical analysis to test these
general opinions

Two algorithms were implemented to differ
only in the neighborhood topology used:

@ synchronous position updates

@ memory-based personal best position
update

@ zero initial velocities
@ no velocity clamping

@ personal best positions updated only if
they remain within bounds

Control parameter
values:

o w=0.729844

@ ¢y = o = 1.49618
@ 30 particles

@ 5000 iterations

Engelbrecht & Cleghorn
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gbest PSO versus Ibest PSO

gbest PSO versus Ibest PSO

Empirical Analysis: Performance Measures

Performance was quantified over 50 independent runs using
@ Accuracy:
e average quality of best solution over 50 runs after 5000 iterations
@ Success Rate:
e percentage of the 50 independent runs that converged to specific
accuracy levels
e 1000 accuracy levels have been considered, from best obtained
accuracy, logarithmically scaled to the worst obtained accuracy
o Efficiency:
e average number of iterations to reach the different accuracy levels
@ Consistency:
e deviation from the average best value 5
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gbest PSO versus Ibest PSO

Empirical Analysis: Benchmark Suite

Empirical Analysis: Statistical Procedure

@ Accuracy:
o paired Mann-Whitney U tests at 0.05 significance level
e wins and losses calculated per function class

@ Success rate:

o Mann-Whitney U test applied on success rates over all of the
accuracy levels
e indicates success rate profile, over all accuracy levels
e a win indicates that the corresponding algorithm had the most
successful runs for most of the accuracy levels
o Efficiency:
e average number of iterations to reach accuracy levels over all
accuracy levels
e a win indicates that the corresponding algorithm
converged faster to most accuracy levels 5
i e
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gbest PSO versus Ibest PSO

Empirical Analysis: Results (cont)

59 boundary constrained problems, of the following types
uni-modal

multi-modal

separable, rotated

non-separable

shifted

noisy

composition functions
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>’ indicates gbest better than Ibest, ‘<’ gbest worse than Ibest, and ‘=" no
statistically significant difference

Function | Numberof ||  Accuracy || SuccessRate ||  Efficiency || Diversity
Class [ Functions [| > [ = T < [[ > =]1<[[>T]T=1<1J>T1T=1X<
UM S 7 5 0 2 6 0 1 2 0 5 5 0 2
NS 3 2 1 0 2 1 0 2 1 0 2 0 1
N 2 1 0 1 1 1 0 2 0 0 1 0 1
Sh 5 2 3 0 2 3 0 2 3 0 1 0 4
R 1 1 0 0 1 0 0 0 1 0 0 0 1
MM S 6 1 2 3 2 2 2 3 1 2 6 0 0
NS 9 4 1 4 3 4 2 4 3 2 1 0 8
Sh 10 3 4 3 5 5 0 8 1 1 1 0 9
R 4 0 3 1 1 2 1 2 1 1 0 0 4
N 1 0 1 0 0 1 0 0 1 0 0 0 1
C 11 1 2 8 0 4 7 1 5 5 0 0 11
Overall 59 20 17 22 23 23 13 26 17 16 11 0 48
Overall UM 18 11 4 3 12 5 1 8 5 5 9 0 9
Overall MM 41 9 13 19 11 18 12 18 12 11 2 0 39
Overall S 17 7 | 46 | 9538 [[12]1]4 5 12
Overall NS 42 13 13 16 14 18 10 11 16 9 6 sfEL8@iBosch
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gbest PSO versus Ibest PSO

Empirical Analysis: Consistency

With reference to consistency:

@ For 21.7% of the functions did gbest PSO have a significantly
smaller deviation than Ibest PSO

@ For 31.6% of the functions did Ibest PSO have a significantly
smaller deviation than gbest PSO

No one of the two topologies can be said to be more consistent than
the other
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gbest PSO versus Ibest PSO

Empirical Analysis: Diversity Profiles
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gbest PSO versus Ibest PSO

Empirical Analysis: Fitness Profiles

""""" ' gbestpso "ghestPso —

' gbestPSO ——
ToestPSO bestPS0 22000 bestPSO
14300 20000
18000
14320
14340
14360
14380
Y ol 2000 . , \ .
0 10 20 30 40 5 60 70 8 90 100 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 1000 2000 3000 4000 5000
Eor Level Iterations Iterations
' ' ' gbestfso — A ' ' "ogesto— | T " gbestbso —
IbestPSO - IbestPSO - IbestPSO -
1e+07 Te+15. 0
1e+33
8e+06 Be+14
20433
6e+06 Be+14
30433
4406 des14
40433
264 20114 -
0 ey 0 — -6e+33
0 1000 2000 3000 4000 5000 0 6 8 10 0 200 400 800NV ERfe0d F17T
Iterations Iterations. Error Level| STELLENBOSCH
UNIVERSITY
(d) y (e) - (f)
fel 1.2 UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
A 4

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 22/109

gbest PSO versus Ibest PSO

Observations

The following observations can be made over all the functions:

@ gbest and Ibest PSO performed very similar with respect to
accuracy

@ gbest slightly better than Ibest with respect to success rate and
efficiency

@ Ibest slightly better than gbest with respect to consistency

@ Ibest PSO did not maintain diversity for longer than PSO for all
functions

@ despite the fact that gbest converges faster, it is not at the cost of
accuracy nor success rate

@ both gbest PSO and Ibest PSO sometimes prematurely
converge
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gbest PSO versus Ibest PSO

gbest PSO versus Ibest PSO

Observations (cont)

Observations with respect to specific function classes:

@ gbest and Ibest are equally good at separable and non-separable
functions with respect to accuracy

@ gbest obtained better success rates than Ibest PSO for separable
and non-separable functions

@ for most of the non-separable functions, there is no significant
difference in convergence speed

@ |best was more accurate for a number of unimodal functions
@ Ibest more accurate for less than half of the multi-modal functions

@ |best did converge faster for a number of unimodal and
mUlti'mOdal funCtionS 5 UNIVERSITEIT
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Velocity Initialization
The Opinions

Velocties have been initialized using any of the following [11]:
o v;(0)=0
o Critique: Limits exploration ability, therefore extent to which the
search space is initially covered
e Counter argument: Initial positions are uniformly distributed
e Flocking analogy: Physical objects, in their initial state, do not have
any momentum
@ v;(0) ~ U(—Xmin, Xmax)™, where ny is the problem dimension
e Argument in favor: Initial random velocities help to improve
exploration abilities of the swarm, therefore believed to obtain better
solutions, faster
e Argument against: large initial step sizes cause more particles to
leave search boundaries and for longer:

V;(0) ~ U(—Xmin, Xmax)™ — X;j(1) ~ U(—2xm,,,,QXE)W\:‘;::JLL‘”
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@ Initialize to small random values

Engelbrecht & Cleghorn

Particle Swarm Optimization

Observations (cont)

Which of gbest PSO or Ibest PSO is best?
Based on an extensive empirical analysis, the main conclusions are
that

@ none of the two algorithms can be considered the preferred
algorithm for any of the main function classes

@ the best choice is very problem dependent
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Velocity Initialization

Fitness Profiles

= nd
v(0)=ran nd
v(0)=small rand Pbest Bnd
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Velocity Initialization

Fitness After 1000 lterations

Velocity Initialization

Function

Zero Init
No Pbest Bound

Random Init
No Pbest Bound

Absolute Value
Ackley

Bukin 6
Griewank
Quadric
Rastrigin
Rosenbrock

Engelbrecht & Cleghorn

3.53E-001+2.87E+000
2.49E+000+1.35E+000
6.20E-002+4.50E-002

3.72E-002+5.26E-002

9.04E+001+8.70E+001
6.66E+001+1.71E+001
2.65E+001+1.53E+001

Particle Swarm Optimization

Velocity Initialization

Roaming Behavior: Percentage of Infeasible Particles

Percentage Particle Boundary Violations

(0)=rand
v(0)=srai rand Pbest Bad

Percentage Particle Boundary Violations

50

undary Violations

Percentage Partcl

100

(a) Absolute Value

2.46E-001+1.47E+000
2.68E+000+2.67E+000
6.65E-002+5.56E-002
3.91E-002+5.57E-002
1.80E+002+3.15E+002
7.37E+001+2.16E+001
2.73E+001+1.66E+001
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v
v(0)=rand -
v(0)=small rand - ]
¥(0)=0 Pbest Bnd
(0)=rand Pbest Bnd
V(0)= small rand Pbest Bnd

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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lterations

(0)=
(0)=rand Pbest Bnd

Percentage Particle Boundary Violations

v
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(b) Ackley

v(O)-rand J
v(0)=small fand
¥(0)=0 Pbest Bnd

(0)=rand Pbest Bnd

V(0)=smali rand Poest Bd

UNIVERSITEIT
STELLENBOSCH
NIVERSITY

o O s oo ot L
0 100 200 300 400 500 600 700 800 900 1000 30

Iterations

(c) Bukin 6

Engelbrecht & Cleghorn

Particle Swarm Optimization

L
60

(d) Griewank
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Velocity Initialization

Roaming Behavior: Percentage of Infeasible Personal Bests

Number of Pbest Boundary Violations

Number of Pbest Boundary Violations
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Velocity Initialization

lteration Strategies

Observations

The following general observations are made:

@ Small random initialization and zero initialization have similar
behaviors

@ Random initialization

slower in improving the fitness of the best solution

resulted in larger diversity

had more roaming particles, roaming for longer

significantly more best positions left boundaries

took longer to reduce number of particle and best position violations

e very slow in increasing number of converged dimensions

@ Not much of a difference in final accuracies obtained for most of

the problems, with random initialization performing poor for some

functions 5 RS
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lteration Strategies

Pseudocode
Synchronous lteration Strategy

Create and initialize the swarm;
repeat

for each particle do
Evaluate particle’s

fitness;
Update particle’s

Asynchronous Iteration Strategy

Create and initialize the swarm;
repeat

for each particle do
Update the particle’s

e velocity;
Ur;zr:;n;;a?;tezosnlon, Update the particle’s
position;

neighborhood best

oosition: Evaluate particle’s fitness;

Update the particle’s
personal best position;

Update the particle’s
neighborhood be@ iy
position;

end

for each particle do

Update particle’s
velocity;

Update particle’s

Engelbrecht & Cleghorn

Particle Swarm Optimization

Introduction

Two iteration strategies can be found for PSO [10]:

@ Synchronous interation strategy

e personal best and neighborhood bests updated separately from
position and velocity vectors

o slower feedback of new best positions

@ Asynchronous iteration strategy
@ new best positions updated after each particle position update
o immediate feedback of new best positions
e lends itself well to parallel implementation

UNIVEF Hm
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lteration Strategies

Another Debate

@ Should a synchronous iteration strategy (SIS) or an asynchronous
iteration strategy (AlS) be used?
@ General opinions:
e AIS is generally faster and less costly than SIS
o AIS generally provides better results
o AIS is better suited for Ibest PSO, while SIS is better for gbest PSO
@ Recently, it was shown that SIS generally yields better results than
AlS, specifically unimodal functions, and equal to AlS or better for
multimodal functions

@ It was also recently stated that the choice of iteration strategy is
very function dependent 5
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lteration Strategies

Accuracy Scores

Ranks based on Final Fithess Values

Function | Numberof || gbestPSO || lbest PSO || GCPSO | BBPSO

Class [Functions [| > T =T < [[ > =][<[>T=1<1lI>T=1KXK

UM Sep 7 0 0 7 0 1 6 0 0 7 0 1 6
Non-sep 3 1 1 1 0 2 1 0 2 1 0 3 0

Noisy 2 0 0 2 1 1 0 1 0 1 1 0 1

Shifted 5 0 5 0 0 4 1 0 5 0 0 5 0
Rotated 1 0 0 1 0 0 1 0 0 1 0 1 0

MM Sep 6 0 5 1 0 6 0 0 4 2 0 6 0
Non-sep 9 0 7 2 0 9 0 1 7 1 0 9 0

Shifted 10 2 6 2 0 10 0 1 7 2 1 8 1
Rotated 4 0 1 3 0 4 0 1 0 3 1 1 2

Noisy 1 1 0 0 0 1 0 1 0 0 1 0 0

Composition 11 7 4 0 0 11 0 7 3 1 10 0 1

Overall Total 59 11 29 19 1 49 9 12 28 19 14 34 11
Overall UM 18 1 6 11 1 8 9 1 7 10 1 10 7

Overall MM 41 10 23 8 0 41 0 11 21 9 13 24 4

Overall Sep 17 1 7 9 1 10 6 0 7 10 0 10 7

Overall Non-sep 42 10 23 9 0 39 3 12 21 9 gq f 5;\ N “‘t‘
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Control Parameters

Introduction

Performance of PSO has been shown to be very sensitive to values
assigned to its control parameters
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Movement in expectation

Engelbrecht & Cleghorn

Particle Swarm Optimization

Observations

@ Unimodal functions: AIS had better accuracy for most functions
@ Multimodal functions:

o No significant difference for most of the functions

e For the remainder of the functions, no clear winner

e For Ibest PSO no significant difference over all the functions —
insensitive to iteration strategy

@ Separable functions: SIS not the preferred strategy for most of the
functions
@ Non-separable:

AIS bad for BBPSO

For Ibest PSO AIS slightly better than SIS

For gbest PSO, GCPSO, SIS slightly better

However, for most functions no significant difference 5 STELLENBOSCH
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Control Parameters

Introduction (cont)
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Control Parameters

Control Parameters

Velocity Components

Performance of PSO has been shown to be very sensitive to values
assigned to its control parameters. Where are these control
parameters used?
@ previous velocity, wv(t)
@ inertia component
e memory of previous flight direction
e prevents particle from drastically changing direction
@ cognitive component, cir{(y; — X;)
e quantifies performance relative to past performances
e memory of previous best position
e nostalgia
@ social component, coro(y; — X;)
e quantifies performance relative to neighbors
e envy
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Control Parameters

Acceleration Coefficients, c1, ¢

Weights the contributions of the cognitive and social components:
@ C1 =0 = 0?
@c >0,c=0:

e particles are independent hill-climbers
o local search by each particle

@c=0,>0:
@ swarm is one stochastic hill-climber
@ Cci=0c>0:
e particles are attracted towards the average of y; and y;

@ C > Cy.
e promotes exploitation

@ ¢ > Cp! Q v
o promotes exploration &

2
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Inertia Weight, w

@ Was introduced to control step sizes
@ Can be used to balance exploration-exploration trade-off

o large values — favor exploration
e small values — promote exploitation
o (depending on the values of ¢y and ¢»)

o forw > 1

o velocities increase over time
e swarm diverges
e particles fail to change direction towards more promising regions

o forO<w<1

o particles decelerate
@ convergence also dependent on values of ¢; and ¢,
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Control Parameters

What are good parameters for your problem?

One big challenge with using an optimizer is picking which control
parameters to use.

@ We are now going to test the ability of the audience to guess
reasonable control parameters.

e Interactive demo using CEC2014 benchmark suite.
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Using Theory to Guide PSO Use Using Theory to Guide PSO Use

Overview The Need for Per-dimension Stochasticity

Despite PSO having many emergent and chaotic properties there are

still aspects of its behavior we can predict. We will focus on the In PSO the source of stochasticity comes from the vectors ry and rz,
following where each component is sampled from the uniform distribution
@ The need for per-dimension stochasticity U(0,1)
@ Stability of particles in the swarm (stochastic convergence) @ However, some practitioners have opted to replace them with
@ Particle movement patterns scalars.
e Influence of dimensionality and the desired movement pattern @ This is a fundamentally poor idea, which will be made clear with a
@ Roaming behavior of particles little use of linear algebra

e Effect in low dimensional search spaces versus high dimensional

search spaces
IS) s K st

2 2
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Using Theory to Guide PSO Use

The Need for Per-dimension Stochasticity

For ease of explanation, consider the situation where velocities are
initialized to 0, and personal best information is derived from the

initialized swarm. An unsimplified discussion can be found here [20] o Furthermore, since all new positions are generated from the span

@ Let the swarm size be ns and the dimensionality of the search of Z we will forever search within span(Z)

space be ny. e Why is the an issue?
@ If we use scalars ry and r, all position generated after the first o Note that span(Z) C RV, where N = min{ns, ny}

iteration must be within span(Z), where e If ns < ny itimplies we search within a subspace of our search

T = {%0(0),%1(0), .., Xn,(0)} space R™ |

o Since all position will be a linear combination of o Part of the search space is unreachable
(yi(0) — xi(0)) and (¥;(0) — x;(0))
and y;(0) and y;(0) where derived from the initialized pcﬁqmm 5 s

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

UNIVERSITY OF PRETORIA UNIVERSITY OF PRETORIA

YUNIBE SITHI YA PRET ORIA (S YUNIBE SITHI YA PRET ORIA
A4 A -4

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 47 /109 Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 48 /109



Using Theory to Guide PSO Use Using Theory to Guide PSO Use

The Need for Per-dimension Stochasticity Stability of Particles

@ If ng > ny the issue is a little more subtle
o Firstly the maximum subspace size of span(Z) is ns but we have no

guarantee it will be that large. From a theoretical perspective, the question of particle convergence is

e We could get unlucky with the degree of orthogonality in our initial probably the most heavily analysed aspects of PSO behavior
set 7 and still only search a subspace. ; ;
. " . @ Yet is often misunder
o Even if we could guarantee that span(Z) = R™, it is possible to lose etis ofte sunde sto?d o
degrees of freedom, @ The cause of the confusion, is likely a result of very overloaded
@ Namely our set from which we can derive new positions loses a terminology
degree of orthogonality. o Specifically the word convergence is ambiguous in a stochastic
@ We cannot recover a lost degree of orthogonality with scalar r; and context
. '
All the above issue are avoided by simply using vector ry and r,, where
each component is sampled independently. 5 Juversirerr 5 Juversirern
i i
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Stability of Particles Stability of Particles

However, if we wish to understand the actual PSO, the stochasticity

In the early works on particle convergence of the inertia PSO by Van cannot be ignored
den Bergh [30], and Trelea [29]: @ Which brings up the question of what do we mean by
@ The stochastic components were treated as constants convergence in a stochastic context?
@ As aresult, the provided criteria of [29, 30] ensure the following @ The simplest type of stochastic convergence is in convergence
type of particle convergence expectation namely:
Definition (Convergent sequence) Definition (Order-1 stability)
The sequence (s;) in R" is convergent if there exists an s € R” such The sequence (s;) in R" is order-1 stable if there exists an sg € R”
that such that
lim st =8 (1) lim E[st] = sk 2)
t—o0 ) t—oo
i where E[sy] is the expectation of s;.
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Stability of Particles

While converge in expectation is informative, it leaves out part of the
picture, as noted by Poli [24]:
@ Even if the expectation of a stochastic sequence becomes
constant, the variance may be increasing

@ Consider the random sequence, defined as
(A\t) where \; ~ U(—t,t) for all t. (3)

Now, the expectation of \; is zero for every t, which implies that
the sequence ()\;) is order-1 stable

e However, the variance of the sequence ()\;) is increasing over time
o Clearly (1)) is not particularly stable 5
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Stability of Particles

Stability of Particles

It is for this reason that we need both order-1 and order-2 stability,
defined as

Definition (Order-2 stability)

The sequence (s;) in R" is order-2 stable if there exists a sy € R"
such that

Jim V[s{] = sy (4)

where V[s;] is the variance of s;.

When S, must equal zero we term this order-2* stability
@ order-2* stability cannot be guaranteed for PSO [3]
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Stability of particles in the swarm

In literature, some authors refer to the sequence of particle positions
as convergent if it is both order-1 and order-2 stable

@ However, the meaning of order-1 and order-2 stability is very
different to that of traditional convergence,

@ because particle that are order-1 and order-2 stable can still
move

o Just with a fixed expectation and variance

e This can actually be seen as a positive outcome as the swarm can
continue to search, provided that the fixed point of the order-2
moment is not 0

@ More on this variance later
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@ So what are the criteria on control parameters to guarantee
order-1 and order-2 stability?
@ There exist a number of possibilities in the literature
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Stability of particles in the swarm

@ The correct region is in fact the curved line segment, AGB

o Originally derived by Poli and Bromhead [25] and Jiang [14]
independently:

24 (1 — w?)

O<ci+oe< 7 Bw

and |lw| <1 (5)

@ The criteria above has also been empirically verified without the
presence of simplifying assumptions [5]

@ And re-derived recently using what can be shown to be the
minimal necessary modeling assumptions by Cleghorn and
Engelbrecht [4].

IS) s

Engelbrecht & Cleghorn

Particle Swarm Optimization

GECCO’19, 13/7/2019 57 /109

Using Theory to Guide PSO Use

Stability of particles in the swarm

So why does stability matter?

@ |t tells you where to look for viable parameter configurations

@ Specifically, it was shown that parameter configurations that
resulted in particle instability almost always caused PSO to
perform worse than random search [7]

o A particle is unstable if it violates the criteria of equation (5)
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Stability of particles in the swarm

To illustrate the impact of stability on performance consider:

ctc,

-
Michalewicz, 30-dimensions, 1000 iterations 1 = performed better than random search, 2 = no statistical differeg@e, 3 =£aNARMeroria
search performed better UNIVERSITY OF PRETORIA
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Stability of particles in the swarm

Often times people use a variant of PSO
@ Most theory only applies to the inertia and constriction PSO

@ However, using the theorem from [4] you can easily derive stability
criteria for all variants that can be rewritten in the form

Xk (t+1) = Xk () + X (t = 1)B + 1t (6)

where k indicates the vector component, o and 5 are well defined
random variables, and (v;) is a sequence of random variables
@ Despite the simplicity of equation (6), it caters for a large number
of PSOs, such as:
e Fully informed PSO [17], unified PSO [22], fithess-distance-ratio
PSO [23], and multi-guided PSO [26, 27]

o Furthermore, the mentioned examples are catered for w[@w\ﬂsihg‘
any arbitrary well defined distributions S
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The theorem relies on the non-stagnate distribution assumption,

Definition (Non-stagnant distribution assumption on two

informers)

It is assumed that both y; () and y; () are random variables sampled
from a time dependent distribution, such that both y; (t) and y; (t) have
well defined expectations and variances for each t and that

lim Ely(0)], im E[7,(0], im Vly,()], and lim V[7;(1)] exist.

Shown to actually be a necessary condition for stability

Stability of particles in the swarm

The theorem has four parts:

(Theoem

(1) Assuming (i;) converges, particle positions are order-1 stable for
every initial condition if and only if p(A) < 1, where

. [Ega] E([)ﬂ]] and f; — [EE)%]] (7)

p(A) is the spectral radius of the matrix A, p (A) = maxxex, |A|, Xa is the set of
eigenvalues of A
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Stability of particles in the swarm

(Theorem

(2) The particle positions are order-2 stable if p(B) < 1 and (j;)
converges, where
Elo] E[5] O 0 0 Ev]

1 0 0 0 0 0
B=| 0 0 E[e?] E[p% 2E[ap]| and j;= |E[?]

0 0 1 0 0 0

0 0 Elo] 0 E[p] 0
under the assumption that the limits of (E[v:«a]) and (E[:5]) exist

[ TS
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Stability of particles in the swarm

(Theorem

(3) Assuming that x(t) is order-1 stable, then the following is a
necessary condition for order-2 stability:

1 Efa] - E[8] #£0 (8)
1—E[a2]—E[52]—(2E1[fLE]I[EBF]>>O (9)

(4) The convergence of (E[v:]) is a necessary condition for order-1
stability, and the convergence of both (E[v{]) and (E[v?]) is a
necessary condition for order-2 stability

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 64 /109



Using Theory to Guide PSO Use

Using Theory to Guide PSO Use

Utilization of Stability Theorem

To illustrate the power of the presented theorem. Consider again the
inertia PSO velocity update equation

vi(t+1) = wv(t)
+ e @ (yi(t) — xi (1))
+ car2 @ (¥i(t) — xi (1)) (10)
where ® represents component-wise multiplication. However, now let
@ 01 =cyr1,0>=0Coro

@ 64, 6>, and w be random variables sampled from arbltrary
distribution
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Utilization of Stability Theorem

By applying the presented theorem,

-1 < E[w] <1 and 0<%<2 (11
—1< \/% <1 (12)
0 < Elpi] + Elpy] < —— ;ﬁ/f LWKWJE L{,‘E@EEJZ%[WD (13)
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Utilization of Stability Theorem

Let us consider actually doing such derivations. Consider the fully
informed PSO:

@ The velocity update equation of FIPS is defined as follows:

Vil

Vj(t+1) = wy; t)+z7m (ym(t)_xi(t))

NIl

(14)

where N is set of particles in particle i’s neighborhood, |Vj| is the
cardinality of AV;, and v k() ~ U(0,¢1 +¢) for1 < k < d
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Utilization of Stability Theorem

The approach taken to derive the order-1 stable region is to use
theorem 1 (a). Specifically, for FIPS

A= ‘EEO‘] Eéﬁ]‘ i, — ‘EE')/!] (15)
where
1 X ¢
15[04:(1+w)—mrn2::11:'[¢9m]=—(1+w)+§ (16)
E[p] = —w (17)
1 V] & V]
Ely = m Z E[0m]E[ym(t)] 2|N| Z Elym(1)]
m=1
Engelbrecht & Cleghorn Particle Swarm Optimization
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Utilization of Stability Theorem

@ By making the non-stagnant distribution assumption on all particle

informers, it follows that i; = E[17’] converges, since a finite sum

of convergent sequences is also convergent.

@ Then, we need p(A) < 1 to use part (1), which corresponds to the
following necessary and sufficient criteria for order-1 stability:

lw|<tandO<ci+c<4(w+1) (19)

Equation (19) corresponds to the order-1 stable region of FIPS
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Utilization of Stability Theorem

In order to confirm that the criteria of equation (20) are in fact
sufficient, we need to show that p(B) < 1, where

Elo] E[5] © 0 0
10 0 0 0

B=|0 0 E[? E[B? 2E[af (22)
0o 0 1 0 0
0 0 Elo] 0  E[f

Ideally, this should be done analytically but the Eigen values can become
incredibly large (symbolic solvers are not great an inequality problems), so we
@ Randomly select parameter configurations within the region of equations
(20) and (21) (10° used)
@ It was found that all of generated configurations satisfy p(B) < 1. Which
is strong evidence that the conditions are in fact sufficient as SII

o Nice research question is to prove when the equivalence« btween
the necessary and sufficient conditions hold.
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Utilization of Stability Theorem

In order to obtain the necessary conditions for order-2 stability, part (3)
of the theorem can be used. Specifically,

Conditions for order-1 and order-2 stability of FIPS

lw| <1
12|N] (1 — w?)
3IN|+1+w(1-3|N|)

O<ci+e<
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Utilization of Stability Theorem

Lastly, we need to show that j; converges,

Elv]
0

jt = E[Vtz]
0
0

(23)

The convergence follows directly from simple expansion and the use of
the non-stagnant distribution assumption
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Utilization of Stability Theorem

1 T
64
32
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citc,

Derived order-1 and order-2 stable regions for |N| =1, 2, 4, 8, 16,

and the maximum convergence region
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Roaming Behavior of Particles
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Roaming Behavior of Particles

The problem of particle roaming is a well known issue of PSO
@ A particle is said to be roaming if it is moving outside the feasible

space.

Why do particles roam?

@ It was formally proved by Helwig and Wanka [12] that particles will
leave the search space with overwhelming probability in the first

iteration

e when velocities are uniform initialized within [—Xpmin, Xmax]™ or

initialized to 0.
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In low dimensional search spaces the roaming problem is not so
severe. Under the “let them fly” approach [2], particles return to the

search space

Fraction of Swarm Out of Bounds

Fraction of swarm outside search space on F7 (

1 n=5 -
0.9 n -
08 a100
0.7 ns=250
06|
05 |
0.4 w
0.3
0.2 M
0.1 W%

I
0 100 200 300 400 500

Iterations

benchmark) in 10 dimensions

Engelbrecht & Cleghorn

Particle Swarm Optimization

UNIVERSITEIT
STELLENBOSCH
UNIVERSITY

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CEC2010 large scale optilﬁzatjggwmu
A 4

GECCO’19, 13/7/2019 75/109

However, in high dimensional search spaces the problem of roaming is

highly significant

Fraction of Swarm Out of Bounds
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Using Theory to Guide PSO Use

Roaming Behavior of Particles

How do we handle the problem of particle roaming in high
dimensions?

@ Particle variance restriction:

e Originally shown by Poli [24], the component-wise variance of the
particle positions can be predicted as

5w + 1 )
V(] = 5a —Cé) - Tzv.)ﬂ Vil

— 1) —y(t=1)7 (24

wherec=c¢y = ¢

o If the variance is restricted, we decrease the likelihood of a
boundary violation

2
uuuuuuuuuuuuuuuuuuuuuuu
UNIVERSITY OF PRETORIA
YUNIBE SITHI YA PRET ORIA
A 4

Engelbrecht & Cleghorn GECCO’19, 13/7/2019 77 /109

Particle Swarm Optimization

Using Theory to Guide PSO Use

Particle Movement Patterns

Roaming Behavior of Particles

How do we handle the problem of particle roaming in high
dimensions?

@ Boundary constraint handling:

o While there exist many boundary constraint handling approaches
they often interact poorly with the explosive PSO dynamics
@ Continuous reinitialization
@ Boundary bias, and often most of the swarm is stuck on the boundary
in high dimensional spaces
@ Movement direction warping

@ In high dimensions the current best approach is:

e a per dimension hyperbolic boundary constraint handling
mechanism [19]

A more complete exploration of approaches can be found in gﬁ]
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Particle Swarm Optimization

Using Theory to Guide PSO Use

While there exists some early research papers on the manner in which

particles move through the search space, they where derived in a
deterministic context [29, 21]

@ Informative when considering the trajectory of a particle in
expectation, but it does not give us enough information
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Particle Swarm Optimization

Particle Movement Patterns

We can, however, characterize stochastic particle behavior based on
the following two aspecits:

@ Range of motion: from equation (24) we extract the coefficient

B c(5w+1)
(54 —7) —12w2 412 (25)

Ve

@ Base frequency, F, is defined to be the largest amplitude among

the Fourier series coefficients of the particle’s positions throughout
the search [1]:

e Particles with small values for F typically exhibit smooth trajectories
o Particles with large values for F are prone to more oscillations with
large steps between positions

UNIVERSITEIT
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Using Theory to Guide PSO Use

Particle Movement Patterns

Relationship between base frequency, F, and correlation of particle
positions

Correlation measure
o

'
<
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Control Parameters

Self-Adaptive Particle Swarm Optimization

Approaches to find the best values for control parameters:
@ Just use the values published in literature?
@ Fine-tuned static values
@ Dynamically changing values
@ Self-adaptive control parameters

Many dynamic and self-adaptive approaches have recently been
developed

But... more research is needed...

UNIVERSITEIT
STELLENBOSCH

3 UNIVERSITY

2
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

A 4

Engelbrecht & Cleghorn Particle Swarm Optimization

GECCO’19, 13/7/2019 83/109

Particle Movement Patterns

The ideal movement pattern is very different in low dimensional search
spaces versus high dimensional search spaces.

132 132
0l45 !i

0.1 0.4 1.6 6.4 25.6 0.1 0.4 1.6 6.4 25.6
Variance (Vc) Score Variance (V) Score

Frequency (F)
s 2 o S ° 5 °
v SR V-SR-S

Optimal frequency-variance combinations  Optimal frequency-variance combinations

(n=10) (n=100) S e
X UNIVERSITY
The color of a block shows its score, with lighter indicating a better score across the CEC2010 large scale ben ark suite

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

A 4

Engelbrecht & Cleghorn Particle Swarm Optimization GECCO’19, 13/7/2019 82 /109

Control Parameters

Self-Adaptive Particle Swarm Optimization: Shortcomings

Issues with current self-adaptive approaches:

@ Most, at some point in time, violate convergence conditions, and
many do so for most of the search process

@ Converge prematurely, with little exploration of control parameter
space

@ Introduce more control parameters

@ Current empirical analysis shows that they do not really result in
improved performance with reference to solution quality
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Self-Adaptive Particle Swarm Optimization: Approaches

Self-Adaptive Particle Swarm Optimization: Ackley

Optimizer Parameters Tuned Net Change
PSO-TVIW (Shi and Eberhart, 1998, 1999) w +1
PSO-ATWF (Liu et al, 2005) ! +1
DAPSO (Yang et al, 2007) w +2
IPSO-LT (Li and Tan, 2008) ! +1
SAPSO-LFZ (Li et al, 2008) w -1 (0]
SAPSO-DWCY (Dong et al, 2008) w -1 (+2)
PS0O-RBI (Panigrahi et al, 2008) w +1
IPSO-CLL {Chen et al, 2009) ! -1
ATWFSO (Nickabadi et al, 2011) w +1
APSO-VI (Xu, 2013) ! +2
SRP30 (Tanweer et al, 2015) w +2
PS0-SAIC (Wu and Zhou, 2007) w, ez 42 (+4)
PSO-RAC W, 0], 02 -3
PSO-TVAC (Ratnaweera et al, 2004} w, 01,02 +3
PS0O-ICSA (Jun and Jian, 2009) w, €1, €2 +3 (+31)
APSO-FZLC (Zhan et al, 2009) w, €1, €2 -3 (435)
UAPSO-A (Hashemi and Meybodi, 2011) W, 0,02 +6
GPS0 (Leu and Yeh, 2012) w, ey, e +3 (+(na 4+ 3)) oo
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Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average swarm diversity
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Average solution quality
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Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average boundary violations per dimension
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Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Self-Adaptive Particle Swarm Optimization: Ackley (cont)

Average percentage particle position boundary violations
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Self-Adaptive Particle Swarm Optimization: Ackley (cont)
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Average percentage personal best position boundary violations
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Self-Adaptive Particle Swarm Optimization: Ackley (cont)
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Control Parameters

Self-Adaptive Particle Swarm Optimization: Analysis

Uses the specially-formulated function to study convergence behavior

[6]:
F(x) ~ U(0,2000)

such that
F(x1) = F(x2) if X4 = Xz
@ the fitness value of each position in the search space is randomly
sampled within the range [0, 2000]
@ complete stagnation is highly unlikely
@ provides a good benchmark function for studying convergence

behavior
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Control Parameters

Self-Adaptive Particle Swarm Optimization: Analysis (cont)

After 5000 interations:

Algorithm A cP Ay P

PSO 415125 | 100% 0.0 | T0.7%

PSO-TVIW 56450 | 100% | 1.00ed | 9.6%

PSO-ATWF 2000.000 0% 0.0 | 96.7%

DAPSO 2000.000 0% NaN | 96.0%

IPSO-LT 2000.000 0% 0.0 | 96.7%

SAPSO-LFZ 2000.000 | 47.2% 0.0 | 53.5%

SAPSO-DWCY | 1324322 | 100% 0.0 | 96.2%

PSO-RBI 2000.000 | 76.7% | 6.01e2 | 41.5%

IPSO-CLL 2000.000 | 100% 0.0 | 100%

ATWPSO 45.521 | 100% 0.0 | 3.3%

APSO-VI 55.040 | 100% 0.0 | 61%

SRPSO 2000.000 | 96.7% 0.0 | 3.3%

PSO-SAIC 2000.000 0% NaN | 96.7%

PSO-RAC 165544 | 100% | L60e+0 | 44.2%

PSO-TVAC 32354 | 100% | 5.74e4 | 6.5%

PSO-ICSA 2000.000 0% | 4.00e-4 | 96.7%

APSO-ZZLC 1318.307 | 100% | 4.51e3 | 96.1% E

UAPSO-A 124467 | T0% | B.47e1 | 38.1% "

GPSO 2000.000 | 16.7% | B.3%e-2 | 96.7% ﬁ s v e
P\ YUNIBESITHI YA PRETORIA
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Self-Adaptive Particle Swarm Optimization: Analysis (cont)

Performance measures:
@ Average particle movement, A:

e quantifies average particle step size
o if value does not decrease, particles do not converge

@ Percentage particles with convergent control parameters, CP:
e measures algorithm’s ability to generate convergent parameters
@ Average parameter movement, Ap:

e average step size in parameter space
o quantifies stability of the control parameter values

@ Percentage particles that violates boundaries, IP:
e proportion of particles that violates boundary constraints in at least

one dimension
e quantification of wasted search effort 5 et
i R
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Control Parameters

Self-Adaptive Particle Swarm Optimization: Average Particle Movement
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Self-Adaptive Particle Swarm Optimization: %Convergent Parameters
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Self-Adaptive Particle Swarm Optimization: Boundary Violations
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Self-Adaptive Particle Swarm Optimization: Parameter Movement
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Concluding Rekmarks
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@ Yes, PSO has been very successfully applied to solve a wide
range of optimization problems

@ However, there are a number of aspects about PSO that are not
well understood, and many opinions have been made without
proper analysis

@ This tutorial have identified a number of these misconceptions,
and have provided guidance on how to optimally implement PSO,
to even furth improve its performance and expands its applications
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