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Next Generation Genetic Algorithms

There is a book chapter that goes with this tutorial.

D. Whitley.
Next Generation Genetic Algorithms.
The Handbook of Metaheurisics, 2019.

Send an email to whitley@cs.colostate.edu

SUBJECT: TUTORIAL2019
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Hot Off the Press!!!

We can define a new form of Genetic Algorithm
where Premature Convergence cannot occur!

Furthermore, larger populations converge faster, not slower.

The Mixing Genetic Algorithm

Swetha Vardarajan and Darrell Whitley

4

Next Generation Genetic Algorithms

What do we mean by “Next Generation?”

1 NOT a Black Box Optimizer.

2 Uses mathematics to characterize problem structure.

3 For many problems: NO MUTATION IS NEEDED
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Next Generation Genetic Algorithms

What do we mean by “Next Generation?”

1 Not a blind “population, selection, mutation, crossover” GA.

2 Uses deterministic move operators and crossover operators

3 Tunnels between Local Optima.

4 Scales to large problems with millions of variables.

5 Build on our expertise in intelligent ways.

6

Know your Landscape! And Go Downhill!

7

What if you could ...

P1
P2

recombine P1 and P2

“Tunnel” between local optima on a TSP,
or on an NK Landscape or a MAXSAT problem

and go the BEST reachable local optima!

Tunneling = jump from local optimum to local optimum

8

The Partition Crossover Theorem for TSP

Let G be a graph produced by unioning 2 Hamiltonian Circuits.
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The Partition Crossover Theorem for TSP

Let G’ be a reduced graph so that all common subtours are removed.
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Partition Crossover in O(n) time
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The Partition Crossover for TSP

As a side effect: f(P1) + f(P2) = f(C1) + f(C2)

12

The Big Valley Hypothesis

is sometimes used to explain metaheuristic search

Local Optima are “Linked” by Partition Crossover ”Tunnels”
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Generalized Partition Crossover in O(n) time

Generalize Partition Crossover is always feasible if the partitions have 2
exits (same color in and out). If a partition has more than 2 exits, the
“colors” must match.

14

How Many Partitions are Discovered?

Instance att532 nrw1379 rand1500 u1817
3-opt 10.5± 0.5 11.3± 0.5 24.9± 0.2 26.2± 0.7

Table: Average number of partition components used by GPX in 50
recombinations of random local optima found by 3-opt.

With 25 components, 225 represents millions of local optima.

With 1000 components, returns the best of 21000 local optima!!!

15

With Thanks to Gabriela Ochoa and Renato Tinós

16

GPX, Cuts Crossing 4 Edges (IPT fails here)
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GPX, Complex Cuts ... Still O(n) time
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GPX, Complex Cuts ... Still O(n) time

(a) (b)

(c)

A B

C D

E F

(d)

19

Tunneling Between Local Optima

Local Optima are “Linked” by Partition Crossover

Thanks to G. Ochoa and N. Veerapen.
20

The Two Best TSP (solo) Heuristics

Lin Kernighan Helsgaun (LKH 2 with Multi-Starts, and IPT Crossover)
Iterated Local Search

EAX: Edge Assembly Crossover (Nagata et al.)
Genetic Algorithm

Combinations of LKH and EAX
using Automated Algorithm Selection Methods (Hoos et al.)

THE BEST INEXACT “TSP” SOLVERS USE CROSSOVER!

1117



21

Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.

LKH uses deep k-opt moves, clever data structures and a fast
implementation.

LKH-2 has found the majority of best known solutions on the TSP
benchmarks at the Georgia Tech TSP repository that were not solved by
complete solvers: http://www.tsp.gatech.edu/data/index.html.

22

GPX Across Runs and Restarts

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

B1 B2 B3 B4 B5 B6 B7 B8 B9B0

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

D0 D1 D2 D3 D4 D5 D6 D7 D8

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

D9

GPX Across Runs
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A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per
run. The circles represent local optima produced by LKH-2. GPX across
runs crosses over solutions with the same letters. GPX across restarts
crosses over solutions with the same numbers.

23

LKH with Partition Crossover

24

Edge Assembly Crossover

Parent 1 Parent 2 Union of Parents

AB Cycles (the E−Set) The Subcircuits Offspring: New Edges

AB-Cycles are extracted from the graph which is the Union of the
Parents. The AB-Cycles are used to cut Parent 1 into subcircuits.
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Edge Assembly Crossover

AB Cycles (the E−Set) The Subcircuits Offspring: New Edges

The AB-Cycles are used to cut Parent 1 into subcircuits. These
subcircuits are reconnected in a greedy fashion to create an offspring.
The offspring is composed of edges from Parent 1, edges from Parent 2,
and completely new edges not found in either parent.

26

The EAX Genetic Algorithm Details

1 EAX is used to generate many (e.g. 30) offspring
during every recombination. Only the best offspring is retained
(Brood Selection).

2 There is no selection, just “Brood Selection.”

3 Typical population size: 300.

4 The order of the population is randomized every generation. Parent
i is recombined with Parent i+ 1 and the offspring replaces Parent
i. (The population is replace every generation.)

27

The EAX Strategy

1 EAX can inherit many edges from parents,
but also introduces new high quality edges.

2 EAX disassembles and reassembles,
and focuses on finding improvements.

3 This gives EAX a “thoroughness” of exploration.

4 EAX illustrates the classic trade-off between
exploration and exploitation

28

Edge Assembly Crossover: Typical Behavior
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Combining EAX and Partition Crossover

1 Partition Crossover can dramatically speed-up exploitation, but it
also impact long term search potential.

2 A Strategy: When EAX generates 30 offspring, recombine all of the
offspring using Partition Crossover.

3 This can help when EAX gets stuck and cannot find an
improvement.

30

EAX and EAX with Partition Crossover

Standard EAX with restarts

Pop Evaluation Running Number
Dataset Size Mean S. D. Time Mean S. D. Opt. Sol.
rl5934 200 556090.8 50 1433 34 12/30
rl5915 200 565537.57 29 1221 30 23/30
rl11849 200 923297.7 8 8400 130 1/10
ja9847 800 491930.1 2 37906 618 0/10
pla7397 800 23261065.6 552 12627 344 2/10
usa13509 800 19983194.5 411 81689 1355 0/10

EAX with Partition Crossover

Pop Evaluation Running Number
Dataset Size Mean S. D. Time Mean S. D. Opt. Sol.
rl5934 200 556058.63 33 1562 248 21/30
rl5915 200 565537.77 21 1022 73 19/30
rl11849 200 923294.8 8 7484 105 4/10
ja9847 800 491926.33 2 30881 263 4/10
pla7397 800 23260855 222 11647 1235 4/10
usa13509 800 19982987.6 173 66849 818 2/10

31

The Mixing Genetic Algorithm

What is there is no hard selection.
Under HARD selection poor individuals are removed from the population.

Under SOFT selection children replace parents, but individuals are not
removed from the population.

Instead, the population becomes stratified, with the best individual at
one end of the population, and the worst individuals at the other end of
the population.

BEST ————————–MEDIAN—————————–WORST

32

The Mixing Genetic Algorithm

eval(P1) + eval(P2) = eval(Cbest) + eval(Cworst)

If you keep the best and worst child,
the population average never changes.
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The Mixing Genetic Algorithm

34

The Hypercube Configuration

Assume the population size is 16.

After 4 (log2(16)) generations, every member of the population can
contribute their best edges to location 0 in the population.

([(0x8)x(4x12)]x[(2x10)x(6x14)]) x ([(1x9)x(5x13)]x[(3x11)x(7x15)])

and in general:

Theorem

(The Mixing Theorem): After each epoch (log(popsize) generations)
of the Mixing GA, all individuals in the population have the potential to
contribute their best components to the individual at location 0.

35

The Mixing GA Compared with EAX

36

k-bounded Pseudo-Boolean Functions

1  0  1  0  1  1  1  0  0  1  1  0  0  1  0  1  0  1  0  0  1  0  1  1  1  0  0  1

f1  f2 f3 f f4 m

f

i = 1
i
(x, mask)f(x) = 

m
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A General Result over Bit Representations

By Constructive Proof: Every problem with a bit representation and a
closed form evaluation function can be expressed as a quadratic (k=2)
pseudo-Boolean Optimization problem. (See Boros and Hammer)

xy = z iff xy − 2xz − 2yz + 3z = 0

xy 6= z iff xy − 2xz − 2yz + 3z > 0

Or we can reduce to k=3 instead:

f(x1, x2, x3, x4, x5, x6)

becomes (depending on the nonlinearity):

f1(z1, z2, z3) + f2(z1, x1, x2) + f3(z2, x3, x4) + f4(z3, x5, x6)

38

k-bounded Pseudo-Boolean functions

For example: A Random NK Landscape: n = 10 and k = 3.
The subfunctions:

f0(x0, x1, x6) f1(x1, x4, x8) f2(x2, x3, x5) f3(x3, x2, x6)
f4(x4, x2, x1) f5(x5, x7, x4) f6(x6, x8, x1) f7(x7, x3, x5)

f8(x8, x7, x3) f9(x9, x7, x8)

But this could also be a MAXSAT Function,
or an arbitrary Spin Glass problem.

39

Walsh Example: MAXSAT

40

BLACK BOX OPTIMIZATION

Don’t wear a blind fold during search if you can help it!
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GRAY BOX OPTIMIZATION

THEOREM: All of the following functions are solved in
1 evaluation in O(n) time.

ONEMAX
LEADING-ONES (TRAILING ZEROS)
TRAP functions
Multi-Modal UGLY Deceptive Problems
JUMP functions, (m << n)
UNITATION functions
All non-deceptive functions

Do we want to solve real problem?

Or just pretend to solve toy problems?

42

GRAY BOX OPTIMIZATION

We can construct “Gray Box” optimization for pseudo-Boolean
optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

f(x) =
m∑
i=1

fi(x)

Which can be expressed as a Walsh Polynomial

W (f(x)) =
m∑
i=1

W (fi(x))

Or can be expressed as a sum of k Elementary Landscapes

f(x) =
k∑

i=1

ϕ(i)(W (f(x)))

43

Walsh Example: MAX-3SAT

44

Walsh Example: MAX-3SAT
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Walsh Example: MAX-3SAT

46

Walsh Example

47

GRAY BOX OPTIMIZATION

We can construct “Gray Box” optimization for pseudo-Boolean
optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

f(x) =
m∑
i=1

fi(x)

Which can be expressed as a sum of k Eigenvectors:

f(x) =
k∑

i=1

ϕ(i)(W (f(x)))

48

The Eigenvectors of MAX-3SAT

f(x) = f1(x) + f2(x) + f3(x) + f4(x)

f1(x) = f1a(x) + f1b(x) + f1c(x)

f2(x) = f2a(x) + f2b(x) + f2c(x)

f3(x) = f3a(x) + f3b(x) + f3c(x)

f4(x) = f4a(x) + f4b(x) + f4c(x)

ϕ(1)(x) = f1a(x) + f2a(x) + f3a(x) + f4a(x)

ϕ(2)(x) = f1b(x) + f2b(x) + f3b(x) + f4b(x)

ϕ(3)(x) = f1c(x) + f2c(x) + f3c(x) + f4c(x)

f(x) = a+ ϕ(1)(x) + ϕ(2)(x) + ϕ(3)(x)
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Constant Time Steepest Descent

Assume we flip bit p to move from x to yp ∈ N(x). Construct a vector
Score such that

Score(x, yp) = −2

 ∑
∀b, p⊂b

−1b
T xwb(x)


All Walsh coefficients whose signs will be changed by flipping bit p are
collected into a single number Score(x, yp).

In almost all cases, Score does not change after a bit flip. Only some
Walsh coefficient are affected.

50

Constant Time Steepest Descent

Assume we flip bit p to move from x to yp ∈ N(x). Construct a vector
Score such that

Score(x, yp) = f(yp)− f(x)

Thus, are the scores reflect the increase or decrease relative to f(x)
associated with flipping bit p.

In almost all cases, Score does not change after a bit flip. Only some
subfunctions are affected.

51

When 1 bit flips what happens?

1  0  1  0  1  1  1  0  0  1  1  0  0  1  0  1  0  1  0  0  1  0  1  1  1  0  0  1

f1  f2 f3 f f4 m

f
i = 1

i
f(x) = 

m

(x, mask )
i

flip

The improving moves can be identified in O(1) time!
Mutation is not needed, except to diversify the search.

52

The locations of the updates are obvious

Score(yp, y1) = Score(x, y1)

Score(yp, y2) = Score(x, y2)

Score(yp, y3) = Score(x, y3)− 2(
∑

∀b, (p∧3)⊂b

w′b(x))

Score(yp, y4) = Score(x, y4)

Score(yp, y5) = Score(x, y5)

Score(yp, y6) = Score(x, y6)

Score(yp, y7) = Score(x, y7)

Score(yp, y8) = Score(x, y8)− 2(
∑

∀b, (p∧8)⊂b

w′b(x))

Score(yp, y9) = Score(x, y9)

1125



53

Some Theoretical Results: k-bounded Boolean

1) PROOF: Same runtime for BEST First and NEXT First search.

2) Constant time improving move selection under all conditions.

3) Constant time improving moves in space of statistical moments.

4) Auto-correlation computed in closed form.

5) Tunneling between local optima.

54

Best Improving and Next Improving moves

“Best Improving” and “Next Improving” moves cost the same.

GSAT uses a Buffer of best improving moves

Buffer(best.improvement) =< M10,M1919,M9999 >

But the Buffer does not empty monotonically: this leads to thrashing.

Instead uses multiple Buckets to hold improving moves

Bucket(best.improvement) =< M10,M1919,M9999 >

Bucket(best.improvement− 1) =< M8371,M4321,M847 >

Bucket(all.other.improving.moves) =< M40,M519,M6799 >

This improves the runtime of GSAT by a factor of 20X to 30X.

55

Steepest Descent on Moments

Both f(x) and Avg(N(x)) can be computed with Walsh Spans.

f(x) =
3∑

z=0

ϕ(z)(x)

Avg(N(x)) = f(x)− 1/d

3∑
z=0

2zϕ(p)(x)

Avg(N(x)) =
3∑

z=0

ϕ(z)(x)− 2/N
3∑

z=0

zϕ(z)(x)

56

The Variable Interaction Graph
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There is a vertex for each variable in the Variable Interaction Graph
(VIG). There must be fewer than 2k M = O(n) Walsh coefficients.
There is a connection in the VIG between vertex vi and vj if there is a

non-zero Walsh coefficient indexed by i and j, e.g., wi,j .
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What if you want to flip 2 or 3 bits at a time?
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Assume all distance 1 moves are taken.

There can never be an improving move flipping bits 2 and 7.
There can never be an improving move flipping bits 4, 6 and 9.
There can never be an improving move over combinations of bits where
there are no (non-zero) Walsh coefficients.

58

What if you want to flip 2 or 3 bits at a time?

12,000 bit k-bounded functions

59

The Recombination Graph: a reduced VIG
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When recombining the solutions SP1 = 000000000000000000 and
SP2 = 111100011101110110, the vertices and edges associated with
shared variables 4, 5, 6, 10, 14 are deleted to yield the recombination
graph.

Tunneling Crossover Theorem:

If the recombination graph of f contains q connected components,
then Partition Crossover returns the best of 2q solutions.

60

Decomposed Evaluation for MAXSAT
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MAXSAT Number of recombining components

Instance N Min Median Max
aaai10ipc5 308,480 7 20 38

AProVE0906 37,726 11 1373 1620
atcoenc3opt19353 991,419 937 1020 1090
LABSno88goal008 182,015 231 371 2084
SATinstanceN111 72,001 34 55 1218

Tunneling “scans” 21000 local optima and returns the best in O(n) time.

62

Decomposed Evaluation
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A new evaluation function can be constructed:

g(x) = c+ g1(x0, x1, x2) + g2(x9, x11, x16) + g2(x3, x7, x8, x12, x13, x15)

where g(x) evaluates any solution (parents or offspring) that resides in
the subspace ****000***0***0**.

In general:

g(x) = c+

q∑
i=1

gi(x,maski)

63

Partition Crossover and Local Optima

The Subspace Optimality Theorem: For any k-bounded
pseudo-Boolean function f , if Parition Crossover is used to recombine
two parent solutions that are locally optimal, then the offspring must be
a local optima in the hyperplane subspace defined by the bits shared in
common by the two parents.

Example: if the parents 0000000000 and 1100011101
are locally optimal, then the best offspring

is locally optimal in the hyperplane subspace **000***0*.

64

Percent of Offspring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N k Model 2-point Xover Uniform Xover PX
100 2 Adj 74.2 ±3.9 0.3 ±0.3 100.0 ±0.0
300 4 Adj 30.7 ±2.8 0.0 ±0.0 94.4 ±4.3
500 2 Adj 78.0 ±2.3 0.0 ±0.0 97.9 ±5.0
500 4 Adj 31.0 ±2.5 0.0 ±0.0 93.8 ±4.0

100 2 Rand 0.8 ±0.9 0.5 ±0.5 100.0 ±0.0
300 4 Rand 0.0 ±0.0 0.0 ±0.0 86.4 ±17.1
500 2 Rand 0.0 ±0.0 0.0 ±0.0 98.3 ±4.9
500 4 Rand 0.0 ±0.0 0.0 ±0.0 83.6 ±16.8
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Number of partition components discovered

N k Model Paired PX
Mean Max

100 2 Adjacent 3.34 ±0.16 16
300 4 Adjacent 5.24 ±0.10 26
500 2 Adjacent 7.66 ±0.47 55
500 4 Adjacent 7.52 ±0.16 41

100 2 Random 3.22 ±0.16 15
300 4 Random 2.41 ±0.04 13
500 2 Random 6.98 ±0.47 47
500 4 Random 2.46 ±0.05 13

Paired PX uses Tournament Selection. The first parent is selected by
fitness. The second parent is selected by Hamming Distance.

66

Optimal Solutions for Adjacent NK

2-point Uniform Paired PX
N k Found Found Found

300 2 18 0 100
300 3 0 0 100
300 4 0 0 98
500 2 0 0 100
500 3 0 0 98
500 4 0 0 70

Percentage over 50 runs where the global optimum was Found in the
experiments of the hybrid GA with the Adjacent NK Landscape.

67

Tunneling Local Optima Networks

Multimodal problems are not always difficult
NK Landscapes: Ochoa et al. GECCO 2015

Adjacent (easy) NK Landscapes have more optima.
But Random (hard) NK Landscapes have disjunct “funnels.”

68

NK and Mk Landscapes, P and NP
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NK and Mk Landscapes, P and NP

70

Decomposed Evaluation for MAXSAT

N= 1,067,657

71

Decomposed Evaluation for MAXSAT

N= 182,015
72
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MAXSAT Number of recombining components

Instance N Min Median Max
aaai10ipc5 308,480 7 20 38

AProVE0906 37,726 11 1373 1620
atcoenc3opt19353 991,419 937 1020 1090
LABSno88goal008 182,015 231 371 2084
SATinstanceN111 72,001 34 55 1218

Imagine:
crossover ”scans” 21000 local optima and returns the best in O(n) time

74

What’s (Obviously) Next?

Deterministic Recombination Iterated Local Search (DRILS)

This exploits constant time deterministic improving moves selection and
deterministic partition crossover.

75

Tunneling Between Local Optima

P1
P2

recombine P1 and P2

For Weighted MAXSAT Local Optima are well defined.
Partition Crossover (PX) can “Tunnel” between local optima.

Tunneling = jump from local optimum to local optimum, while finding
the best local optima.

76

Tunneling Between Plateaus for MAXSAT

For Unweighted MAXSAT, plateaus replace local optima.

WHEN to apply Partition Crossover (PX) is an issue.

WHICH parents to recombine is also an issue.
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Early MAXSAT Results

78

Early MAXSAT Results

79

New Theoretical Results

Theorem

When recombining parents P1 and P2:

f(P1)

2
+

f(P2)

2
=

1

2q

2q∑
i=1

f(Ci)

Corollary

Assume that f(P1) = f(P2).
If any offspring represents a disimproving move, there must also exist an
offspring that yields an improving move.

This makes Partition Crossover very different than local search for
MAXSAT. For local search the discovery of a disapproving move says
nothing about the existence of an improving move.

80

Decomposed Evaluation

The VIG and the Recombination Graph
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Local Search plus Recombination

The VIG and the Recombination Graph

For this instance (N=72,001), Sparrow got stuck early. One Partition
Crossover returned the best of 2842 solutions and satisfied 316 additional

clauses.

82

Local Search Algorithms for MAXSAT

AdaptG2WSAT: Best in the 2007 SAT Competition

NEW: AdaptG2WSAT with Partition Crossover

Sparrow: Best among all local search over in ”crafted” and ”Application”
SAT Track in 2014 SAT Competition.

NEW: Sparrow with Partition Crossover

83

The MAXSAT instances

We used 102 instances drawn uniformly from each instance type of the
crafted and industrial problems from the 2014 SAT Competition.

Most problems are 100, 000 < n < 1, 500, 000

84
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One Million Variable NK Landscapes

This configuration is best for Adjacent NK Landscapes with low K value.

We can now solve 1 million variable NK-Landscapes to optimality in
approximately linear time. This exploits contant time deterministic
improving moves selection and deterministic partition crossover.

86

One Million Variable NK Landscapes

Scaling for runtime, Adjacent NK Landscapes with K = 2 (k = 3).

87

One Million Variable NK Landscapes

This DRILS configuration is best for Random NK Landscapes,
and in general problems with higher values of K.
This exploits constant time deterministic improving moves selection and
deterministic partition crossover.

88

NK Landscapes and MAXSAT

Black Box Optimization is HOPELESSLY inefficient.

In expectation, for N= 1,000,000, with 1 improving move available:

In the worst case,
for the 1 improving move made by a Black Box Optimizer
a Gray Box Optimizer can make 1,000,000 improving moves.
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Cast Scheduling: K. Deb and C. Myburgh.

A foundry casts objects of various sizes and numbers by melting metal on
a crucible of capacity W. Each melt is called a heat.

Assume there N total objects to be cast, with rj copies of the jth object.

Each object has a fixed weight wi, thereby requiring M =
∑N

j=1 rjwj

units of metal.

DEMAND: Number of copies of the jth object.
CAPACITY of the crucible, W.
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Casts: Multiple Objects, Multiple Copies

91

Cast Scheduling: Deterministic Recombination

Recombination is illustrated for a small problem with N = 10, H = 4,
with capacity W = 650. Demand (rj) is shown in the final row.
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Cast Scheduling: Deterministic Recombination

Parent 2 has a better metal utilization for rows 1, 2 and 4. Row 3 is
taken from Parent 1. Recombination is greedy.
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Cast Scheduling: Deterministic Recombination

Repair operators are applied to offspring solution.

Repair 1: The respective variables are increased (green) or decreased
(blue) to meet Demand.

94

Cast Scheduling: Deterministic Recombination

Repair operators are applied to offspring solution.

Repair 2: Objects are moved to different heats within the individual
columns to reduce or minimize infeasibility.

95

One Billion Variables

Breaking the Billion-Variable Barrier in Real World Optimization Using a
Customized Genetic Algorithm. K. Deb and C. Myburgh. GECCO 2016.

96

What’s (Obviously) Next?

Put an End to the domination of Black Box Optimization.

Wait for Tonight and Try to Take over the World.
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