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Plan of This Tutorial

We explain why many-objective optimization is difficult for
EMO (Evolutionary Multiobjective Optimization) algorithms,
and how those difficulties can be handled. We also suggest
some promising future research directions.

Part 1 (Hisao Ishibuchi): Difficulties
Part 2 (Hiroyuki Sato): Approaches

Part 3 (Hisao Ishibuchi): Future Directions
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Single-Objective Optimization: Maximize f(x)
Multi-Objective Optimization:

Maximize f,(X), f,(x)
Maximize f,(x), £,(x), f5(x)

Many-Objective Optimization:

Maximize fl(x)a fZ(x)a f3()€), ﬁl(x)
Maximize f(X), /5(x), f3(x), f4(x), f5(x)
Maximize f{(X), /5(x), f3(x), f4(x), f5(x), f¢(x)
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Today’s Plan (Part 1)

Difficulties in Evolutionary Many-Objective
Optimization Studies

1. Difficulties related to many-objective search
2. Difficulties related to test problems
3. Difficulties related to performance evaluation

Many-Objective Optimization

1. Search for Pareto Optimal Solutions
Pareto dominance does not work well

Frequently Discussed Difficulties

1. Search for Pareto Optimal Solutions
Pareto dominance does not work well.

2. Approximation of the Entire Pareto Front
A huge number of solutions are needed.

3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult.
4. Selection of a Single Final Solution
Choice of a single final solution is difficult for DM.

5. Examination of Search Behavior
Visual observation of many-objective search is difficult.

6. Large Diversity of Solutions in a Population
Usefulness of crossover may be degraded.

17000 - Q -

f>: Total profit from knapsack 2
oy
1 1

f»: Total profit from knapsack 2

Q. Why are many-objective problems difficult for EMO ?

A. Solutions with many objectives are usually non-dominated
with each other. Thus no strong selection pressure towards
the Pareto front can be generated by Pareto dominance.
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2. Approximation of the Entire Pareto Front 3. Presentation of Obtained Solutions to DM

A huge number of solutions are needed Visualization of high-dimensional solutions is difficult
N S solutions |25 solutions - S
200 bo\for k=2 for k=3 Y 6 2000} o~~b%\
. O« s Z: - 19000f 0&6‘6‘\
5 0 o
o é‘ ] il o oéé“
o Obtaned souiolG) e ion
17000 18000 19000 20000 17000 o m
k-Objective Problem gk -1) f' k=4
2-Objective Problem 5 How can we show a number of four-dimensional
3-Objective Problem 25 vectors to the decision maker?
10-Objective Problem 10 million

3. Presentation of Obtained Solutions to DM 4. Selection of a Single Final Solution
Visualization of high-dimensional solutions is difficult Choice of a single final solution is difficult for DM

Pareto front

©  Obtained solution S,
. \ ¢

18000 19000 20000

17000

" h f3
Obtained Solutions for a Four-Objective Problem k=4

We can see that a wide variety of solutions are How can we choose a §ing|e.final solution from a
obtained. But, it is difficult to examine each solution. large number of four-dimensional vectors?




4. Selection of a Single Final Solution 4. Selection of a Single Final Solution

Choice of a single final solution is difficult for DM Choice of a single final solution is difficult for DM

k=4 0.8 Presentation of only a small number of solutions may
g'z help the decision maker. How to select those solutions?
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The 2nd objective f5(x) / 10*
oo

0.0 1.7 F ]
fi f2 g fa 15800
Obtained Solutions for a Four-Objective Problem 1.6 1 1
It may be very difficult for the decision maker 15 ) 14300 5 3 4
to choose a single final solution from a large The 1st objective /,(x) / 10* Objective
number of obtained non-dominate solutions. Ten solutions selected from 220,298 non-dominated solutions.

6. Large Diversity of Solutions in a Population
Usefulness of crossover may be degraded

5. Examination of Search Behavior
Visual observation of many-objective search is difficult
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Initial Population g5 Initial Population 16000 18000 20000 f;

. ' ' . Generated 100 offspring from two dissimilar parents (O)
2-Objective Problem 8-Objective Problem by uniform crossover for a 2-objective 500-item knapsack

problem. Ishibuchi et al. IEEE Trans on EC (2015)
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Difficulties of Many-Objective Problems

Three non-dominated solutions (Five-objective maximization)
S 1 A

s b s E />

S

Good for all objectives. Very good except for f. Only fg is good.

These three solutions are non-dominated.

By increasing the number of objectives, almost all
solutions become non-dominated.

Better Solution: Two-Objective

Maximize f(x)=(f(x), f>(x))

S (x)
N
© Solutions in this region are better
E & than solution A. (1/4 of the space)
E A
=
Maximize S1(x)

Pareto dominance-based comparison

Better Solution: Four-Objective

Better Solution by Pareto Dominance

Maximize f(x) = (/1(x), f2(x), f3(x), f4(x))
f2(x)

Solutions in this region are better
than solution A. (1/16 of the space)

&
A

Maximize

X
Maximize S1(x)
Pareto dominance-based comparison

18

Pareto dominance-based comparison
Percentage of the better region

J2(x) 2 objectives |  1/4 25%
3 objectives 1/8 13%
g 4 objectives |  1/16 6%
= ® A 5 objectives 1/32 3%
= 10 objectives | 1/1024 | 0.1%
£1(x)| 15 objectives | 1/32768 | 0.003%
Maximize
20 objectives | 1/1048576 | 0.0001%

It is very difficult to find a better solution.




Use of Scalarizing Function (MOEA/D)

Recently MOEA/D has been very popular.
A scalarizing function is used in MOEA/D.

Feasible
Region

A l l A I
~ Z —_~
3 ’ 3
z} Feasible b
N Region N
Elm s g
R= £
= ; = 4’
5
7 >
0 Minimize f,(x) 0

Minimize f,(x)

Use of Scalarizing Function

Weighted Tchebycheff

......

& Reference Point

=

Maximize f;(x)

Contour lines of
the Tchebycheff function

Maximize f(x)

Use of Scalarizing Function

Weighted Tchebycheff

Percentage of the better region

Sf2(x)

Maximize

Pa

H(x)

Maximize

2 objectives 1/4 25%

3 objectives 1/8 13%

4 objectives 1/16 6%

5 objectives 1/32 3%
10 objectives | 1/1024 0.1%
15 objectives | 1/32768 | 0.003%
20 objectives [ 1/1048576 | 0.0001%

Use of Scalarizing Function

PBI Function (&= 5)
g™ (x|2,2")=d, +0d,

< Reference Point
¥ v 2

N

Maximize f5(x)

Contour lines of
the PBI function

Z

Maximize f,(x)




Use of Scalarizing Function Use of Scalarizing Function

PBI Function (6= 5) very Rough Calculation Weighted Sum
Percentage of the better region g (x| D=4 1(xX)+ - fL(x)+ - + A4, [,(x)
f2(x) 2 objectives |  1/12 8%
3 objectives 1/36 3%
4 objectives 1/108 1%

5 objectives 1/324 0.3%
10 objectives | 1/78732 [ 0.001%

f1(x)| 15 objectives

Maximize

Maximize £5(X)

Contour lines of
the Weighted sum function

Maximize

20 objectives

Much smaller than the case of the Pareto dominance.

Maximize fl(x)

Use of Scalarizing Function

Expected Performance of EMO Algorithms
on Many-Objective Problems

Weighted Sum Best Worst
Percentage of the better region

f2(x) 2 objectives |  1/2 50%
3 objectives 172 50% " & A

g 4 objectives 12 50%

= A 5 objectives 1/2 50%

= 10 objectives 172 50% Weighted Sum Pareto Dominance PBI Function

o> fi(x)| 15 objectives | 172 50% (MOEA/D-WS) T((:'I\:Slfﬁ-r:le)ff (MOEA_ID-PBI)

20 objectives | 12 50% (MOEAID-Teh) (0=5)

Always a half of the objective space is better.




Our Results on Knapsack Problems

Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

Test Problems:
500-item knapsack problems with 2-10 objectives

Algorithms:
NSGA-II
MOEA/D with WS (Weighted Sum)
MOEA/D with Tchebycheff
MOEA/D with PBI (6= 5)

Performance Indicator:
Hypervolume

Expected difficulties are observed.

Ishibuchi et al. IEEE TECV (2015)

Average Hyper-Volume Value
(Normalized by the Result of the MOEA/D-WS)

EMO Algorithm | 2-Obj | 4-Obj | 6-Obj | 8-Obj |10-Obj

MOEA/D: WS 100.0 | 100.0 | 100.0 | 100.0 | 100.0

MOEA/D: Tchebycheff| 100.7 | 99.7 | 94.0 | 90.1 | 87.7

NSGA-II 96.5 | 86.2 | 77.8 | 72.0 | 65.5

MOEA/D: PBI (5) | 1009 | 89.3 | 73.8 | 67.4 | 61.9

Results = Expected Performance of EMO

Algorithms on Many-Objective Problems

Our Results on DTLZ Test Problems
Ishibuchi et al. IEEE TECV (2017)

Best Worst
N N
A Pa
Weighted Sum Tchebycheff PBI Function
(MOEA/D-WS) (MOEA/D-Tch) (MOEA/D-PBI)
(6=5)

21

Test Problems:
DTLZ1 - DTLZ4 Problems with 5-10 objectives

Algorithms:
NSGA-II
MOEA/D with WS (Weighted Sum)
MOEA/D with Tchebycheff
MOEA/D with PBI (6= 5)
NSGA-III
MOEA/DD

Performance Indicator:
Hypervolume

Totally different results are obtained.




Our Results on DTLZ Test Problems

Ishibuchi et al. IEEE TECV (2017)
Average Hyper-Volume Value

Problem M NSGA-IIIl MOEA/DD  PBI Tch WS NSGA-II
5 1.57677 1.57794 1.57768  1.51186  0.50052  0.00000
DTLZ1 8 2.13770 213730 2.13620  2.05463  0.96246  0.00000
10 2.59280  2.59260  2.59220  2.51973 1.07913  0.00000
5 1.30317 1.30778 1.30728  1.14598  0.61944  0.67442
DTLZ2 8 1.96916 1.97862 197817 1.35469  0.68315  0.00004
10 250878  2.51509 251500 1.69045  0.83883  0.00000
5 1.29894 1.30638 1.30398  1.14475  0.60143  0.00000
DTLZ3 1.95007 1.97162 1.74240  1.33166  0.66684  0.00000
10 2.50727  2.51445  2.50933 1.69956  0.80348  0.00000
5 1.30839 1.30876 1.20680  1.00426  0.42941 1.00881
DTLZ 4 1.98025 1.98083 1.86439  1.35100  0.71296  0.00000
10 2.51524 251532 2.43536  1.56890  0.95488  0.00000

Results on DTLZ Test Problems

different from the expected results

Worst Best
A $a
Weighted Sum Tchebycheff PBI Function
(MOEA/D-WS) (MOEA/D-Tch) (MOEA/D-PBI)
(6=5)

Results on DTLZ Test Problems

A Promising Research Direction

Totally different from the expected results

Worst Why ?
N
==> Because of the concave
shape of the Pareto fronts !
A
2t <:.Oo Z(ﬂo
539" S ° |_ Obtained solutions

OOCS%
W’ by MOEA/D-WS
&0 o |

Weighted Sum
(MOEA/D-WS) T

P2

Localized Weighted Sum

Localized weighted sum method for many-objective
optimization IEEE TEVC 2018
Rui Wang, Zhongbao Zhou, Hisao Ishibuchi, Tianjun Liao, Tao Zhang

£




Results on DTLZ Test Problems

Totall

different from the expected results

Why ?); **
y !
A
Tchebycheff PBI Function
(MOEA/D-Tch) (MOEA/D-PBI)
(6=5)

Reason
DTLZ test problems are very easy

DTLZ2
S T . T S . T S
3t of 2
Feooe o .
2f .
A ;d“’
1F e i p
1 - :
O ParctoFront of DTLZ2, | Of | T4 o ! ]
0o 1 2 3 h 0 1 2 h 0 1 2 A

Generated Solutions Generated Solutions
by Mutation by Crossover

Feasible Region
and Initial
Solutions

Reason
It is easy to find better solution.

DTLZ2

OO
D0
Pareto Front of DTLZ2

'

0 1 7 3 A

Feasible Region
and Initial
Solutions

0 i 2 A

Generated Solutions Generated Solutions

by Mutation

1

T A

by Crossover

Today’s Plan

Difficulties in Evolutionary Many-Objective
Optimization Studies

1. Difficulties related to many-objective search
2. Difficulties related to test problems
3. Difficulties related to performance evaluation




Typical Scenario of

Many-Objective Optimization Papers

Test Problems

in Recent Many-Objective Papers

Motivation: Publication Proposed Test Number of
- Many-objective optimization problems are difficult. Year Algorithm ';;;E;;nj 3021?';'(‘)'9:5
- New algorithms are needed. B 2

9 2014 NSGA-III WFG 6-7 3,5,8,10, 15

Proposal: S-DTLZ 1-2 3,5,8,10, 15

- We propose a new high-performance algorithm. DTLZ 1-4 3,5,8,10, 15

. . . 2015 I-DBEA DTLZ5(, M) 3,5,8,10, 15
Computational Experlments. . WFG 1.9 5,10, 15

- Better results are obtained by the proposed algorithm than DTLZ 14 3.5.8.10.15
the existing ones on DTLZ 1-4 and WFG 1-9 problems. 2015 MOEA/DD WFG 1-9 3.5,8,10

DTLZ 14,7 2,5,8,10,13

2016 MOTADDU WG 19 2,5,8,10,13

S-DTLZ 1-2 2,5,8,10,13

DTLZ 1-4,7 3,5,8,10, 15

2016 6-DEA WFG 1-9 3,5,8,10, 15

S-DTLZ 1-2 3,5,8,10,15

High-Performance Evolutionary

Typical Scenario of
Many-Objective Optimization Papers

Many-Objective Algorithms

Motivation:
2007 MOEA/D — - Many-objective optimization problems are difficult.

- New algorithms are needed.
2014 NSGA-III Better Results on o |

roposal:
2015 I-DBEA DTLZ and WFG - We propose a new high-performance algorithm.
(New algorithms are Computational Experiments:
2015 MOEA/DD better than old ones). - Better results are obtained by the proposed algorithm than
v the existing ones on DTLZ 1-4 and WFG 1-9 problems.

2016 &6-DEA

@

Test problems are easy and have special features.

624




Special Feature: Better new solutions

can be easily created by

J

7 #

0'1 |
e

7. .
%
- \ \
D0 e
Pareto Front of DTLZ2 or or . b

o 1 2 3 AH 0 1 2 h 0 2 A

Generated Solutions Generated Solutions
by Mutation by Crossover

Feasible Region
and Initial
Solutions

Special Feature: DTLZ 1-4 and WFG 4-9
have triangular Pareto fronts

MOEA/D and Test Problems

Shape of the Pareto front
for MOEA/D:

MOEA/D looks perfect for DTLZ

Pareto front

Weight Vectors
(DTLZ 2)

25

The point is whether the shape of the Pareto front is
similar to the shape of the weight vector distribution.

w,. 1.0 1.0 Wy

Weight Vectors

Pareto front
(Minus-DTLZ 2)




Our Idea: Min-DTLZ and Min-WFG

Ishibuchi et al. IEEE TEVC (2017)

(-1) x DTLZ and (- 1) x WFG Test Problems:

Change from “minimization” to “maximization” is
the same as the multiplication by (- 1).

Pareto front
of (-1) x DTLZ2

Pareto front
of DTLZ2

Experimental Results on (-1 ) x DTLZ1

MOEA/D-PBI

Our Results on Minus-DTLZ Test Problems

Ishibuchi et al. IEEE TECV (2017)

Average Hyper-Volume Value

Problem M NSGA-III MOEA/DD PBI Tch WS NSGA-II
Minus 0.01265 0.00972 0.01739 0.01208 0.00083 0.01520
DTLZ1 5.227E-05 0.881E-05 0.598E-05 3.215E-05 0.139E-05 3.568E-05

10 1.185E-06 0.100E-06 0.079E-06 0.620E-06 0.025E-06 0.765E-06
Minus 0.13957 0.08794 0.15984  0.15556 0.14930 0.17147
DTLZ2 4.454E-03 2.690E-03 5.978E-03 0.459E-03 1.560E-03 4.585E-03

10 6.308E-04 1.836E-04 5.199E-04 0.052E-04 0.640E-04 3.797E-04
Minus 0.12951 0.08190 0.15902 0.15199 0.14891 0.16472
DTLZ3 0.00414 0.00255 0.00596  0.00050 0.00156 0.00390

10 0.00054 0.00018 0.00052 0.00001 0.00006 0.00033
Minus 0.12326 0.07242 0.12296  0.14878 0.14881 0.16970
DTLZ3 4.582E-03 2.198E-03 2.020E-03 0.485E-03 1.563E-03 3.886E-03

10 6.065E-04 2.569E-04 2.333E-04 0.043E-04 0.642E-04 3.006E-04

Experimental Results

(Hypervolume)

DTLZ and WFG
MOEA/D (1997)

NSGA-III (2014)

MOEA/DD (2015) ﬂ

0-DEA (2016) PBetter
;» MOEA/D-Tch Js

(1) x DTLZ and (-1) x WFG
Better MOEA/D (1997)

T

NSGA-III

NSGA-III (2014)
MOEA/DD (2015)
6-DEA (2016)




Today’s Plan (Part 1)

Two-objective Optimization

Difficulties in Evolutionary Many-Objective
Optimization Studies

1. Difficulties related to many-objective search
2. Difficulties related to test problems
3. Difficulties related to performance evaluation

The final result of optimization is a solution set.
Comparison of solution sets is not easy.

Which is a better solution set?

Maximize f,
Maximize f,

Maximize f; Maximize f;

Three-objective Optimization

Four-objective Optimization

The final result of optimization is a solution set.
Comparison of solution sets is difficult:

Which is a better solution set?

62

Which is the better solution set?

O o >~
RS

> > W\

o D) QXK

v v

50 50

Q Q

2, 2,

2. 2.

o o

Objective No. Objective No.
(a) (b)




Ten-objective Optimization

Maximize f,(x), /5(X), ..., fio(x)

The final result of optimization is a solution set.
Comparison of solution sets is very difficult.

1.0 1.0

051

0.0

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

Difficulties in Performance Evaluation

1. How to Specify the Population Size
2. How to Specify the Reference Point for HV
3. How to Specify the Reference Points for IGD

[1] H. Ishibuchi et al. , How to compare many-objective algorithms under
different settings of population and archive sizes, Proc. of CEC 2016, pp. 1149-
1156. (Proposal of the Basic Idea)

[2] R. Tanabe, H. Ishibuchi, A. Oyama, Benchmarking multi- and many-objective

evolutionary algorithms under two optimization scenarios, I[EEE Access, vol.
5, pp. 19597-19619, December 2017. (Performance Comparison Results)

Performance Indicators

Frequently-Used Performance Indicators
1. Hypervolume Indicator

2. IGD (Inverted Generational Distance) Indicator

Property of These Indicators:
By increasing the number of solutions, the evaluation
of a solution set by these indicators can be improved.

Hypervolume

Hypervolume (HV) is the volume of the dominated
region by the obtained solutions. The HV value can
can be improved by adding new solutions.

A A

Maximize f,
Maximize f,

— > — >
Maximize f, Maximize f;




Specification of Population Size

IGD: Inverted Generational Distance

How about the following settings?

Average distance from each reference point on Algorithm A:
the Pareto front to the nearest solution. The IGD Crossover.probability' 1.0

value can be improved by adding new solutions. Mutation probability: 1/n (n: string length)
Population size: 5,000

A A _
Algorithm B:
= é/ = Crossover probability: 0.2
N / N Mutation probability: 5/n (n: string length)
E O—nu E Population size: 50
§ — Pareto front Qe § — Pareto front O Comparison under these settings may be OK
8 IS‘:lf:tflf:lcg eStet 8 ls‘:lflf;f:lcg;et for single-objective optimization. However, for
— > — > multi-objective optimization, ...
Maximize f, Maximize f;

Obtained Solution Sets

Experimental Results
Under various settings of the population size

Results on a Six-objective 500-item Knapsack Problem

Better 5.0 ; '

[ - MOEA/D-WS
35 [ - MOEA/D-Tch
r =< HypE

Hypervolume ( X10%5)
N
S

Algorithm A Algorithm B

100 1000 10000
Population Size




Other Results: Five-Objective WFG3

MOEA/D can be the worst and the best.

- MOEA/D -8 NSGA-III
-4~ MOEA/DD -%- ¢-DEA

Hypervolume
= =

S
\O
T
I

0.8 - L

100 1000
Population Size

Performance of the final population of different size

10000

How to compare EMO algorithms with/without
an archive population?

Some algorithms have an archive population
whereas others do not have.

Current Population II::> Next Population  [==

g $

Archive Population -"l Archive Population {==>

Our Idea (CEC 2016): Solution selection

from all the examined solutions

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 100
Size of Archive Population: 1,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 100
No Archive Population

The comparison may be unfair ==> Solution
selection from all the examined solutions.

Performance of the Final Population
Five-Objective WFG3

1.2

L.1r 7

-8 MOEA/D -@— NSGA-III
-4~ MOEA/DD -%- ¢-DEA

Hypervolume
=

S
O
T
I

0.8 - L

100 1000
Population Size

Performance of the final population of different size

10000




Selection of 50 Solutions

from the Final Population

1.2 - . .
- MOEA/D -@- NSGA-III
—A— MOEA/DD = 6-DEA

o 1.1r .

=

= "

£ 1.0 o—

(]

N

T 09f -

0.8 . .
100 1000 10000

Population Size
Performance of the selected 50 solutions

Selection of 50 Solutions

from all the Examined Solutions

1.2 : . |
-—- MOEA/D -8— NSGA-III
-4~ NMOEA/DD = ¢ -DEA
®§ 1.1 I T
S 10t .
g
5
—i 0_9 L |
0.8 .
100 1000 10000

Population Size
Performance of the selected 50 solutions

Performance Comparison using

Solution Selection Methods

R. Tanabe, H. Ishibuchi, and A. Oyama, “Benchmarking
multi- and many-objective evolutionary algorithms under
two optimization scenarios,” IEEE Access, Dec 2017.

Two Optimization Scenarios:
(i) Use of the final population
(ii) Use of selected solutions from the examined solutions

Observation: Performance comparison results are
different between the two optimization scenarios.

Difficulties in Perfoamance Evaluation

1. How to Specify the Population Size
2. How to Specify the Reference Point for HV
3. How to Specify the Reference Points for IGD

[1] H. Ishibuchi et al., Reference point specification in hypervolume calculation
for fair comparison and efficient search, Proc. of GECCO 2017, pp. 585-592.
(Proposal of the Basic Idea)

[2] H. Ishibuchi et al., How to specify a reference point in hypervolume
calculation for fair performance comparison,” Evolutionary Computation
(2018). (Extended Journal Version)




Two Solution Sets (maximization)
Which has the larger hypervolume?

Hypervolume (HV)

Comparison results depends on the reference point

When the reference point is close to the Pareto front:

Better Solution Set

Hypervolume (HV)

Comparison results depends on the reference point

HV: Dependency of Optimal Distribution of
Solutions on the Shape of the Pareto Front

When the reference point is far from the Pareto front:

Better Solution Set

;0. 5 4 ;05 5 4 f, 0.5 : ;, 0.
1010 1010 1010 1010

(a) r = 1.0. (b) = 1.1 (¢) m=1.5. (d)r =2.0. (e) r =10.
Figure 1: Obtained solution sets for the three-objective normalized DTLZ1.

(d)r = 2.0,

{¢) ri=1.5.
Figure 2: Obtained solution sets for the three-objective normalized Minus-DTLZ1.

(a) r=1.0. byr=11. (e) r =10.




HV: Dependency of Optimal Distribution of

Solutions on the Shape of the Pareto Front

I .

1.0
5 | S
osts /48
b e
ssee

, 05

. .
100 o &
o . b

B | FF ekl e

05t /-/® o[% o %

ptd aia Y
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Figure 8: Obtained solution sets for the three-objective DTLZ2 problem.
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HV: Dependency of Optimal Distribution of
Solutions on the Shape of the Pareto Front
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Figure 6: Obtained solution sets for the five-objective normalized DTLZ1 problem.

3 4 5 1

(a)_r =1.0.

3 4 5 1

T

1 2 3 4 5 1 2 3 4 5 1 2 3

2 4
(a) r =1.0. (b)ir = 1. (o) = 1.5, (d)r=2.0. (e) r = 10.
Figure 7: Obtained solution sets for the five-objective Minus-DTLZ1 problem.

Difficulties in Performance Evaluation

IGD-based performance comparison results

1. How to Specify the Population Size
2. How to Specify the Reference Point for HV
3. How to Specify the Reference Points for IGD

[1] H. Ishibuchi et al., Reference point specification in inverted generational
distance for triangular linear Pareto front, /EEE Trans. on Evolutionary
Computation (2018). (Reference Point Specification)

[2] H. Ishibuchi, H. Masuda, Y. Nojima, A study on performance evaluation
ability of a modified inverted generational distance indicator,” Proc. of
GECCO 2015, pp. 695-702. (Modification of the IGD Indicator)

depends on the reference point specifications

Specification of reference points is important.

IGD: 1.2 IGD: 1.1

Better

Maximize f,
>
A
Maximize f,

Maximize f, Maximize f,




IGD-based performance comparison results ) )
P P How to specify a set of reference points

depends on the reference point specifications

Specification of reference points is important. Current Standard:
Use of a large number of uniformly distributed
IGD: 1.0 solutions.
o Better o This is not always a good method as shown in the
E E following slides.
E E
>~ <
< <
= =
— > —
Maximize f; Maximize f,

Analysis of IGD from a Viewpoint Optimal Distributions of Solutions for IGD are
of Optimal Distribution of Solutions not always intuitive

S IGD (u=5) J24 Hypervolume (1= 5) /m m
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’I/ 51 et an
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IEEE Trans. on Evolutionary Computation (2018)
Reference Point Specification in Inverted Generational
Distance for Triangular Linear Pareto Front

Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima Population size 20 Population size 50  Population size 100




Optimal Distributions of Solutions for IGD are
not always intuitive

Optimal Distributions of Solutions for IGD are

not always intuitive

0.5 ‘ ‘ ‘ ‘ ‘ b 0.5 A
Aolobofolofololol

0.0 - 0.0
1 2 3 4 5 6 7 8 910
Population size 20

1234567380910
Population size 100

Refererllc:e })alr;té 108,091 60 points

When we randomly generate 100,000 reference points,
the optimal distributions of solutions are as follows:

1.0 1.0

0.5F 1 05r

0.0 - 0.0
1 2 3 45 6 7 8 910

Population size 20

1 2 3 4 5 6 7 8 9 10
Population size 100

Part 2: Approaches

We explain why many-objective optimization is difficult for
EMO (Evolutionary Multiobjective Optimization) algorithms,
and how those difficulties can be handled. We also suggest
some promising future research directions

Part 1 (Hisao Ishibuchi): Difficulties
Part 2 (Hiroyuki Sato): Approaches

Part 3 (Hisao Ishibuchi): Future Directions

B5

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach
2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation




NSGA-Il [Deb 02]
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Bl Non-dominated sorting M Crowding Distance

F=> Convergence = Diversity
'0’7{7 B
< ° &
K;% o \N 00 | ~n T
@) \,
fi fi

Front Distribution over Generation

Results on knapsack problems with 500 items

Lo

10 100 1000 100 1000 1000
i ation

Generation

Generation

10 objectives

2 objectives
Coarse ()

5 objectives
Coarse ()

In many-objective problems,

o The number of solutions belonging to Front 1 exceeds the size of
parent solutions in early stage of the evolution.

o Convergence of solutions toward Pareto front is deteriorated.

Approaches for Many-Objective Optimization

Relaxed Dominance Based Approach

1

2. Indicator Based Approach

. Relaxed Dominance Based Approach

3. Decomposition Based Approach
4. Reference Based Approach
5. Dimensionality Reduction Approach

6. Efficient Solution Generation
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Transform of Objective Values

Controlling Dominance Area of Solutions [Sato 07]
— The dominance area is controlled by varying ;.

A x
A
(o, ®; .
f)—f'(x) 7
o _r~sin(wi+5i-7r) B . |
fl(l) - bln(S, .7_(_) (L - 1727 7””)

Where, S, = (pi/ﬂ'




Controlling Dominance Area of Solutions (CDAS)

[Sato 07]

a-Domination [Ikeda 01]

fla) = f(c)
fa) £ £(b)
F(b) £ £(c)

) > /i

User Defined

fi®) fi(©

I | |
Parameter S [ >

0.25 Expanding 0.|50 Contracting 0_|75

Conventional

Controlling Dominance Area of Solutions (CDAS)

[Sato 07]

a-Domination [Ikeda 01]

»  Fine grained ranking
\ = Strengthen selection

A

fi(e) fi() fi@) h
User Defined

I | |
Parameter S [ >

0.25 Expanding 0.|50 Contracting 0_'—,5

Conventional

Controlling Dominance Area of Solutions (CDAS)

[Sato 07]
1A a-Domination [lkeda 01]

o fla) £ )
P fa) f f(e)
f) £ f(e)
/ Coarser ranking
] = Weaken selection

>

fi0) fi(e) fi@) fl
User Defined

I | |
Parameter S [ >

0.25 Expanding 0.|50 Contracting 0_|75

Conventional

Front Distribution over Generation

Results on knapsack problems with 500 items
10 objective

Conventional Dominance Area
5 objective

100
Generation

Expanded Dominance Area ‘

Number of solution




Hypervolume

Hypervolume by Varying S

Results on knapsack problems with 500 items

— r r
131 ——a— 2objective | 131 ——oa— 2objective |
— —&- — 3objective | — —4- — 3objective |
---v--- 4objective ---v--- 4objective
12F === 0---- 5Sobjective 1.2F -=--0---- 5Sobjective
—O0— 7objective —O0— T7objective
——o— 9objective | ° ——o— 9objective |
11k 10objective | g L1k 10objective |
g
3
S
1k 4 £ ar -
\
091 — 091 \ B
TAY
L ¥
M
1 1 .'- L L L 1 L 1 L y I“ n‘ 1 I
09303 04 05 06 07 08 09303 04 05 06 07 08
. ~e—— S —
Expanding Contracting Expanding Contracting

NSGA-Il with CDAS SPEA2 with CDAS

Front Distribution in Objective Space

Simple experiment
— Randomly generated 100 points in [0,1]? are classified into non-dominated fronts.
— The same process is repeated 1,000 times.

e L % | T,
08 F
06

fa

04k
02

D C 1 i 1 i | i 1 i L i J_

0 02 04 06 08 1
A
Conventional Dominance Expanded Dominance
(S=0.5) (S=0.4)

Problems in CDAS

1. An appropriate parameter S controlling dominance area of
solutions must be found out experimentally.

2. The diversity of solutions deteriorates when we decrease S
from 0.5.

* To solve these problems

— Avariant of CDAS called self-controlling dominance area
of solutions (S-CDAS) was proposed.

— The algorithm self-controls dominance area for each
solution without the need of an external parameter.

Relaxed Dominance Based Approach
Modification of Objective Values

S-CDAS determines dominance area that extreme solutions E are never dominated.

BFor a single solution x, calculate ¢(x)={¢,,
0ps---» 0,,). Here, p(x) is the angle
determined by the solution x and the
landmark vector p; in the i-th objective
function.

E, L(x)

r(x)-sin(@,(x))

@,(x)=sin" { 1)

fz } (i=12,...,m)

B Modify objective values of all solutions
Y EF; by the following equation.

V,(y)'sin(w‘(y)+¢,-(X))( |

VAL - i=12,...,m)
sin(@,(x))
®,(x) PN ) p _ _
201 mCheck dominance relations between the
0-(0,, 0, f1 P solution x and all other solutions y & F,. If

a solution y< F; is dominated by x, the
counter (rank) of y is incremented.




Relaxed Dominance Based Approach Front Distribution in Objective Space

Modification of Objective Values

S-CDAS determines dominance area that extreme solutions E are never dominated.

BmFor a single solution x, calculate p(x)={¢,, Front 1
@55 0.} Here, g(x) is the angle
determined by the solution x and the !
landmark vector p; in the i-th objective

Fropt 1 Fror)t 1

0.8 B

function.
(x) sin(@,(x)) I I "l
) r(x)-sin(e(x o P A i
@,(x)=sin { 1) } (i=12,..,m) ol ol . ol
2= 2k "u.'\ 2k
® Modify objective values of all solutions ’ o2 " 02
YEF, by the following equation. ok T ...
[ [ 4 P X [] 0.2 04 P 0.6 [{5] 1 [] 0.2 0.4 P 0.6 0.8 )
£y = QSO TOED 15 ) Conventional Dominance Expanded Dominance Expanded Dominance
o sin(g,(x)) (CDAS with S=0.4) (S-CDAS)

‘llCheck dominance relations between the
0-(0,,0y) f1 P solution x and all other solutions y & F. If
a solution y= F; is dominated by x, the
counter (rank) of y is incremented.

Performance Comparison with

Relaxed Dominance Based Approach
Conventional MOEAs

Results on knapsack problems with 500 items

Counting Objective Approach

Il L T T T ] (1-k)-dominance [Farina 02]
A9 -oom0--e- NSGA-I T . . . . . . .
---v--- IBEA,, Solution x is said to (1-k)-dominate solution y if and only if
—-0o—-— CDAS (5"
—-»—-- MSOPS Me < m
L1F e . m—ne
1) . R le = .
£ </ k+1
S -/ i
g m: Number of objectives
o
2 1.05 ‘ - ny: Number of objectives where x is better than y (|{ie{1,2,...,m}| £(x)>f()}])
. ,/E/ | n,: Number of objectives where x is equal to y (|{i€{1,2,....m}| fi(x)=f(»)}])
e
= . . . .
1k ;:f,_{_._._§ _____________ R— { i + k=0 is equivalent to the conventional dominance.
E’/ * The larger k, the more relaxed dominance producing a fine-
T S R grained dominance ranking.
4 6 8 10
Number of Objectives M. Farina and P. Amato, “On the optimal solution definition for many-criteria optimization problems,” In Proc. of the 2002 Annual

Meeting of the North American Fuzzy Information Processing Society (NAFIPS’ 02). IEEE, pp. 233-238, 2002.




Relaxed Dominance Based Approach

Relaxed Dominance Based Approach

Counting Objective Approach

Ranking-dominance [Kukkonen 07]
Aggregates rank value on each objective.

Rsum = Zleank(fl(x)) ’ Rmin =. mlnm} Rank(fl(x))

i€{1,2,.,

Objective values Ranks Aggregated Ranks

Lok h hh Rum | Ronin
x | 5 200 15 3 2 5 Aggregation 10| 2
x| 9 350 14 5 4 4 13| 4
x; | 4 100 13 2 1 3 6 | 1
x, | 6 270 12 4 3 2 9 |2
xs | 3 400 11 15 1 711

S. Kukkonen and J. Lampinen, “Ranking-dominance and many-objective optimization,” In Proc. of the 2007 IEEE Congress on
Evolutionary Computation (CEC’07). IEEE, Los Alamitos, CA, pp. 3983-3990, 2007.

Combination with Reference Lines

0-dominance [Yuan 16] in 6-DEA

— Given two solutions x and y, x is said to 8-dominate y, if and only if
xand y are in the same cluster C;and F(x,4;) < F(y, 4;).

F(x,4) = dy(x, &) + 0d,(x, 4;)

A A X Ay

1 A A A Fl As
—~ : —~ ° o / ) ;
g g T o/ Clugter Cs
£ g o 7%
A K% AR
i 2 HE C( > 2,
f 5

\@ s j
Obtained 5 Obtained 7
ideal point Al ideal p<‘:int Al
|
! /i (Minimize) ! /i (Minimize)
Y. Yuan, H. Xu, B. Wang, and X. Yao., “A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization,”
|EEE Transactions on Evolutionary Computation, 20, 1, pp. 16-37, 2016.

Relaxed Dominance Based Approach

Pareto Partial Dominance

Pareto Dominance f(x) f)
Solution x dominates y, if - 6
VieM: f(x)= f(y) A D £ D j

die M: f,(x)> f.(»)
M={12,.,m

Pareto Partial Dominance
[Sato 12]

Solution x partially dominate y, if
VieRcM: f(x)=f(y) A
dieRcM: f.(x)> f.(y)

M ={1,2,....m}

There are ,,C, combinations when we select r objectives from m objective functions.

is satisfied.

is satisfied.

Pareto Partial Dominance MOEA

Parameters: [Sato 12]
» r:the number of objectives to be considered in partial dominance.
* 1, the interval generation to switch combination of r objectives.

»C, non-dominated wC,, non-dominated
sorting sorting
[—] L T Y k=k+1
F, (e » A
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= sorting Q
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Performance Varying

Front Distribution Over Generations

the Number of Objectives

Results on knapsack problems with 500 items

T T T T
I | ——o——PPD-MOEA(=2,/,=50) i
14F —*—PPD-MOEA(r=3,,=50) 4

—_—
w
T

1.2F

Hypervolume

1.1

(8 objectives)

Results on knapsack problems with 500 items

Number of solutions

100 200 300 400 500
Generation

(a) NSGA-II

(b) PPD-MOEA
(r=2.1,=50)

B Front | T Front6

[ I Front 2 I I Front 7
B Front3 1 Front 8
[ I Front4 [ I Front 9

B Front 5 B Front 10

1. Relaxed Dominance Based Approach
2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

41

Indicator Based Approach
Distance Based Indicator

IBEA., [zZitzler 04]

introduces fine grained ranking of solutions by calculating fithess value
based on indicators which measure the degree of superiority for each
solution in the population.

I1..(A4,B)=min {f(4)+e> f(B):iel,.,m}

f 1.l 32
2<LO/

« | xh RS I.(x% x1)=3
a4 ;3

x?:3,1) 3
fi

E. Zitzler and S. Kiinzli, “Indicator-Based Selection in Multiobjective Search,” in Proc. of Parallel Problem Solving from Nature -
PPSN VIII. PPSN 2004. LNCS, Vol. 3242, pp. 832-842, 2004.




Indicator Based Approach

Hypervolume

Indicator Based Approach
Hypervolume

SMS-EMOA [Beume 07]
— (u+1) algorithm using Hypervolume contribution

SMS-EMOA

P, — init() o Fv
Repeat o
q,+; < Generate(P)) r
P, < Reduce(P,Uq,,) B {HV(F) — HV(F,\ )}
te—t+1 o
Until termination condition fulfilled =

Reduce (Q)
{F\,F,,....,F,} < Non-dominated sort (Q)
r < argmingeg, {HV(E,) — HV(E, \ 5)} f
return (O\r)

N. Beume, B. Naujoks, M. Emmerich, “SMS-EMOA: Multiobjective selection based on dominated hypervolume,” European Journal
of Operational Research, Vol. 181, Issue 3, pp. 1653-1669, 2007.

SMS-EMOA [Beume 07]

— The computational cost to calculate Hypervolume is
exponentially increased by increasing the number of
objectives.

HypE (Hyperviume Estimation) [Bader 11]
— Monte Carlo sampling to approximate hypervolume values.

J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based many-objective optimization,” Evolutionary Computation,
Vol. 19, Issue 1, pp. 45-76, 2011.

Indicator Based Approach

R2 Indicator
MOMBI [Gémez 13]

— R2 indicator to evaluate a set of solutions is utilized to
rank solutions in the population.

Contour lines for 4;

A, .
I 2, 1, R2 value for a solution set P
o 1
5 2 = i Ao f!
gl | : m = g S s NS0
E o °
é L: Weight vector set {4,,4,, ...}
et , Rank i solution set
Fi= argmin{ max ;- f’(a:)}
)\LEJ[: zep\o li€{1,2,,m} ¢
o> 2 .
obtained ideal point z Q: Lower ranked solutions than F;

fi (Minimize)
R. H. Gémez and C. A. C. Coello, "MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator," in Proc.
of IEEE Congress on Evolutionary Computation, pp. 2488-2495, 2013.
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Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach
2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation




Decomposition Based Approach

» The Pareto front (objective space) is decomposed by a set of

weight vectors or reference lines.
» Each weight vector or reference line specifies an

approximation part of the Pareto front.

A A, A3 A
4 ? 7 A 4s
© 06 0o o J
© A i 1
N 746
£ X x..;’ o5, ©
“Q ) x e 4,
x ) O?ls
O> 4,
fi (Minimize)

Decomposition Based Approach

Weight Based Ranking

MSOPS [Hughes 03]

aggregates fitness vector with multiple weight vectors, and reflects the
ranking of solutions calculated for each weight vector in parent selection.

Weight vectors
[ A \ (1) MSOPS fills up all the elements of the score
_ Wy Wy Wy W, Wy matrix by calculating
S(x0) s=_ max w;-fi(x)
. l L "
S F(xy) i€{1,2,...m}
E 2 f(xy) (2) For each column, all solutions are ranked in
S fxy) descending order based on score values.
8‘ (3) For each row, the indices of column are sorted in
o ascending order based on rank value.
\f(xN) (4) MSOPS selects solutions which have higher

. ranks for each weight vectors as parent solutions.
Score Matrix < P

E. J. Hughes, “Multiple single objective Pareto sampling,” In Proc. of the 2003 IEEE Congress on Evolutionary Computation

(CEC’03), Vol. 4, pp. 2678-2684, 2003.

MOEA/D [zhang 07]

» MOEA/D decomposes a multi-objective optimization problem into a
number of single-objective optimization problems.

» Each single objective optimization problem is defined by a scalarizing
function g using a weight vector 4; (i = 1,2, ..., N).

g1 92 93 9ga

LA 23 R 9gs
4 ? 7 A As
© 00 g 7
) 5 Vo 9
N 74
E o
£ .
3 g 2,97
W9 P O
o> 13 98
O> 45 9o

®
obtained ideal point z
/fi (Minimize)

After the Proposal of MOEA/D...

Variants of MOEA/D focusing on

1. Solution Generation
o Continuous: DE and PSO [Li 09, Liuet 10, Martinez 11, Moubayed 10]
o Discrete: ACO and SA [Ke 13, Li 11]
2. Weight Vectors
o Adaptive control of the weight distribution [Jiang 11, Hamada 13,14]
o Self-adaptation of neighborhood size [Zhao 12]

3. Combination with Dominance
o NSGA-IIl [Deb 14], MOEA/DD [Li 15], 6-DEA [Yuan 16], etc

4. Parent Selection
> Control the number of solution generations for each scalarizing function
[Zhang 09, Chiang 11]

5. Scalarizing function
o QOriginal: Tchebycheff [Bowman Jr. 76], Weighted Sum [Gass 55], PBI

o NBI-style Tchebycheff [Zhang 10]
o Adaptive Selection of Scalarizing function [Ishibuchi 09]




[\=1a :Ys M =10 Scalarizing Function

Maximize g*"' from the worst objective vector w
Maximize g'??!(x|4) = d, — 6d, 6: Parameter
_ I(w—r@)"al

m Scalarizing Function

Minimize gP? toward the obtained ideal point z
Minimize gP? (x|A) = d, + 6d, 6: Parameter

_ lFx)-2)"]| _ 1
T L d, o G = = @) - il
/' 4=1{05,0.5} A 24w : Worst objective vector
o)
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= g =
~s >

Obtained v
A= {05,05)

ideal point
! fi (Minimize) /1 (Minimize)

Expected Improvement of Spread

Inverted PBI

Contour Lines of fZ=1) and st ha:]

x* : the best point achieving the best value of gP’! and gP?:
(@) (A2} = (02,08} , () (A} = (0505}, (c) (Aud) = (08,02},

e S PBI_|
s G \:\\\\ faces the difficulty to approximate can improve the spread of
o I T 1 hEah il a wide range of Pareto front. solutions in the objective space.
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fi fi ) ) h s S |
The best points x* are always the obtained ideal point z. = = B
. o @ o
using 0.8 ,o,/ 7 I
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< ideal point
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g I
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The best points x* are widely distributed in the objective space.
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Obtained Population in MOKP with 2 objectives

NSGA using Reference Lines

20000 - 1
) Weighted Sum @
E (= Inverted PBI using 6=0.0)

™ - B
£l A
@©
2

Inverted PBI using 6" =0.6 )
15000 - o e

Inverted PBI using 8=1.0

Inverted PBI using 8=1.5

1 . 1
15000 20000

A

——
(Maximize)

NSGA-III Deb 14]

— Is designed for solving many-objective problems.
— Introduces reference lines to maintain the distribution of
solutions in the objective space.

5

i-Reference line

"‘;//Reference point

h

K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, part |: Solving problems with box constraints,” IEEE Transactions on Evolutionary Computation, 18, 4, pp. 577-601, 2014.

NSGA using Reference Lines

— Each solution in S is associated with a reference line having the minimum
perpendicular distance d.

— The reference line with the minimum number of associated solution in S\F, is focused.

« If the reference line has no associated solution in S\F, and F, has solution(s) associated with the focused
reference line, select the solution with the minimum perpendicular distance d from them.

« If the reference line has associated solution(s) in S\F, and F, has solution(s) associated with the focused
reference line, randomly select a solution from them.

Ve

. Reference line
Non-dominated d A/

sorting F|
FZ

=

i
5 Iy Rejéct
A

K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, part |: Solving problems with box constraints,” IEEE Transactions on Evolutionary Computation, 18, 4, pp. 577-601, 2014.
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Hypervolume on MOKPs
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Problem Difficulty k in WFG4

Solutions on four WFG4 problems with different problem difficulties k.
The difficulty to obtain a widely spread solutions is increased by increasing «.
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Hypervolume on WFG4 Problems
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, = o

300
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The inverted PBI achieves high search performance in problems with

* many-objectives and

» the difficulty to obtain a widely spread solutions in the objective space.
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Decomposition Based Approach

Grid-based Decomposition

Decomposition Based Approach
Grid-based Decomposition

GrEA [Yang 13]

Introduces mutual relationships of solutions in a grid environment.

ub, P
4 O
G(a)=(0,4) b
B ° ¢ Grid coordinate
é 3 GB=23) OG)-33)
£ L f:(x) — lbi
2| Gd)=3.2) G,(x) = {IT
= i
1
. e fousreo (i=12..,
0 [7q, G(e1-(3.0) ® © 8 Gg1=(4.0)
by, 0 1 2 3 4 T

ub,

fi (Minimize)

|

m)

S. Yang, M. Li, X. Liu and J. Zheng, “A Grid-Based Evolutionary Algorithm for Many-Objective Optimization,” IEEE Transactions on
Evolutionary Computation, Vol. 17, No. 5, pp. 721-736, 2013.
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GrEA [yang 13]

Selects solutions based on three grid-based criteria.

a
4 ©
(4,0) b
—_ [®) C
o |3 5,1 o
£ )
= od
s |2 G.1)
< | __(GR, GCD)
- 1
eo fa3
0 3220843
0 1 2 3 4
fi (Minimize)

1st: Convergence
m
GRGE) =) G(x)
i=1

2nd: Diversity
GCD()=, (m=) 16 -Gi))

YEN(x)

3rd;

S. Yang, M. Li, X. Liu and J. Zheng, “A Grid-Based Evolutionary Algorithm for Many-Objective Optimization,” IEEE Transactions on

Evolutionary Computation, Vol. 17, No. 5, pp. 721-736, 2013.




Difficulties in Approximation of Entire Pareto Front

Approaches for Many-Objective Optimization

» Any dimensional Pareto front must be approximated by a set of points.

1. Relaxed Dominance Based Approach
2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach Pareto front I3 Jy= -EIre Pareto Froft.
. . . . To finely approximate high-dimensional Pareto front, a huge size of
3. DlmenSIona"ty RedUCtlon ApproaCh population is needed, and computational cost is increased.
- Handling of Huge Population
6. Efficient Solution Generation [Kowatari 12, Ishibuchi 15, Jaimes 16, Tatsukawa 16]

- User-preference based search
[Deb 06, Auger 09, Gong 11, Narukawa 15, etc.]

Reference Based Approach Reference Based Approach
Goal Point Approach Goal Point Approach
R-NSGA-II [Deb 06] R-NSGA-II [Deb 06]

— The diversity maintenance mechanism using crowding — The diversity maintenance mechanism using crowding
distance is replaced with a search focusing mechanism distance is replaced with a search focusing mechanism
using distance to the reference point. using distance to the reference point.

NSGA-II (non R-NSGA-II)

Q AAAAAAAAAAAAAAAAAAAAAA ., o

X o X

o 20 e =[S ( £ —ri )

O o rl o IR =1 fimax(x) _ fimax(x)

RS S
O (@)
O o
S S

K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using
evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273-286, 2006. evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273-286, 2006.
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Reference Based Approach

Reference Based Approach

Goal Point Approach
R-NSGA-II [Deb 06]

— Solutions with a smaller d,, are preferred.

— For randomly choose two solutions, if they are in the
same front, one has smaller d,, wins.

e}

rl i (x) = fi"** (%)

5

S
K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using
evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273-286, 2006.

(o]
X m P 2
6;?70 dip(x) = \]Z‘—l (f'maxfl(X) - )

Goal Points Approach
R-NSGA-II [Deb 06]

— R-NSGA-II can treat multiple reference points.
— For each reference, solutions are ranked based on d.

Rank to reference point !
Rank to reference point 2
o
4. (x) = Z ( filx) —ri )
.rl o IR i=1 fimax(x) _fimax(x)

o 'rz
[s[2] ©

fi

K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using
evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273-286, 2006.

1

Reference Based Approach

Reference Based Approach

Goal Points Approach
R-NSGA-II [Deb 06]

— R-NSGA-II can treat multiple reference points.
— For each reference, solutions are ranked based on d;.
— Minimum rank of each solution is used for comparison.

[ ]
O 72
©

#i

K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using
evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273-286, 2006.

_NT (_ f@-ri Y
.rl X d[R(x) - \]Zizl (ﬂmax(x) _ fimax(x)>

Preference Region Approach

Use of Preference Radius [Hu 17]

— Preference Region is specified by the reference point,
direction, and radius d.

Algorithm
» Solutions are divided into
1. Non-preferred solution set
2. Preferred solution set
efimsnne famon * Among preferred solutions, solutions are
selected by using dominance.

Non-reference Region

@ d ROI + |If the number of selected solutions is
d X parcto front Iower than th_e upper limit, non-_preferred
) solutions which have smaller distances
“ Non-reference Region to the reference directions are selected.
A

J. Hu, G. Yu, J. Zheng, and J. Zou, “A preference-based multi-objective evolutionary algorithm using preference selection radius,”
Soft Computing, Vol. 21, Issue 17, pp. 5025-5051, 2017.




Reference Based Approach

(B) Ul to Specify Preferred Region

Preference Region Approach
Pr-MOEAD | %~ 1

Decision maker

[Sato 15] \ /|
e
Overview of
\
the Pareto front \J NSZl N
Vg ﬂ e s S

0.0 0.0 0.0

(B) Ul to specify /?
Preferred region Q Weights distributed in

Uniformly distributed the preferred region
Q

Weight vectors %
%,
S 5
(A) Rough approximation of
the Pareto front (C) Search for the preferred region
A h

Parallel Coordinates Ul

7 DxLib [E
1.00 0.85 0.70 1.01
max o
g
fre— |
max
|
e —
Preferred Region
min || ¢
0.20 0.10 0.00 0.20
f1 f2 f3 f4

Reference Based Approach

(C) Fine-grained Approximation of
Preferred region

Preference Region Approach
Pr-MOEA/D

Decision maker

[Sato 15] [\
Y ke
Overview of ‘
the Pareto front \‘ﬁ .
[ ») efér
VE 8y, v
o;

(B) Ul to specify ,?
Preferred region %@ Weights distributed in
Uniformly distributed e the preferred region

Weight vectors

/o

(A) Rough approximation of
the Pareto front

h h

(C) Search for the preferred region

19

Pr-MOEA/D [Sato 15]

» Objective vector f is transformed
into a scalar value g with a weight 4

Scalarizing function :
Minimize g(x|4)) = d,; + 6d,

_ @ - 2man)|
' 171
2= )= 2= )]
(j=12,...N)

N : Population size
m : Number of objectives

Ideal point z

- £

Preference Region Based Search:

Weight distribution is changed and a part of Pareto front is approximated.




Obtained Solutions (2 objectives)

Conventional MOEA/D Pr-MOEA/D
12— 12—
® Preferred Region I ©® Preferred Region
1 o Conventional MOEA/D 1 a Proposed pr-MOEA/D i
(searching entire PF) (searching preferred region )

Obtained Solutions (3 objectives)

+ Step A (Entire search)
< Step C (Preferred region Search)

0.70 0.70 0.70

fzmax

ef3max

i ‘min i
flmg - fZ - f3mm
0.00 0.00 0.00

Approaches for Many-Objective Optimization

Dimensionality Reduction

1. Relaxed Dominance Based Approach
2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

* [Ishibuchi 11] showed that search performances of
NSGA-Il and SPEA2 were not severely degraded by the
increase in the number of objectives when they were
highly correlated or dependent.

H. Ishibuchi, N. Akedo, H. Ohyanagi and Y. Nojima, “Behavior of EMO algorithms on many-objective optimization problems with
correlated objectives,” in Proc. of 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 1465-1472, 2011.

+ Dimensionality reduction of objectives is a way to
reduce the difficulty of many-objective optimization.
— [Saxena 05-10], [Brockhoff 06-11], [Jaimes 08-09], [Guo 12, 13]...

o’ 0? Necessary?




Approaches for Many-Objective Optimization

Dimensionality Reduction

PCA-NSGA-II [Deb 05

1. Relaxed Dominance Based Approach

Step 1: Set an iteration counter =0 and initial set of objectives /,=
FisSon oS- ]
Step2: Initialize a random population for all objectives in the set 1, , 2. Indicator Based Approach
run EMO, and obtain a population P, .
Step 3: Perform a PCA analysis on P, using /, to choose a reduced H'H
e 3. Decomposition Based Approach

Step 4: If 1., =1,, stop and declare the obtained front. Else set ¢
~/+1and go to Step 2. 4. Reference Based Approach

I fev+ f+2 5. Dimensionality Reduction Approach
I I
» » 6. Efficient Solution Generation

Increasing Genetic Diversity in MaOPs

Results of NSGA-Il on many-objective 0/1 knapsack problem

Efficient Solution Generation

T T T T T T T T T
H H - H H 2501 Size of variable space (bits) 7]
Search range should be wider in many-objective problems. High genetic _ able sp //,o | Vartabie space
S T ; ; 8 — &~ =250 .
One objective Two objectives Many objectives diversity 2 200F ——e— n-500 e . .
Z2 | o =750 o e ° %,
( Variable Space\ ( Variable Space\ (Variable Space ) Sl ”:1003/0 2 » e ©
©o o o o o g I s M | o o ©
/oo T
© o o o o _ = 100} o e -
Variable space g /go” -7
o o o o o s e e — ]
° g :4,/, _
o o°° © o o o o < 0 £ T
° 0o g//}E,_,_D/«:/—“ ]
© o o o o 0%
Global optimal Pareto optimal o Pareto optimal oro S T T T
solution solutions solutions 2 N 6 ¥ 10
o o o o o m (Number of objectives)
© o o o o
\_ VAN J \_ J Genetic diversity in the population becomes noticeably

Note that it depends on problem characteristics diverse by increasing the number of objectives.




Pareto Optimal Solutions on

Many-objective Knapsack Problems

F : feasible solution space S : entire solution space (FES)

OF T T T T T T T T 7T T ] Fror T T T T T T T T "1
10 S (n =20 bit)
_a-s 5] L 0000000000 |
10 A’A . i § 'U«O'
r A,A_A.A‘A, 0000000 g 8r dp/o S(n=15bit) ]
— + DA-A-N DA 4
02t A J 4 ©0 o A,A'.A—A‘A'A-A‘A*
= Y o £ 6k f/ ,A,A’ i
:6 / ¥l § A S (n=10 bit)
& K 5] v
=07t P 1T ,Ldf |
y 1
A —o— n=10bit(items) | & |
Jdood -4--- n=15bit (items) S —o— POS (n=10 bit)
107 / —-0--= p=20Dbit (items) 4 < oL ---a--- POS (n=15bit)
" 1 —-0--= POS (n=20 bit)
10>5.I.I.I.I.I.I.I.I.I.I. OnlnlnI.I.I.I.I.I.I.I.
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

m (Number of objectives) m (Number of objectives)

(a) Ratio of true Pareto optimal solutions (b) Average hamming distance of true
POS in feasible solution space F POS

Local Mating in Objective Space

» To improve effects of genetic operation, there are
several studies that apply crossover for two parents
located near each other in the objective space.

e NCGA (Neighborhood Cultivation GA) [Watanabe 02]
¢ Local Recombination [Sato 07]

e Mating scheme to control the diversity and convergence
[Ishibuchi 04]

« MOEA/D [Zhang 07]

Local Mating in Objective Space

Local Recombination [Sato 07]

selects pairs of parents by considering nearness of the search
direction d of solutions, using a locality parameter n .
crossover

tournament

—

—
\
< di(x) = fi(x)/ ) fi(=)
j=1
4 e (=12 ,m)
0,0 h ) ”

Control of Crossed Genes in Variable Space

CCG;y : CCG for Two-point Crossover

CCGq controls the maximum length of crossed genes
by using a user-defined parameter «,.

Only mutation

Parents Offsprings )

P P P P2 without crossover
ALTTTTITITIT] 4l TTTTTT]

== D a, €[0.0,1.0]
BLITTTITTT] © p[ITTTTTTT] .

a, - n bits Conventional two-
%(—J .
7 bits pomt crossover
1. Randomly choose the 1st crossover point p;.

2. Randomly determine the length of the crossed genes [
in the range [0, @, - n].




Control of Crossed Genes in Variable Space Effects of Local Mating Focusing on Objective Space
Results on knapsack problems with 500 items
1.5F T T T T T T T T T T T ]
CCG,x : CCG for Uniform Crossover b SR
To control the number of crossed genes, CCGy controls . * D ng ]
the probability of 1 in the mask by using the parameter «,,. o 131 n =10 —-0--- Z: 107]
I S | i
~ Parents Offsprings Only mutation ~§ 12k / _
Al | | 1 | I A T [ without crossover g | ﬁ
set 1 with probability o, Sk A% |
et [ oTo a1 ToTe] £ a, €[0.0,0.5] S _
u | o n_\g_“——gz‘% o =0 |
BIITITII] »[IIIITIT] — ! -
- Typical uniform
n bits . . N Crossover 091 Global recombination _
1. For all mask bit, set 1 with probability «,,. I T
2. If mask bit is 1, the gene is copied from other parent. B T o
local «— nig > global
NSGA-II
Effects of CCG;, Focusing on Variable Space Effects of CCGx Focusing on Variable Space
Results on knapsack problems with 500 items Results on knapsack problems with 500 items
15 [T T T T T T T T T T T ] 15F T T T T T T T T T T T ]
L — 0 m=2 A L l\ — 0 m=2 |
14} s L4 7%
L 13F ¢ o . o 13F $% o .
S A
SER| s SRl
1+ s 1+
09 Conventional . 09 Typical .
r Two-point crossover ] r Uniform Crossover ]
0.8 | ' | ' | ' | ' | ' 3 08 C_ 1 ' | ' | ' | ' | ' 3
0 02 04 06 08 0 oI 02 03 04 05
Crossed genes: Short < o, > Long Crossed genes: Short < a, > Long
NSGA-II NSGA-II
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Comparison of Best HVs (NSGA-II)

——o— Local Recombination (n*;z) .°
[ ——&— CCGpx(a¥) 7
Af =0 CCGux (@) 7

—_ —
L W

J« Variable Space
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Hypervolume
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Number of objectives m

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach
2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Part 3: Future Directions

We explain why many-objective optimization is difficult for
EMO (Evolutionary Multiobjective Optimization) algorithms,
and how those difficulties can be handled. We also suggest
some promising future research directions

Part 1 (Hisao Ishibuchi): Difficulties
Part 2 (Hiroyuki Sato): Approaches

Part 3 (Hisao Ishibuchi): Future Directions

Future Directions

1. Adaptation of Weight/Reference Vectors

A number of approaches have already been
proposed. However, we still have a number of
issues to be further addressed.

2. New Algorithm Development

From a practical viewpoint, it is a good idea to
choose a final solution set from all the examined
solutions. Several approaches have already been
proposed for solution selection. However, design
of many-objective algorithms in this framework
has not been discussed in many studies.




Future Directions

3. Test problems

A wide variety of many-objective test problems are
needed. Especially, realistic test problems are
needed. It is also needed to analyze the relation
between test problems and real-world problems.

4. Performance Evaluation Methods

How to evaluation a solution set of a many-
objective problem is an important research issue.
Well-known and frequently-used performance
indicators are not always appropriate for many-
objective problems.

Adaptation of Weight/Reference Vectors

NSGA-III

Adaptation of Weight/Reference Vectors

Adaptation of Weight/Reference Vectors

Question:

What is a good distribution of 200 reference vectors in a
10-dimensional objective space? We need 10 million
solutions to cover the entire Pareto front.

k-Objective Problem 5(k-1)
2-Objective Problem 5
3-Objective Problem 25
10-Objective Problem 10 million
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For example, it is not unclear how to specify the boundary
vectors and the inside vectors in the two-layer method.

Boundary Layer Boundary Layer Boundary Layer

Inside Layer Inside Layer

Inside Layer

» g . N

Boundary Layer

H. Ishibuchi et al., Two-Layered Weight Vector
Specification in Decomposition-Based Multi-
Objective Algorithms for Many-Objective
Optimization Problems, IEEE CEC 2019. =

Inside Layer




Solution Selection

How many solutions do you need?

One Extreme (Left): A large number of solutions are needed
when the Pareto front is to be carefully examined.

Another Extreme (Right): Only a small number of solutions
are needed when a single solution is to be quickly chosen.

Solution Selection

Which is your goal?

N - ()
¢ [ XJ

|

1
SR

\
. o \

[
|
AN AT AN T A AT 1
0. .«
o °

Left: To find a well-distributed solution set over the entire
Pareto front (very difficult for many-objective problems).

Right: To find a well-distributed solution set over a small
region of the Pareto front (Q: how to specify the region of
interest?) ==> Interactive approach.

Algorithm Design

(1) How to search for non-dominated solutions
from which candidate solutions are selected.
The search result is all non-dominated solutions
among the examined solutions. The question is
how to search for a wide variety of good non-
dominated solutions under this framework.

(2) How to chose candidate solutions which are
presented to the decision maker.

Research topics may include (i) choice of a
selection criterion (e.g., IGD), (ii) design of efficient
algorithms, (ii) interaction with the decision maker.
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Many-Objective Test Problems

Current Trend:
DTLZ and WFG test problems have been used in
evolutionary many-objective optimization studies.

Reported Results:

Very good results have been reported for DTLZ and

WFG test problems with many objectives (e.g., 10

objectives, 15 objectives).

==> They may be very easy test problems while
many-objective problems should be difficult.




Results on a 15-Objective DTLZ 2 Problem

Perfect Solution Set by MOEA/D-PBI

sAAAAAAAAA AR AT

0.6

Reference points

1 for IGD calculation
04 1 on the Pareto front
0.2 (Final Goal)

0.0

Objective Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Objective Number

AAAAAARARAAANT

0.4 F .

Obtained solutions
(Actual results)

Objective Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Objective Number

Normalized Pareto Fronts in [0, 1]™
of DTLZ 1-4 and WFG 4-9

}; 1.01.0 flA f2 1.0
Pareto Fronts (p=1 or p = 2):

P P P _
(f)" +(6) +...+(f,)" =1
Important Feature: Any extreme solution can minimize

(m - 1) objectives. For example, (1, 0, ..., 0) is the best
solution for all objectives except for the first objective.

Normalized Pareto Fronts in [0, 1]™

Normalized Pareto Fronts in [0, 1]™
of Other Test Problems

of DTLZ 1-4 and WFG 4-9
Pareto Fronts (p =1 or p = 2):
(F)° + (f)° + ... + (f,)° =1

Important Feature: Any extreme solution can minimize
(m - 1) objectives. For example, (1, 0, ..., 0) is the best
solution for all objectives except for the first objective.

A multiobjective problem with (m - 1) objectives has
the single best solution for all objectives.
==> There is no conflict among (m - 1) objectives.

Strange, Unrealistic, ...
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(c) TSP.

(a) Knapsack. (b) Assignment.

H. Ishibuchi et al., Regular Pareto Front Shape is not Realistic,
IEEE CEC 2019.




Wide Variety of Test Problems

Hypervolume (HV) and IGD

including realistic test problems

DTLZ and WFG have been still frequently used.
==> New test problems are needed.

In the last few years, some new test problem sets
have been proposed. See

S. Zapotecas-Martinez, C. A. C. Coello, H. Aguirre, K.
Tanaka, "A Review of Features and Limitations of Existing
Scalable Multi-Objective Test Suites"”, IEEE TEVC, Vol. 23,
No. 1, 130 - 142, Feb. 2019.

4. Performance Evaluation Methods

How to evaluation a solution set of a many-
objective problem is an important research issue.
Well-known and frequently-used performance
indicators are not always appropriate for many-
objective problems.

Optimal Distribution of Solutions for HV

Inverted DTLZ1 Problem (Minimization)

HV: Dependency of Optimal Distribution of
Solutions on the Shape of the Pareto Front

Reference pointg.o
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£ o10¥10 N
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(a) r = 1.0. (b) = 1.1 (¢) m=1.5. (d)r =2.0. (e) r =10.

Figure 1: Obtained solution sets for the three-objective normalized DTLZ1.

1.0, 1.0, ---.!-.-'- {(geeeeepececey |(pecvccsccccees | (recccccs L
- .-.".‘ - -
PR RO S i A RMCREC bt B A
0.5] -:-'t-*:.. 0.3 -: o :l:‘:" 03] ‘.- n
R e e
0.0k~ NI > ool ey > 0.0k~ L0
00 00 .

----- . 10peseessocssee 1.00 socessey
i . . . .
A 5 | | 6 | . AR
AErg L B AN ULy ost %, f s
S Y. e A WY

-0 ~00 00 W 00

e

0.0 "~ >4 700 0.0 . - 1 0 00 um ) s
£ 05~ 55 I 5 Py s 5 ﬁo\.s\~-_-.-, "O/Sfl fosted ~0s # AE\\'-_J "éfl
1010 1010 1010 1010 1010
(a) r=1.0. byr=11. {¢) ri=1.5. (d)r =2.0. (e) r =10.

Figure 2: Obtained solution sets for the three-objective normalized Minus-DTLZ1.




Optimal Distribution of Solutions depends on

HV: Dependency of Optimal Distribution of

the reference point specification (HV)

Solutions on the Shape of the Pareto Front

==> This means that the best weight (reference) vector S —
specification in MOEA/D, NSGA-IIl, MOEA/DD etc.
depends on the reference point specification.

ﬁos /S:le."'-.
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A N -}: il B LA : Jl. ". TS A -{ s @) T"];E’F'E’;];CUVE @r=10.  (b)r=11 ©r=15. (d)r =20. (e) r = 10.
0.5 ‘: . lt : e 0sf % AT ra 0.5r = % Wi/.p ’ Figure 8: Obtained solution sets for the three-objective DTLZ2 problem.
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> (b) T bi t1'5 A Figure 9: Obtained solution sets for the three-objective Minus-DTLZ2 problem.
wo-objective
More boundary vectors are needed. Minus-DTLZ2.
HV: Dependency of Optimal Distribution of Optimal Distributions of Solutions for IGD are

Solutions on the Shape of the Pareto Front not always intuitive (Uniform Reference Points)

5 2 3 4 5 5 5
(a) r = 1.0. (b) r =1.1. g .5. (d)r=72{0: (e) r = 10. " A # : #
1.071.0 1.071.0 1.071.0
Figure 6: Obtained solution sets for the five-objective normalized DTLZ1 problem.

fjor =10,  [B)wr= 0L
Figure 7: Obtained solution sets for the five-objective Minus-DTLZ1 problem.
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Optimal Distributions of Solutions for IGD are

not always intuitive (Uniform Reference Points)

Optimal Distributions of Solutions for IGD are
not always intuitive (Random Reference Points)

0.5 ‘ ‘ ‘ ‘ ‘ b 0.5 A
Aolobofolofololol

0.0 - 0.0
1 2 3 4 5 6 7 8 910
Population size 20

1234567380910
Population size 100

Refererllc:e })alr;té 108,091 60 points

When we randomly generate 100,000 reference points,
the optimal distributions of solutions are as follows:

1.0 1.0

0.5F 1 05r

0.0 — - 0.0
1 2 3 456 7 8 9 10

Population size 20

1 2 3 4 5 6 7 8 9 10
Population size 100

Other Topics

1. Objective Selection: All objectives are not always
equally important. Some objectives can be
removed. Objective selection is (i) to improve
the efficiency of many-objective search, and (ii)
to help the solution selection by decreasing the
number of non-dominated solutions.

2. Normalization: Objective space normalization is
included in many EMO algorithms. Its necessity
is clear. But, it also has some potential negative
effects.

EMO-Related Future Events

September 16-20, 2019, Netherlands
Lorentz Workshop

Organizers: M. Emmerich, B. Naujoks, D. Brockhoff, R. Purshouse
Many Criteria Optimization and Decision Analysis

January 12-17, 2020, Germany

Dagstuhl Seminar
Organizers: C. M. Fonseca, K. Klamroth, G. Rudolph, M. M. Wiecek

Scalability in Multiobjective Optimization




Scalability
A number of research topics

- a large number of objectives (many-objective)

- a large number of variables (large-scale)

- a large number of constraints (many-constraints)
- high percentage of infeasible solutions

- a number of overlapping Pareto solutions in the
objective space (multi-modal).

- a number of local Pareto fronts (multi-modal).
- expensive fitness evaluation (==> surrogate)

- search for a huge number of non-dominated
solution for knowledge extraction

EMO 2021, Shenzhen, China
March 28-31, 2021, SUSTech
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