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Plan of This Tutorial

We explain why many-objective optimization is difficult for 

EMO (Evolutionary Multiobjective Optimization) algorithms, 

and how those difficulties can be handled. We also suggest 

some promising future research directions.

Part 1 (Hisao Ishibuchi): Difficulties

Part 2 (Hiroyuki Sato): Approaches

Part 3 (Hisao Ishibuchi): Future Directions

Number of Papers with “Multi-objective” or “Multiobjective”  
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Number of Papers with “Many-Objective”

in the Paper Titles (Source: Scopus Database)
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Today’s Plan (Part 1)

Difficulties in Evolutionary Many-Objective 

Optimization Studies

1. Difficulties related to many-objective search

2. Difficulties related to test problems

3. Difficulties related to performance evaluation

Many-Objective Optimization
Frequently Discussed Difficulties

1. Search for Pareto Optimal Solutions
Pareto dominance does not work well.

2. Approximation of the Entire Pareto Front
A huge number of solutions are needed.

3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult.

4. Selection of a Single Final Solution
Choice of a single final solution is difficult for DM.

5. Examination of Search Behavior
Visual observation of many-objective search is difficult. 

6. Large Diversity of Solutions in a Population
Usefulness of crossover may be degraded. 

Many

1. Search for Pareto Optimal Solutions
Pareto dominance does not work well

Q. Why are many-objective problems difficult for EMO ?

A. Solutions with many objectives are usually non-dominated
with each other. Thus no strong selection pressure towards
the Pareto front can be generated by Pareto dominance.
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2. Approximation of the Entire Pareto Front
A huge number of solutions are needed

18000 19000 20000
17000

18000

19000

20000

Pareto front

Obtained solution

5 solutions
for k = 2 

k-Objective Problem 5(k - 1)

2-Objective Problem 5

3-Objective Problem 25

10-Objective Problem 10 million

25 solutions
for k = 3 

3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult

k = 2          k = 3

18000 19000 20000
17000

18000

19000

20000

Pareto front

Obtained solution

k = 4
How can we show a number of four-dimensional
vectors to the decision maker?

3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult

k = 4

We can see that a wide variety of solutions are
obtained. But, it is difficult to examine each solution.

Obtained Solutions for a Four-Objective Problem

4. Selection of a Single Final Solution 
Choice of a single final solution is difficult for DM

k = 2          k = 3

18000 19000 20000
17000

18000

19000

20000

Pareto front

Obtained solution

k = 4
How can we choose a single final solution from a 
large number of four-dimensional vectors?
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4. Selection of a Single Final Solution 
Choice of a single final solution is difficult for DM

It may be very difficult for the decision maker
to choose a single final solution from a large
number of obtained non-dominate solutions.

k = 4

Obtained Solutions for a Four-Objective Problem

4. Selection of a Single Final Solution 
Choice of a single final solution is difficult for DM
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Ten solutions selected from 220,298 non-dominated solutions.

Presentation of only a small number of solutions may 

help the decision maker. How to select those solutions?

5. Examination of Search Behavior 
Visual observation of many-objective search is difficult

2-Objective Problem 8-Objective Problem

Initial Population

15-th Generation

50-th Generation

Final Generation

Initial Population

Final
Generation

6. Large Diversity of Solutions in a Population 
Usefulness of crossover may be degraded

f1

f2

16000 18000 20000
16000

18000

20000

Generated 100 offspring from two dissimilar parents ( )

by uniform crossover for a 2-objective 500-item knapsack

problem. Ishibuchi et al. IEEE Trans on EC (2015)

Parent B

Parent A
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Difficulties of Many-Objective Problems
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Three non-dominated solutions (Five-objective maximization)

By increasing the number of objectives, almost all

solutions become non-dominated.

(A) (B) (C)

Good for all objectives. Very good except for f
5
. Only f

5
is good.

These three solutions are non-dominated.

Better Solution: Two-Objective

M
a

x
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e

Maximize
)(1 xf

)(2 xf

Solutions in this region are better 
than solution A. (1/4 of the space)

A

Pareto dominance-based comparison

))(),(()(
21
xxxf ff=Maximize

Better Solution: Four-Objective

M
a

x
im
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e

Maximize
)(1 xf

)(2 xf

Solutions in this region are better 
than solution A. (1/16 of the space)

A

Pareto dominance-based comparison

))(),(),(),(()(
4321
xxxxxf ffff=Maximize

Better Solution by Pareto Dominance

Pareto dominance-based comparison

Percentage of the better region

M
a

x
im

iz
e

Maximize
)(1 xf

)(2 xf 2 objectives 1/4 25%

3 objectives 1/8 13%

4 objectives 1/16 6%

5 objectives 1/32 3%

10 objectives 1/1024 0.1%

15 objectives 1/32768 0.003%

20 objectives 1/1048576 0.0001%

It is very difficult to find a better solution.

A
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Use of Scalarizing Function (MOEA/D)

Recently MOEA/D has been very popular.

A scalarizing function is used in MOEA/D.  
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Use of Scalarizing Function

Weighted Tchebycheff 

Percentage of the better region
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Maximize
)(1 xf

)(2 xf 2 objectives 1/4 25%

3 objectives 1/8 13%

4 objectives 1/16 6%

5 objectives 1/32 3%

10 objectives 1/1024 0.1%

15 objectives 1/32768 0.003%

20 objectives 1/1048576 0.0001%

A

Use of Scalarizing Function

PBI Function (θ = 5)

21
* ),|( ddg PBI θ+=zλx

Contour lines of 

the PBI function
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Use of Scalarizing Function

PBI Function (θ = 5)
Percentage of the better region

M
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Maximize
)(1 xf

)(2 xf 2 objectives 1/12 8%

3 objectives 1/36 3%

4 objectives 1/108 1%

5 objectives 1/324 0.3%

10 objectives 1/78732 0.001%

15 objectives

20 objectives

Very Rough Calculation

Much smaller than the case of the Pareto dominance.

A

Use of Scalarizing Function

Weighted Sum

)()()()|( 2211 xxxλx mm
WS fffg ⋅+⋅⋅⋅+⋅+⋅= λλλ

Contour lines of 

the Weighted sum function

Use of Scalarizing Function

Weighted Sum

Percentage of the better region

M
a
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Maximize
)(1 xf

)(2 xf 2 objectives 1/2 50%

3 objectives 1/2 50%

4 objectives 1/2 50%

5 objectives 1/2 50%

10 objectives 1/2 50%

15 objectives 1/2 50%

20 objectives 1/2 50%

Always a half of the objective space is better.

A

Expected Performance of EMO Algorithms 

on Many-Objective Problems

A AA

Weighted Sum

(MOEA/D-WS)

Pareto Dominance

(NSGA-II)

Tchebycheff

(MOEA/D-Tch)

PBI Function

(MOEA/D-PBI)

(θ = 5 ) 

Best                                     Worst
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Our Results on Knapsack Problems
Ishibuchi et al. IEEE TECV (2015)

Test Problems:
500-item knapsack problems with 2-10 objectives

Algorithms:
NSGA-II

MOEA/D with WS (Weighted Sum)

MOEA/D with Tchebycheff

MOEA/D with PBI (θ = 5)

Performance Indicator:
Hypervolume

Expected difficulties are observed.

Our Results on Knapsack Problems
Ishibuchi et al. IEEE TECV (2015)

EMO Algorithm 2-Obj 4-Obj 6-Obj 8-Obj 10-Obj

MOEA/D: WS 100.0 100.0 100.0 100.0 100.0

MOEA/D: Tchebycheff 100.7 99.7 94.0 90.1 87.7

NSGA-II 96.5 86.2 77.8 72.0 65.5

MOEA/D: PBI (5) 100.9 89.3 73.8 67.4 61.9

Average Hyper-Volume Value

(Normalized by the Result of the MOEA/D-WS)

Results = Expected Performance of EMO 

Algorithms on Many-Objective Problems

A AA

Weighted Sum

(MOEA/D-WS)

Tchebycheff

(MOEA/D-Tch)

PBI Function

(MOEA/D-PBI)

(θ = 5 ) 

Best                                     Worst

Our Results on DTLZ Test Problems
Ishibuchi et al. IEEE TECV (2017)

Test Problems:
DTLZ1 - DTLZ4 Problems with 5-10 objectives

Algorithms:
NSGA-II

MOEA/D with WS (Weighted Sum)

MOEA/D with Tchebycheff

MOEA/D with PBI (θ = 5)

NSGA-III

MOEA/DD

Performance Indicator:
Hypervolume

Totally different results are obtained.
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Our Results on DTLZ Test Problems
Ishibuchi et al. IEEE TECV (2017)

Average Hyper-Volume Value

Results on DTLZ Test Problems
Totally different from the expected results

A AA

Weighted Sum

(MOEA/D-WS)

Tchebycheff

(MOEA/D-Tch)

PBI Function

(MOEA/D-PBI)

(θ = 5 ) 

Worst                                     Best

A AA

Weighted Sum

(MOEA/D-WS)

Tchebycheff

(MOEA/D-Tch)

PBI Function

(MOEA/D-PBI)

(θ = 5 ) 

Worst                                     Best

Results on DTLZ Test Problems
Totally different from the expected results

Why ?

==> Because of the concave 

shape of the Pareto fronts !

A Promising Research Direction
Localized Weighted Sum

IEEE TEVC 2018
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A AA

Weighted Sum

(MOEA/D-WS)

Tchebycheff

(MOEA/D-Tch)

PBI Function

(MOEA/D-PBI)

(θ = 5 ) 

Worst                                     Best

Results on DTLZ Test Problems
Totally different from the expected results

Why ?

Reason
DTLZ test problems are very easy

DTLZ2

Generated Solutions 

by Mutation       
Generated Solutions 

by Crossover     
Feasible Region 
and Initial 
Solutions       

Reason
It is easy to find better solution.

DTLZ2

Generated Solutions 

by Mutation       
Generated Solutions 

by Crossover     
Feasible Region 
and Initial 
Solutions       

Today’s Plan

Difficulties in Evolutionary Many-Objective 

Optimization Studies

1. Difficulties related to many-objective search

2. Difficulties related to test problems

3. Difficulties related to performance evaluation
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Motivation:
- Many-objective optimization problems are difficult.

- New algorithms are needed.

Proposal:
- We propose a new high-performance algorithm.

Computational Experiments:
- Better results are obtained by the proposed algorithm than 

the existing ones on DTLZ 1-4 and WFG 1-9 problems.

Typical Scenario of 

Many-Objective Optimization Papers

Test Problems 

in Recent Many-Objective Papers
Publication

Year
Proposed 
Algorithm

Test 
Problems

Number of 
Objectives

2014 NSGA-III
DTLZ 1-4
WFG 6-7

S-DTLZ 1-2

3, 5, 8, 10, 15
3, 5, 8, 10, 15
3, 5, 8, 10, 15

2015 I-DBEA
DTLZ 1-4

DTLZ5(I, M) 
WFG 1-9

3, 5, 8, 10, 15
3, 5, 8, 10, 15

3, 5, 10, 15

2015 MOEA/DD
DTLZ 1-4
WFG 1-9

3, 5, 8, 10, 15
3, 5, 8, 10

2016
MOEA/D-DU

EFR-RR

DTLZ 1-4, 7
WFG 1-9

S-DTLZ 1-2

2, 5, 8, 10, 13
2, 5, 8, 10, 13
2, 5, 8, 10, 13

2016 θ-DEA
DTLZ 1-4, 7

WFG 1-9
S-DTLZ 1-2

3, 5, 8, 10, 15
3, 5, 8, 10, 15
3, 5, 8, 10, 15

High-Performance Evolutionary 
Many-Objective Algorithms 

2007  MOEA/D

2014  NSGA-III

2015  I-DBEA

2015  MOEA/DD

2016  θ - DEA 

Better Results on 

DTLZ and WFG

(New algorithms are 

better than old ones).

Motivation:
- Many-objective optimization problems are difficult.

- New algorithms are needed.

Proposal:
- We propose a new high-performance algorithm.

Computational Experiments:
- Better results are obtained by the proposed algorithm than 

the existing ones on DTLZ 1-4 and WFG 1-9 problems.

Typical Scenario of 

Many-Objective Optimization Papers

Test problems are easy and have special features.
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Special Feature: Better new solutions 

can be easily created by 

DTLZ2

Generated Solutions 

by Mutation       
Generated Solutions 

by Crossover     
Feasible Region 
and Initial 
Solutions       

mutation

Special Feature: DTLZ 1-4 and WFG 4-9 

have triangular Pareto fronts
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MOEA/D and Test Problems
MOEA/D looks perfect for DTLZ
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f
3

f
1

f
2

Pareto front
(DTLZ 2)

Weight Vectors

The point is whether the shape of the Pareto front is 

similar to the shape of the weight vector distribution.

Pareto front
(Minus-DTLZ 2)

Weight Vectors
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Shape of the Pareto front 
for MOEA/D:
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(- 1) x DTLZ and (- 1) x WFG Test Problems:

Change from “minimization” to “maximization” is 

the same as the multiplication by (- 1).
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Pareto front 
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Our Idea: Min-DTLZ and Min-WFG
Ishibuchi et al.  IEEE TEVC (2017)

Experimental Results on ( - 1 ) x DTLZ1
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Ishibuchi et al. IEEE TECV (2017)
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Today’s Plan (Part 1)

Difficulties in Evolutionary Many-Objective 

Optimization Studies

1. Difficulties related to many-objective search

2. Difficulties related to test problems

3. Difficulties related to performance evaluation

Two-objective Optimization

The final result of optimization is a solution set.

Comparison of solution sets is not easy. 

Which is a better solution set?

Maximize f
1

M
a
x
im

iz
e 
f 2

Maximize f
1

M
a
x
im

iz
e 
f 2

The final result of optimization is a solution set.

Comparison of solution sets is difficult:

Three-objective Optimization

1.0

0.0

1.0

0.00.0

1.0
f
2

f
3

f
1

1.0

0.0

1.0

0.00.0

1.0
f
2

f
3

f
1

Which is a better solution set?

(a) (b)

Four-objective Optimization

Which is the better solution set?

(a) (b)
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Maximize f1(x),  f
2
(x), ...,  f

10
(x)

Ten-objective Optimization

The final result of optimization is a solution set.

Comparison of solution sets is very difficult. 

0.5

3

1.0

0.0

21 64 7 105 8 9

0.5

1.0

0.0

321 64 7 105 8 9

Difficulties in Performance Evaluation

1. How to Specify the Population Size

2. How to Specify the Reference Point for HV

3. How to Specify the Reference Points for IGD 

[1] H. Ishibuchi et al. , How to compare many-objective algorithms under 
different settings of population and archive sizes, Proc. of CEC 2016, pp. 1149-
1156. (Proposal of the Basic Idea)

[2] R. Tanabe, H. Ishibuchi, A. Oyama, Benchmarking multi- and many-objective 
evolutionary algorithms under two optimization scenarios, IEEE Access, vol. 
5, pp. 19597-19619, December 2017. (Performance Comparison Results)

Performance Indicators

Frequently-Used Performance Indicators

1. Hypervolume Indicator

2. IGD (Inverted Generational Distance) Indicator

Property of These Indicators:
By increasing the number of solutions, the evaluation 

of a solution set by these indicators can be improved. 

Hypervolume

Maximize f
1

M
a
x

im
iz

e
 f
2

Hypervolume (HV) is the volume of the dominated 

region by the obtained solutions. The HV value can 

can be improved by adding new solutions. 

Maximize f
1

M
a
x

im
iz

e
 f
2
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Maximize f
1

M
a

x
im

iz
e
 f
2

Reference Set

Solution Set 

Pareto front

IGD: Inverted Generational Distance

Average distance from each reference point on 
the Pareto front to the nearest solution. The IGD 
value can be improved by adding new solutions.

Maximize f
1

M
a

x
im

iz
e
 f
2

Reference Set

Solution Set 

Pareto front

Specification of Population Size
How about the following settings?

Algorithm A:
Crossover probability: 1.0

Mutation probability: 1/n (n: string length)

Population size: 5,000

Algorithm B:
Crossover probability: 0.2

Mutation probability: 5/n (n: string length)

Population size: 50

Comparison under these settings may be OK 

for single-objective optimization. However, for 

multi-objective optimization, ...

Obtained Solution Sets

Algorithm A Algorithm B

v

Experimental Results
Under various settings of the population size

Results on a Six-objective 500-item Knapsack Problem

Population Size

H
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5
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×

100 1000 10000

3.0

3.5

4.0

4.5

5.0

MOEA/D-WS

MOEA/D-Tch

HypE

Better
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Other Results: Five-Objective WFG3

MOEA/D can be the worst and the best.

10000
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1000100
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1.2

H
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m
e

0.9

θ -DEA
NSGA-III

MOEA/DD

MOEA/D

Population Size
Performance of the final population of different size

Question

How to compare EMO algorithms with/without 

an archive population?

Some algorithms have an archive population 

whereas others do not have.

Current Population Next Population

Archive Population Archive Population

Our Idea (CEC 2016): Solution selection 

from all the examined solutions

Algorithm A:
Crossover probability: 1.0

Mutation probability: 1/n  (n: string length)

Population size: 100

Size of Archive Population: 1,000 

Algorithm B:
Crossover probability: 0.2

Mutation probability: 5/n   (n: string length)

Population size: 100

No Archive Population

The comparison may be unfair ==> Solution 
selection from all the examined solutions.

Performance of the Final Population 

Five-Objective WFG3

10000
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1000100
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0.8

1.2

H
y
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0.9

θ -DEA
NSGA-III

MOEA/DD

MOEA/D

Population Size
Performance of the final population of different size
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Selection of 50 Solutions 

from the Final Population

10000

1.1

1000100

1.0

0.8

1.2

H
y
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v
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m
e

0.9

θ -DEA
NSGA-III

MOEA/DD

MOEA/D

Population Size
Performance of the selected 50 solutions

Selection of 50 Solutions 

from all the Examined Solutions

Performance of the selected 50 solutions

Performance Comparison using 

Solution Selection Methods

R. Tanabe, H. Ishibuchi, and A. Oyama, “Benchmarking 

multi- and many-objective evolutionary algorithms under 

two optimization scenarios,” IEEE Access, Dec 2017.

Two Optimization Scenarios:

(i) Use of the final population

(ii) Use of selected solutions from the examined solutions

Observation: Performance comparison results are 

different between the two optimization scenarios.

Difficulties in Perfoamance Evaluation

1. How to Specify the Population Size

2. How to Specify the Reference Point for HV

3. How to Specify the Reference Points for IGD 

[1] H. Ishibuchi et al., Reference point specification in hypervolume calculation 
for fair comparison and efficient search, Proc. of GECCO 2017, pp. 585-592. 
(Proposal of the Basic Idea)

[2] H. Ishibuchi et al., How to specify a reference point in hypervolume 
calculation for fair performance comparison,” Evolutionary Computation
(2018). (Extended Journal Version)
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Two Solution Sets (maximization) 
Which has the larger hypervolume?

Hypervolume (HV) 
Comparison results depends on the reference point

When the reference point is close to the Pareto front:

>

Better Solution Set

When the reference point is far from the Pareto front:

Better Solution Set

<

Hypervolume (HV) 
Comparison results depends on the reference point

HV: Dependency of Optimal Distribution of 

Solutions on the Shape of the Pareto Front

632



HV: Dependency of Optimal Distribution of 

Solutions on the Shape of the Pareto Front

HV: Dependency of Optimal Distribution of 

Solutions on the Shape of the Pareto Front

Difficulties in Performance Evaluation

1. How to Specify the Population Size

2. How to Specify the Reference Point for HV

3. How to Specify the Reference Points for IGD 

[1] H. Ishibuchi et al., Reference point specification in inverted generational 
distance for triangular linear Pareto front, IEEE Trans. on Evolutionary 
Computation (2018). (Reference Point Specification)

[2] H. Ishibuchi, H. Masuda, Y. Nojima, A study on performance evaluation 
ability of a modified inverted generational distance indicator,” Proc. of 
GECCO 2015, pp. 695-702. (Modification of the IGD Indicator)

IGD-based performance comparison results 

depends on the reference point specifications

Maximize f
1

M
a
x

im
iz

e
 f
2

Maximize f
1

M
a
x

im
iz

e
 f
2

IGD: 1.2 IGD: 1.1

Specification of reference points is important.

A B

Better
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IGD-based performance comparison results 

depends on the reference point specifications

Specification of reference points is important.

Maximize f
1

M
a
x

im
iz

e
 f
2

IGD: 1.0

Maximize f
1

M
a
x

im
iz

e
 f
2

IGD: 1.2

BA

Better

How to specify a set of reference points

Current Standard:

Use of a large number of uniformly distributed 

solutions.

This is not always a good method as shown in the 

following slides.

Analysis of IGD from a Viewpoint 

of Optimal Distribution of Solutions 

IEEE Trans. on Evolutionary Computation (2018)

Optimal Distributions of Solutions for IGD are 

not always intuitive
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0.5

1.0

0.0

321 64 7 105 8 9

0.5

3

1.0

0.0

21 64 7 105 8 9

Population size 20 Population size 100

Reference points: 10,010 points

Optimal Distributions of Solutions for IGD are 

not always intuitive

Population size 20 Population size 100

When we randomly generate 100,000 reference points, 

the optimal distributions of solutions are as follows:

0.5

1.0

0.0

321 64 7 105 8 9

0.5

3

1.0

0.0

21 64 7 105 8 9

Optimal Distributions of Solutions for IGD are 

not always intuitive

Part 2: Approaches

We explain why many-objective optimization is difficult for 

EMO (Evolutionary Multiobjective Optimization) algorithms, 

and how those difficulties can be handled. We also suggest 

some promising future research directions

Part 1 (Hisao Ishibuchi): Difficulties

Part 2 (Hiroyuki Sato): Approaches

Part 3 (Hisao Ishibuchi): Future Directions

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation
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■Crowding Distance

⇒ Diversity

■Non-dominated sorting

⇒ Convergence
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F
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Q
t

NSGA-II   [Deb 02]

In many-objective problems,

◦ The number of solutions belonging to Front 1 exceeds the size of 

parent solutions in early stage of the evolution.

◦ Convergence of solutions toward Pareto front is deteriorated.
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Front Distribution over Generation

Results on knapsack problems with 500 items

Coarse Coarse

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Relaxed Dominance Based Approach

Transform of Objective Values

Where,

Controlling Dominance Area of Solutions [Sato 07] 

– The dominance area is controlled by varying �
�
.
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Controlling Dominance Area of Solutions (CDAS) 
[Sato 07]
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[Sato 07]
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Controlling Dominance Area of Solutions (CDAS) 
[Sato 07]

f
1
(a’)f

1
(b’) f

1
(c’)

f
2
(a’)

f
2
(b’)

f
2
(c’)

f
1

f
2

a

b

c

Parameter S

0.50
Conventional

0.750.25 ContractingExpanding

User Defined

Coarser ranking

⇒ Weaken selection

α-Domination [Ikeda 01] 5 objective 10 objective
Front 1

Front 2

Front 3

Front 4

Front 5

Front 6

Front 7

Front 8

Front 9

Front 10

Generation

N
u

m
b

e
r 

o
f 

s
o

lu
ti

o
n

1 10 100 1000
0

50

100

150

200

Generation

N
u
m
b
e
r
o
f
so
lu
ti
o
n

1 10 100 1000
0

50

100

150

200

Generation

N
u
m
b
e
r
o
f
s
o
lu
ti
o
n

1 10 100 1000
0

50

100

150

200
Front 1

Front 2

Front 3

Front 4

Front 5

Front 6

Front 7

Front 8

Front 9

Front 10

Generation

N
u
m

b
e
r 

o
f 

s
o
lu

ti
o
n

1 10 100 1000
0

50

100

150

200

S*=0.40 S*=0.30

Conventional Dominance Area
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Front Distribution over Generation
Results on knapsack problems with 500 items
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Hypervolume by Varying S
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Results on knapsack problems with 500 items

Front Distribution in Objective Space

Front 1 Front 1

Simple experiment
– Randomly generated 100 points in [0,1]2 are classified into non-dominated fronts.

– The same process is repeated 1,000 times.

Conventional Dominance
(S=0.5)

Expanded Dominance
(S=0.4)

Problems in CDAS

1. An appropriate parameter S controlling dominance area of 

solutions must be found out experimentally.

2. The diversity of solutions deteriorates when we decrease S

from 0.5.

• To solve these problems

– A variant of CDAS called self-controlling dominance area 

of solutions (S-CDAS) was proposed.

– The algorithm self-controls dominance area for each 

solution without the need of an external parameter.

Relaxed Dominance Based Approach

Modification of Objective Values

f 1

f 2

x

r(x)

φ
1
(x)

φ
2
(x)

ω
1
(x)

For a single solution x, calculate φ(x)={φ
1
,

φ
2
,…, φm}. Here, φi(x) is the angle 

determined by the solution x and the 

landmark vector pi in the i-th objective 

function.

 Modify objective values of all solutions 

y∈Fi by the following equation.

Check dominance relations between the 

solution x and all other solutions y∈ Fj. If 

a solution y∈ Fj is dominated by x, the 

counter (rank) of y is incremented.
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S-CDAS determines dominance area that extreme solutions E are never dominated.
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Relaxed Dominance Based Approach

Modification of Objective Values
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For a single solution x, calculate φ(x)={φ
1
,
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2
,…, φm}. Here, φi(x) is the angle 

determined by the solution x and the 

landmark vector pi in the i-th objective 

function.

 Modify objective values of all solutions 

y∈Fi by the following equation.

Check dominance relations between the 

solution x and all other solutions y∈ Fj. If 

a solution y∈ Fj is dominated by x, the 

counter (rank) of y is incremented.

),...,2,1(
))(sin(

))()(sin()(
)(' mi

r
f

i

iii

i
=+⋅=

x

xyy
y

ϕ
ϕω

p
1

p
2

),...,2,1(
)(

))(sin()(
sin)( 1

mi
l

r

i

i

i
=







 ⋅= −

x

xx

x

ωϕ

E
1

O=(O
1
, O

2
)

S-CDAS determines dominance area that extreme solutions E are never dominated.
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Front Distribution in Objective Space

Front 1 Front 1 Front 1

Conventional Dominance Expanded Dominance
(CDAS with S=0.4)

Expanded Dominance
(S-CDAS)

Performance Comparison with 

Conventional MOEAs
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Results on knapsack problems with 500 items

Relaxed Dominance Based Approach

Counting Objective Approach

(1−k)-dominance [Farina 02] 

Solution x is said to (1-k)-dominate solution y if and only if

��� < �,�� ≥
� − ��� + 1

.

�: Number of objectives

��: Number of objectives where x is better than y (|{i∈{1,2,…,m}| fi(x)>fi(y)}|)

��: Number of objectives where x is equal to y (|{i∈{1,2,…,m}| fi(x)= fi(y)}|)

• k=0 is equivalent to the conventional dominance.

• The larger �, the more relaxed dominance producing a fine-

grained dominance ranking.

M. Farina and P. Amato, “On the optimal solution definition for many-criteria optimization problems,” In Proc. of the 2002 Annual 

Meeting of the North American Fuzzy Information Processing Society (NAFIPS’02). IEEE, pp. 233-238, 2002.
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Relaxed Dominance Based Approach

Counting Objective Approach

Ranking-dominance [Kukkonen 07] 

Aggregates rank value on each objective.

�
���

= � ����(�	 
 )
�

���
,   �

���
= min

�∈{�,�,..,�}
����(�	 
 )

S. Kukkonen and J. Lampinen, “Ranking-dominance and many-objective optimization,” In Proc. of the 2007 IEEE Congress on 

Evolutionary Computation (CEC’07). IEEE, Los Alamitos, CA, pp. 3983-3990, 2007.
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-dominance [Yuan 16] in �-DEA

– Given two solutions x and y, x is said to �-dominate y, if and only if 

x and y are in the same cluster Cj and � 
,	 < � �,	 .

z

Relaxed Dominance Based Approach

Combination with Reference Lines
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Y. Yuan, H. Xu, B. Wang, and X. Yao., “A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization,” 

IEEE Transactions on Evolutionary Computation, 20, 1, pp. 16–37, 2016.
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[Sato 12] 

Relaxed Dominance Based Approach

Pareto Partial Dominance
Pareto Partial Dominance MOEA
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• r : the number of objectives to be considered in partial dominance.

• Ig: the interval generation to switch combination of r objectives.

[Sato 12] 
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Performance Varying 

the Number of Objectives
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Results on knapsack problems with 500 items

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Indicator Based Approach

Distance Based Indicator

IBEA
�+

[Zitzler 04] 

introduces fine grained ranking of solutions by calculating fitness value 

based on indicators which measure the degree of superiority for each 

solution in the population.

{ }miBfAfBAI
ii

,...,1:)()(min),( ∈≥+=+ εεε
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f2 x
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(1, 4)

x
2 :(3, 1)

2

2

3

3

Iε+(x1, x2)=2

Iε+(x2, x1)=3

E. Zitzler and S. Künzli, “Indicator-Based Selection in Multiobjective Search,” in Proc. of Parallel Problem Solving from Nature -

PPSN VIII. PPSN 2004. LNCS, Vol. 3242, pp. 832–842, 2004.

641



Indicator Based Approach

Hypervolume

SMS-EMOA [Beume 07] 

– (μ+1) algorithm using Hypervolume contribution

SMS-EMOA

t ← 0
Pt ← init()
Repeat

qt+1 ← Generate(Pt)
P
t+1

← Reduce(Pt∪qt+1)
t ← t + 1

Until termination condition fulfilled

Reduce (Q)

{F
1
,F

2
,…,Fv} ← Non-dominated sort (Q)

r ← argmin�∈��{�� �� − ��(�� ∖ �)}

return (Q∖r)
f1

f2

�

�
{�� �� − ��(�� ∖ �)}×

N. Beume, B. Naujoks, M. Emmerich, “SMS-EMOA: Multiobjective selection based on dominated hypervolume,” European Journal 

of Operational Research, Vol. 181, Issue 3, pp. 1653-1669, 2007.

Indicator Based Approach

Hypervolume

SMS-EMOA [Beume 07] 

– The computational cost to calculate Hypervolume is 

exponentially increased by increasing the number of 

objectives.

HypE (Hypervlume Estimation) [Bader 11] 

– Monte Carlo sampling to approximate hypervolume values.

J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based many-objective optimization,” Evolutionary Computation, 

Vol. 19, Issue 1, pp. 45–76, 2011.

MOMBI [Gómez 13] 

– R2 indicator to evaluate a set of solutions is utilized to 

rank solutions in the population.

Indicator Based Approach

R2 Indicator

f 2
  
(M
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iz
e
)

f
1

(Minimize)

obtained ideal point z

��

�� ��

��

��

Q: Lower ranked solutions than F
i

R2 value for a solution set P

L: Weight vector set {��,��, … }

Rank i solution set Fi

Contour lines for ��

R. H. Gómez and C. A. C. Coello, "MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator," in Proc. 

of IEEE Congress on Evolutionary Computation, pp. 2488-2495, 2013.

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation
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Decomposition Based Approach

• The Pareto front (objective space) is decomposed by a set of 

weight vectors or reference lines.

• Each weight vector or reference line specifies an 

approximation part of the Pareto front.
f 2

  
(M
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iz
e
)

f
1

(Minimize)

�� �� �� ��
��

��

��

��

�	

Decomposition Based Approach

Weight Based Ranking

MSOPS [Hughes 03] 

aggregates fitness vector with multiple weight vectors, and reflects the 

ranking of solutions calculated for each weight vector in parent selection. 

Score Matrix

Weight vectors

P
o
p
u
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ti
o
n

(1) MSOPS fills up all the elements of the score 

matrix by calculating

(2) For each column, all solutions are ranked in 

descending order based on score values.

(3) For each row, the indices of column are sorted in 

ascending order based on rank value.

(4) MSOPS selects solutions which have higher 

ranks for each weight vectors as parent solutions.

f (x
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)

f (x
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f (x
3
)

f (x4)

…
f (xN)

w1 w2 w3w4 wW
…

E. J. Hughes, “Multiple single objective Pareto sampling,” In Proc. of the 2003 IEEE Congress on Evolutionary Computation 

(CEC’03), Vol. 4, pp. 2678–2684, 2003.

� = max
�∈{�,�,…,�}

�� · ��(�).

� MOEA/D decomposes a multi-objective optimization problem into a 

number of single-objective optimization problems.

� Each single objective optimization problem is defined by a scalarizing 

function � using a weight vector �
�
(� � 1,2, … , 
�. 

MOEA/D [Zhang 07]
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1. Solution Generation
◦ Continuous: DE and PSO [Li 09, Liuet 10,  Martinez 11, Moubayed 10]

◦ Discrete: ACO and SA [Ke 13, Li 11]

2. Weight Vectors
◦ Adaptive control of the weight distribution [Jiang 11, Hamada 13,14]

◦ Self-adaptation of neighborhood size [Zhao 12]

3. Combination with Dominance
◦ NSGA-III [Deb 14], MOEA/DD [Li 15], θ-DEA [Yuan 16], etc

4. Parent Selection
◦ Control the number of solution generations for each scalarizing function 

[Zhang 09, Chiang 11]

5. Scalarizing function
◦ Original: Tchebycheff [Bowman Jr. 76], Weighted Sum [Gass 55], PBI

◦ NBI-style Tchebycheff [Zhang 10]

◦ Adaptive Selection of Scalarizing function [Ishibuchi 09]

After the Proposal of MOEA/D…

Variants of MOEA/D focusing on 
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faces the difficulty to approximate 

a wide range of Pareto front.
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NSGA-III [Deb 14] 

– Is designed for solving many-objective problems.

– Introduces reference lines to maintain the distribution of 

solutions in the objective space.

NSGA using Reference Lines
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Reference point

Reference line

K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting 

approach, part I: Solving problems with box constraints,” IEEE Transactions on Evolutionary Computation, 18, 4, pp. 577-601, 2014.

– Each solution in S is associated with a reference line having the minimum 

perpendicular distance d.

– The reference line with the minimum number of associated solution in S∖F
l
is focused.

• If the reference line has no associated solution in S∖F
l

and F
l
has solution(s) associated with the focused 

reference line, select the solution with the minimum perpendicular distance d from them.

• If the reference line has associated solution(s) in S∖F
l
and F

l
has solution(s) associated with the focused 

reference line, randomly select a solution from them.

NSGA using Reference Lines
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K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting 

approach, part I: Solving problems with box constraints,” IEEE Transactions on Evolutionary Computation, 18, 4, pp. 577-601, 2014.
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Solutions on four WFG4 problems with different problem difficulties k.

The difficulty to obtain a widely spread solutions is increased by increasing k.
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The inverted PBI achieves high search performance in problems with 

• many-objectives and 

• the difficulty to obtain a widely spread solutions in the objective space.

GrEA [Yang 13] 

Introduces mutual relationships of solutions in a grid environment.

Decomposition Based Approach

Grid-based Decomposition
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S. Yang, M. Li, X. Liu and J. Zheng, “A Grid-Based Evolutionary Algorithm for Many-Objective Optimization,” IEEE Transactions on 

Evolutionary Computation, Vol. 17, No. 5, pp. 721-736, 2013.
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GrEA [Yang 13] 

Selects solutions based on three grid-based criteria.
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Decomposition Based Approach

Grid-based Decomposition

S. Yang, M. Li, X. Liu and J. Zheng, “A Grid-Based Evolutionary Algorithm for Many-Objective Optimization,” IEEE Transactions on 

Evolutionary Computation, Vol. 17, No. 5, pp. 721-736, 2013.
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Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Difficulties in Approximation of Entire Pareto Front

� Any dimensional Pareto front must be approximated by a set of points.

f
1

f 2

Pareto front

f3

f2 f1

2 objectives 3 objectives

Population size

To finely approximate high-dimensional Pareto front, a huge size of 
population is needed, and computational cost is increased.

・Handling of Huge Population
[Kowatari 12, Ishibuchi 15, Jaimes 16, Tatsukawa 16]

・User-preference based search 
[Deb 06, Auger 09, Gong 11, Narukawa 15, etc.]

Entire Pareto Front

Reference Based Approach

Goal Point Approach

R-NSGA-II [Deb 06] 

– The diversity maintenance mechanism using crowding 

distance is replaced with a search focusing mechanism 

using distance to the reference point.

K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using 

evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273–286, 2006.
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NSGA-II (non R-NSGA-II)

Reference Based Approach

Goal Point Approach

R-NSGA-II [Deb 06] 

– The diversity maintenance mechanism using crowding 

distance is replaced with a search focusing mechanism 

using distance to the reference point.
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K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using 

evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273–286, 2006.
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Reference Based Approach

Goal Point Approach

R-NSGA-II [Deb 06] 

– Solutions with a smaller 	
��

are preferred.

– For randomly choose two solutions, if they are in the 

same front, one has smaller 	
��

 

wins.
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K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using 

evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273–286, 2006.

Reference Based Approach

Goal Points Approach
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R-NSGA-II [Deb 06] 

– R-NSGA-II can treat multiple reference points.

– For each reference, solutions are ranked based on 	
��

.

Rank to reference point r1

Rank to reference point r2

1 3

K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using 

evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273–286, 2006.

Reference Based Approach

Goal Points Approach
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R-NSGA-II [Deb 06] 

– R-NSGA-II can treat multiple reference points.

– For each reference, solutions are ranked based on 	
��

.

– Minimum rank of each solution is used for comparison.

×

K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Reference point based multi-objective optimization using 

evolutionary algorithms,” International Journal of Computational Intelligence Research, Vol. 2, Issue 3, pp. 273–286, 2006.

Reference Based Approach

Preference Region Approach

Use of Preference Radius [Hu 17] 

– Preference Region is specified by the reference point, 

direction, and radius d.
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d

d

r

ROI

Reference Region

Non-reference Region

Non-reference Region

Pareto front

Algorithm
• Solutions are divided into

1. Non-preferred solution set

2. Preferred solution set

• Among preferred solutions, solutions are 

selected by using dominance.

• If the number of selected solutions is 

lower than the upper limit, non-preferred 

solutions which have smaller distances 

to the reference directions are selected.

J. Hu, G. Yu, J. Zheng, and J. Zou, “A preference-based multi-objective evolutionary algorithm using preference selection radius,” 

Soft Computing, Vol. 21, Issue 17, pp. 5025-5051, 2017.
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Reference Based Approach

Preference Region Approach
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Pr-MOEA/D [Sato 15]
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Obtained Solutions (2 objectives)
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Step A (Entire search) 

Step C (Preferred region Search)

Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Dimensionality Reduction

• [Ishibuchi 11] showed that search performances of 

NSGA-II and SPEA2 were not severely degraded by the 

increase in the number of objectives when they were 

highly correlated or dependent.
H. Ishibuchi, N. Akedo, H. Ohyanagi and Y. Nojima, “Behavior of EMO algorithms on many-objective optimization problems with 

correlated objectives,” in Proc. of 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 1465-1472, 2011.

• Dimensionality reduction of objectives is a way to 

reduce the difficulty of many-objective optimization.

– [Saxena 05-10], [Brockhoff 06-11], [Jaimes 08-09], [Guo 12, 13]…

f
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4
? ? Necessary?
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Dimensionality Reduction

Step 1: Set an iteration counter t = 0 and initial set of objectives I
0

= 

{f
1
, f

2
, ..., f

m
}.

Step 2: Initialize a random population for all objectives in the set I
t
, 

run EMO, and obtain a population P
t
.

Step 3: Perform a PCA analysis on P
t
using I

t
to choose a reduced 

set of objectives I
t+1

.

Step 4: If I
t+1

= I
t
, stop and declare the obtained front. Else set t

= t + 1 and go to Step 2.

PCA-NSGA-II [Deb 05]
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Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Efficient Solution Generation

Variable Space

One objective Two objectives Many objectives

…

Search range should be wider in many-objective problems.

Pareto optimal 

solutions

Note that it depends on problem characteristics

Variable Space Variable Space

Pareto optimal 

solutions

Global optimal 

solution

Increasing Genetic Diversity in MaOPs

Variable space

Variable spaceHigh genetic

diversity

Results of NSGA-II on many-objective 0/1 knapsack problem
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Genetic diversity in the population becomes noticeably 

diverse by increasing the number of objectives.
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Pareto Optimal Solutions on 

Many-objective Knapsack Problems

F : feasible solution space S : entire solution space  (F⊆S)

(a) Ratio of true Pareto optimal solutions 

POS in feasible solution space F

(b) Average hamming distance of true 

POS
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Local Mating in Objective Space

• To improve effects of genetic operation, there are 

several studies that apply crossover for two parents 

located near each other in the objective space.

• NCGA (Neighborhood Cultivation GA) [Watanabe 02]

• Local Recombination [Sato 07]

• Mating scheme to control the diversity and convergence 

[Ishibuchi 04]

• MOEA/D [Zhang 07]

Local Recombination [Sato 07]

selects pairs of parents by considering nearness of the search 

direction � of solutions, using a locality parameter �
��

.

Local Mating in Objective Space

crossovertournament

tournament

f 2

(0
, 

0) f
1

d

Control of Crossed Genes in Variable Space

CCGTX : CCG for Two-point Crossover
CCG

TX
controls the maximum length of crossed genes 

by using a user-defined parameter �
�
.

A

B

n bits

A’

B’

n
t
⋅α

p
1

p
2

p
1

p
2

Parents Offsprings

bits

 1.0] [0.0,∈
t

α

1. Randomly choose the 1st crossover point �
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.

2. Randomly determine the length of the crossed genes �

in the range [0,�
�
· �].

Only mutation 

without crossover

Conventional two-

point crossover

l
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CCGUX : CCG for Uniform Crossover
To control the number of crossed genes, CCG

UX
controls 

the probability of 1 in the mask by using the parameter �
�
.

1. For all mask bit, set 1 with probability �
�
.

2. If mask bit is 1, the gene is copied from other parent.
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Comparison of Best HVs (NSGA-II)
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Approaches for Many-Objective Optimization

1. Relaxed Dominance Based Approach

2. Indicator Based Approach

3. Decomposition Based Approach

4. Reference Based Approach

5. Dimensionality Reduction Approach

6. Efficient Solution Generation

Part 3: Future Directions

We explain why many-objective optimization is difficult for 

EMO (Evolutionary Multiobjective Optimization) algorithms, 

and how those difficulties can be handled. We also suggest 

some promising future research directions

Part 1 (Hisao Ishibuchi): Difficulties

Part 2 (Hiroyuki Sato): Approaches

Part 3 (Hisao Ishibuchi): Future Directions

Future Directions

1. Adaptation of Weight/Reference Vectors

A number of approaches have already been 

proposed. However, we still have a number of 

issues to be further addressed.

2. New Algorithm Development

From a practical viewpoint, it is a good idea to 

choose a final solution set from all the examined 

solutions. Several approaches have already been 

proposed for solution selection. However, design 

of many-objective algorithms in this framework 

has not been discussed in many studies. 
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Future Directions

3. Test problems

A wide variety of many-objective test problems are 

needed. Especially, realistic test problems are 

needed. It is also needed to analyze the relation 

between test problems and real-world problems.

4. Performance Evaluation Methods

How to evaluation a solution set of a many-

objective problem is an important research issue.  

Well-known and frequently-used performance 

indicators are not always appropriate for many-

objective problems. -400
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Question: 
What is a good distribution of 200 reference vectors in a 

10-dimensional objective space? We need 10 million 

solutions to cover the entire Pareto front. 

k-Objective Problem 5(k - 1)

2-Objective Problem 5

3-Objective Problem 25

10-Objective Problem 10 million

Adaptation of Weight/Reference Vectors Adaptation of Weight/Reference Vectors

For example, it is not unclear how to specify the boundary 

vectors and the inside vectors in the two-layer method. 

H. Ishibuchi et al., Two-Layered Weight Vector 

Specification in Decomposition-Based Multi-

Objective Algorithms for Many-Objective 

Optimization Problems, IEEE CEC 2019.
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How many solutions do you need?

One Extreme (Left): A large number of solutions are needed
when the Pareto front is to be carefully examined.

Another Extreme (Right): Only a small number of solutions
are needed when a single solution is to be quickly chosen.

Solution Selection

Which is your goal?

Left: To find a well-distributed solution set over the entire
Pareto front (very difficult for many-objective problems).

Right: To find a well-distributed solution set over a small
region of the Pareto front (Q: how to specify the region of
interest?) ==> Interactive approach.

Solution Selection

Algorithm Design

(1) How to search for non-dominated solutions 

from which candidate solutions are selected. 

The search result is all non-dominated solutions 

among the examined solutions. The question is 

how to search for a wide variety of good non-

dominated solutions under this framework.

(2) How to chose candidate solutions which are 

presented to the decision maker.

Research topics may include (i) choice of a 

selection criterion (e.g., IGD), (ii) design of efficient 

algorithms, (ii) interaction with the decision maker. 

Many-Objective Test Problems 

Current Trend:
DTLZ and WFG test problems have been used in 

evolutionary many-objective optimization studies. 

Reported Results:
Very good results have been reported for DTLZ and 

WFG test problems with many objectives (e.g., 10 

objectives, 15 objectives).

==> They may be very easy test problems while

many-objective problems should be difficult.
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Results on a 15-Objective DTLZ 2 Problem

Perfect Solution Set by MOEA/D-PBI 
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Important Feature: Any extreme solution can minimize 

(m - 1) objectives. For example, (1, 0, ..., 0) is the best 

solution for all objectives except for the first objective. 
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Important Feature: Any extreme solution can minimize 

(m - 1) objectives. For example, (1, 0, ..., 0) is the best 

solution for all objectives except for the first objective. 

A multiobjective problem with (m - 1) objectives has 

the single best solution for all objectives.

==> There is no conflict among (m - 1) objectives. 

Strange, Unrealistic, ...

Normalized Pareto Fronts in [0, 1]m

of Other Test Problems

H. Ishibuchi et al., Regular Pareto Front Shape is not Realistic, 

IEEE CEC 2019.
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DTLZ and WFG have been still frequently used.

==> New test problems are needed.

Wide Variety of Test Problems

including realistic test problems

In the last few years, some new test problem sets 

have been proposed. See

S. Zapotecas-Martınez, C. A. C. Coello, H. Aguirre, K. 

Tanaka, "A Review of Features and Limitations of Existing

Scalable Multi-Objective Test Suites", IEEE TEVC, Vol. 23, 

No. 1, 130 - 142, Feb. 2019.

Hypervolume (HV) and IGD

4. Performance Evaluation Methods

How to evaluation a solution set of a many-

objective problem is an important research issue.  

Well-known and frequently-used performance 

indicators are not always appropriate for many-

objective problems.
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Optimal Distribution of Solutions depends on 

the reference point specification (HV)

==> This means that the best weight (reference) vector 

specification in MOEA/D, NSGA-III, MOEA/DD etc. 

depends on the reference point specification. 

More boundary vectors are needed.

HV: Dependency of Optimal Distribution of 

Solutions on the Shape of the Pareto Front

HV: Dependency of Optimal Distribution of 

Solutions on the Shape of the Pareto Front

Optimal Distributions of Solutions for IGD are 

not always intuitive (Uniform Reference Points)
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Reference points: 10,010 points

Optimal Distributions of Solutions for IGD are 

not always intuitive (Uniform Reference Points)

Population size 20 Population size 100

When we randomly generate 100,000 reference points, 

the optimal distributions of solutions are as follows:

0.5

1.0

0.0

321 64 7 105 8 9

0.5

3

1.0

0.0

21 64 7 105 8 9

Optimal Distributions of Solutions for IGD are 

not always intuitive (Random Reference Points)

Other Topics

1. Objective Selection: All objectives are not always

equally important. Some objectives can be

removed. Objective selection is (i) to improve

the efficiency of many-objective search, and (ii)

to help the solution selection by decreasing the

number of non-dominated solutions.

2. Normalization: Objective space normalization is

included in many EMO algorithms. Its necessity

is clear. But, it also has some potential negative

effects.

EMO-Related Future Events

September 16-20, 2019, Netherlands

Lorentz Workshop
Organizers: M. Emmerich, B. Naujoks, D. Brockhoff, R. Purshouse

Many Criteria Optimization and Decision Analysis

January 12-17, 2020, Germany

Dagstuhl Seminar
Organizers: C. M. Fonseca, K. Klamroth, G. Rudolph, M. M. Wiecek

Scalability in Multiobjective Optimization
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Scalability
A number of research topics

- a large number of objectives (many-objective)

- a large number of variables (large-scale)

- a large number of constraints (many-constraints)

- high percentage of infeasible solutions

- a number of overlapping Pareto solutions in the

objective space (multi-modal).

- a number of local Pareto fronts (multi-modal).

- expensive fitness evaluation (==> surrogate)

- search for a huge number of non-dominated

solution for knowledge extraction

EMO 2021, Shenzhen, China
March 28-31, 2021, SUSTech
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