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Motivation

+ Evolutionary Computation (EC) techniques have been
frequently used in the context of computational

Introduction and Motivation creativity.

+ Various techniques have been used in the context of
music and art (see EvoMusArt conference and DETA
track at GECCO).
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Motivation

+ Evolutionary algorithms have been frequently used to
optimize complex objective functions.

 This makes them well suitable for generative art where
fitness functions are often hard to optimize.

+ Furthermore, objective functions are often subjective to
the user.

This Tutorial

+ Summary of results in the areas of

— 2D and 3D artifacts
— Animations

» Overview on our recent work to create unique generative
art using evolutionary computation to carry out

— Image transition and animation
— Image composition
— Diversity optimization for images
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Motivation

+ In terms of novel design, evolutionary computation
techniques can be used to explore new solutions in terms
of different characteristics.

+ Evolutionary algorithms are able to adapt to changing
environments.

+ This makes them well suited to be used in the context of
artistic work where the desired characteristics may
change over time.

Outline

+ Introduction and Motivation

+ Evolving 2D and 3D Artifacts

+ Aesthetic Features

+ Evolutionary Image Transition

* Quasi-random Image Animation

+ Evolutionary Image Composition

+ Evolutionary Image Diversity Optimization

+ Discrepancy-Based Evolutionary Diversity Optimization
for Images

+ Conclusions




Evolving 2D and 3D Artifacts

Evolving 2D and 3D Artifacts

* In 1991, Sims published his seminal SIGGRAPH paper.

* He introduced the expression-based approach of
evolving images.

* He created images, solid textures, and animations using
mutations of symbolic lisp expressions.
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Evolving 2D and 3D Artifacts

Blind Watchmaker (Dawkins, 1986) evolved 2D
biomorph graphical objects from sets of genetic
parameters (combined with Darwinism theory).

Latham (1985) created Black Form Synth. These are
hand-drawn “evolutionary trees of complex forms” using
a set of transformation rules.

Evolving 2D and 3D Artifacts

The mathematical expression is represented as a tree
graph structure and used as the genotype.

The tree graph consists of mathematical functions and
operators at the nodes, and constants/variables at the
leaves (similar to genetic programming).

The resulting image is the phenotype.

To evolve sets of images, it uses crossover and mutation.




Evolving 2D and 3D Artifacts (Sims, 1997)

* In Galdpagos (Sims, 1997) created an interactive
evolution of virtual "organisms” based on Darwinian
theory.

+ Several computers simulate the growth and
characteristic behaviours of a population of abstract
organisms.

+ The results are displayed on computer screens.

EC System (Sims, 1997)

The EC system allows users to express their preferences
by selecting their preferred display by standing on step
sensors in front of those displays.

The selected display is used for reproduction using
mutation/crossover. The other solutions are removed
when the new offspring is created.
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Evolutionary Process (Sims, 1997)
» The offspring are copies and combinations of their
parents.

+ In addition, their genes are altered by random
mutations.

* During evolutionary cycle of reproduction and selection,
new organisms are created.

Evolving 2D and 3D Artifacts (Latham,
Todd, 1992)

» Latham, Todd (1992) introduced Mutator to generate art
and evolve new biomorphic forms.

» The Mutator creates complex branching organic forms
through the process of “surreal” evolution.

» At each iteration the artist selects phenotypes that are
“breed and growth”, and the solutions co-interact.




Other Selected Contributions Other Selective Contributions

* Unemi (1999) developed SBART. This is a design support * Draves (2005) introduced Electric Sheep. The system
tool to create 2-D images based on user selection. allows a user to approve or disapprove phenotypes.

+ Takagi (2001) describes in the survey research on * Hart (2009) evolved different expression-based images
interactive evolutionary computation (IEC) which with a focus on colours and forms.
categorises different application areas.

+ Kowaliw, Dorin, McCormack (2012) explore a definition

+ Machado and Cardoso (2002) introduced NEvAr. This is of creative novelty for generative art.

an evolutionary art tool, using genetic programming and
automatic fitness assignment.

Image Morphing (Banzhaf, Graf 1995)

» Banzhaf and Graf (1995) used interactive evolution to

help determine parameters for image morphing. Aesthetic M
esthetic Measures

» They combine IEC with the concepts of warping and
morphing from computer graphics to evolve images.

» They used recombination of two bitmap images through
image interpolation.
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Aesthetic Measures Aesthetic Measures

« Computational aesthetic is a subfield of artificial

intelligence dealing with the computational assessment « Examples of aesthetic measurements:
of aesthetic forms of visual art.

- Benford’s Law

+ Some general image features that have been used are: - Global Contrast Factor
-Hue . - Information Theory
- Saturation - Reflectional Symmetry
- Symmetry - Colorfulness
- Smoothness
Aesthetic Measures (den Heijer, Eiben 2014)
+ den Heijer and Eiben (2014) investigated aesthetic
measures for unsupervised evolutionary art. Evolutionary Image Transition

+ Their Art Habitat System uses genetic programming and
evolutionary multi-objective optimization.

+ They compared aesthetic measurements and gave
insights into the correlation of aesthetic scores.
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Evolutionary Image Transition

+ The main idea compromises of using well-known
evolutionary processes and adapting these in an artistic
way to create an innovative sequence of images (video).

+ The evolutionary image transition starts from given
image S and evolves it towards a target image T

« Our goal is to maximise the fitness function where we

count the number of the pixels matching those of the
target image.

Asymmetric Mutation

* We consider a simple evolutionary algorithm that has
been well studied in the area of runtime analysis, namely
variants of (1+1) EA.

+ We adapt an asymmetric mutation operator used in
Neumann, Wegener (2007) and Jansen, Sudholt (2010).
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Evolutionary Image Transition

Algorithm 1 Evolutionary algorithm for image transition

Let S be the starting image and T be the target image.
Set X:=S.

Evaluate f(X,T).

while (not termination condition)

— Obtain image Y from X by mutation.
- Evaluate f(Y,T)
- fY,T)> f(X,T),setX =Y.

Fitness function: fX,T)=|{Xij € X | Xij = T;;}|.

Asymmetric Mutation

Algorithm 2 Asymmetric mutation

Obtain Y from X by flipping each pixel X;; of X in-
dependently of the others with probability ¢ /(2| X|s)
if Xi; = Sij, and flip X;; with probability ¢;/(2|X|r)
if X;; = Tj;, where ¢, > 1 and ¢; > 1 are constants,
we consider m = n.

for our experiments we set ¢ =100 and ¢;=50.




Example Images

Starting image S (Yellow-Red-Blue, 1925 by Wassily
Kandinsky) and target image T (Soft Hard, 1027 by
Wassily Kandinsky)

Uniform Random Walk

* A Uniform Random Walk - the classical random walk
chooses an element Xy € N (X;;) uniformly at random.

* We define the neighbourhood N (Xj) of X;; as

N(Xij) = { X5 X1 XiG-n X+ }
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Video: Asymmetric Mutation

Uniform Random Walk

Algorithm 3 Uniform Random Walk

— Choose the starting pixel X;; € X uniformly at random.
- Set Xi]' = Tl]
— while (not termination condition)
e Choose Xy, € N(X;;) uniformly at random.
o Seti:=k, j:=1and Xy; :=Tj;.
— Return X.




Video — Uniform Random Walk

Biased Random Walk

Algorithm 4 Biased Random Walk

— Choose the starting pixel X;; € X uniformly at random.
- Set Xij = T”
— while (not termination condition)

e Choose Xj; € N(X;;) according to probabilities p(Xy).

e Seti:=k,j:=1and X;; :=Tj;.
— Return X.
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Biased Random Walk

* A Biased Random Walk - the probability of choosing the
element Xy, is dependent on the difference in RGB-values
for Ty and Ty

Biased Random Walk

We denote by TZ;-, 1 <r < 3, the rth RGB value of T;; and define

3
¥(Xkt) = max {Z T — 1351, 1}

r=1

- (1/v(Xw))
P(Xn) = szteN(xij)(l/W(XSt)).




Random Walk Mutation and
Biased Random Walk Mutation

Mutation Based on Random Walks

* We use the random walk algorithms as part of our
mutation operators.

+ Each mutation picks a random pixel and runs the
(biased) random walk for tmax steps.

+ For our experiments we use 200x200 images and set
tmax=100.

Videos - Biased Random Walk
Evolutionary Algorithm

Feature Values During Transition:

N

A

o o5 1 15 2 25 3 a5 4
«10t

o o5 1 15 2 25 3 35 4

Colorfulness Benford’s Law

3
o o5 1 15 2 25 3 35 4
10t 10t

Global Contrast Factor Mean Hue
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Quasi-random Walks

+ So far: Random walks as main operators for mutation
and transition process

Quasi-random Transition and Animation
* Quasi-random walks give a (deterministic) alternative
which is easy to control by a user.
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Quasi-random Transition and Animation

General setting:

+ There are k agents each of them painting their own
image I* through a quasi random walk. Quasi-random
walk is determined by the sequence that the agent uses.

+ Process starts with a common image X.

 All agents paint on this image overriding X and previous
painting of other agents.

+ This leads to complex animation processes.

+ Image transition is a special case where all agents paint
the same image I.

Algorithm

Algorithm 1 QUASI-RANDOM ANIMATION

Require: Start image Y’ of size m x n. For each agentk, 1 < k < r, an image I* of size m x n, sequence
I XY

2: foreachagentk,1 <k <rdo

3 choose P* € m x n and set X (P*) := I*(P*).
4: end for

5t 1

6: while (t < tiax) do

7. for each agent k, 1 < k < r do

8: Choose P* € N(P*) according to S (¢(P")).

9: X(P*)  I*(PY)

10: F(PF) « (*(PF) +1) mod |S*|.
11: P* — P*,

12: end for

13: tet+1
14: end while
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Agent Moves

Move of an agent:
+ Each pixel has a sequence of directions out of from
{left, right, up, down}.

At each iteration, the agent moves from its current pixel
p to the neighbor pixel p’ determined by the current
position in the sequence at p.

« It paints pixel p’ with the current pixel in its sequence
and increases the position counter at p by 1 (modulo
sequence length).

2 Agents Symmetric and Asymmetric
Sequences




Example Video: 4 Agents Symmetric
Sequences

Evolutionary Image Composition
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Example Video: 4 Agents Asymmetric
Sequences

Key Idea

+ Create a composition of two images using a region
covariance descriptor.

+ Incorporate region covariance descriptors into fitness
function.

+ Use Evolutionary algorithms to optimize the fitness such
that a composition of the given two images based on the
considered features is obtained.




Image Composition

Algorithm 1 (i + 1) GA for evolutionary image composition
Require: S and T are images

1: Initialise population P = {Py,..., Py}

2: while not termination condition do

3 Select an individual P; € # uniformly at random

& if rand() < pc then » Crossover
5 Select P; € P \ P; uniformly at random

6 if rand() < 0.5 then > See Section 4.2 for fer
7 Y « RANDOMWALKMUTATION(X,Z,tc;)

8. else

9. Y « RECTANGULARCROSSOVER(P;,P))

10: P; « SELECTION(P;,Y)

11 else > Mutation
12: if rand() < 0.5 then

13 Y « RANDOMWALKMUTATION(P;,S, tmax)

14 else

15 Y « RANDOMWALKMUTATION(P;, T tmax)

16: P; « SeLECTION(P;,Y)

17 Adapt tyay » See Section 4.1.
18: return P » Result is a population of evolved images.
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Evolutionary Image Composition Using
Feature Covariance Matrices

+ Evolutionary algorithms that create new images based
on a fitness function that incorporates feature
covariance matrices associated with different parts of
the images.

+ Population-based evolutionary algorithm with mutation
and crossover operators based on random walks.

#3
square region of interest

6—‘(c.d)
'/"' o § #4

saliency mask

QA

c=(I+1)+pl,p=0.l.‘...{mT_lJ—l
l

d:(1+1)+ql,q:O.l....,\‘Llj—l




#5
set of features

Set 1: Ii,j,r,y.b. \/(:131,)1 + (#)zvu‘“‘l (I%l/l%l)l ;
Set 2: [i,),h,s,v]";

————— Y ; T
set3: [hs,v,y(3)7 + (1) (151/1501)] -

Impact of Different Features

Image composition with different features. Rows 1, 2 and 3
correspond to Feature Sets 1, 2 and 3, respectively.
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#6

fxST = Y (w gist (A% A% ) .
g o (MRt covariance-based

+ vl pdist (%A% L)) fitness function

Rows 1, 2 and 3 correspond to ‘*’5:4 set to $0.25%, $0.5$ and $0.75% and set to $0.75$, $0.5$ and $0.25$,

T
W

3 (e,d)
respectively. In the last row the weights were set using an image saliency algorithm. The saliency algorithm strikes
a consistent balance between notable regions in both images.




Impact of Distance Metrics

Rows 1, 2 and 3 correspond to distance metrics distg, disty and
disty, respectively.

Evolutionary Diversity Optimisation
for Images
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Variants of Image Composition

Image composition with Feature Set 1, saliency-based weighting and
a Log-Euclidean distance measure.

Key Idea

* Produce diverse image sets using evolutionary
computation methods.
» Use the (1 + A)-EAp for evolving image instances
+ Select the individuals based on their contribution to
diversity of the image.
1 5 10 15 20 Individuals
(0.577, 0.368)
e

(0.595, 0.478)
> 8
.~ T~

0.686967

o

Saturation




Evolution of Artistic Image Variants
Through Feature Based Diversity
Optimisation

* Weuse (u + A)-EAp to evolve diverse image instances.

+ Knowledge on how we can combine different image
features to produce interesting image effects.

+ Study how different combinations of image features
correlate when images are evolved to maximise
diversity.

#1
starting image

#2
pixel-based mutation

&
image validity chec

Image has mean squared error to starting image less than 10
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Algorithm 1 The (u + 1) — EAp algorithm u=20andA=10

: input: an image S.

: output: a population P = {I,..., I} of image variants.
{Initialise with ;2 mutated copies of source image}

3. P = {mutate(S),. .., mutate(S)}

4 repeat

s:  randomly select C C P where |C| = 4

6 for 1€ Cdo

7

8

9

[

produce I’ = mutate(I)
if valid(l’) then
add I’ to P

10: end if
11:  end for
122 while |P| >y do
13: remove an individual I = arg min;pd(J, P)
14 end while

15: until Termination condition reached

#4
feature diversity measure
Iioy I; Ly
t t t
fh) < f(l) £ ... < f(I). f(I) # (L) # fI)

ds,(Li, P) = (f(L) = f(Li=1)) % (F(Liz1) — f(L:))
dULP) =Y (wxdy(I,P)

[Gao, Nallaperuma, F. Neumann, PPSN 2016,arxiv2016]




Single Dimensional Feature Results Single Dimensional Feature Results

1 5 10 15 20 Individuals .
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Two-Dimensional Feature Experiments
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Discrepancy-Based Evolutionary
Diversity Optimization

« New approach for discrepancy-based evolutionary
diversity optimization

« Investigate the use of the star discrepancy measure for
diversity optimization for images and TSP instances

+ Introduce an adaptive random walk mutation operator
based on random walks

« Compared the previously approach for images and TSP
instances [Alexander, Kortman, A. Neumann, GECCO 2017]

University of Adelaide
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Discrepancy-Based Evolutionary Diversity
Optimization for Images

#1
Start Image

#2

Features

University of Adelaide 77

Discrepancy-Based Evolutionary Diversity
Optimization for Images

#4

Experimental
settings

#5
Results

0.6019 0.4928 0.6376 0.4604




Discrepancy-Based Evolutionary Diversity
Optimization for Images #5
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