We live in a complex world
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® Large number of ® Can not be understood by
interacting elements analysis of components
® Emergence ® Simulation can capture
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Instructor Example: Traffic

Juergen Branke is Professor of Operational Research and
Systems of Warwick Business School, University of
Warwick, UK. He is Area Editor for the Journal of Heuristics
and the Journal on Multi Criteria Decision Analysis, and
Associate Editor for IEEE Transaction on Evolutionary
Computation, and the Evolutionary Computation Journal.
His research interests include metaheuristics and Bayesian
optimization, multiobjective optimization and decision
making, optimization in the presence of uncertainty, and
simulation-based optimization. He has published over 180
peer-reviewed papers in international journals and
conferences. His e-mail address is
Juergen.Branke@wbs.ac.uk

® Street networks

® Reactive traffic light controllers
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Example: Manufacturing Example: Stock market

Simulation allows taking into account
Simulate machine breakdowns, ® bounded rationality

stochastic processing tlmes complex © learning agents
® heterogeneous agents
scheduling rules, ©

network effects

‘lﬁ“ Tk
w _

etc.

Famous:

Santa Fe Stock Market:

Expectations of learning agents lead to technical
trading

wbs.ac.uk
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Example: Engineerin Simulation as
PIEs Ene . knowledge generation tool

Slmulatlon can replace phySICaI teStmg Great tool to understand and analyse complex real-world systems!

Knowledge

Theory
Simulation
Data Analysis

Warwick Business Schoo whbs.ac.uk
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The next step:
Simulation optimisation

® Automatically search vast spaces of parameter
settings to find “optimal” settings

Objective value

® Model calibration

® Automated design and optimisation of complex
systems

Warwick Business School whbs.ac.uk

Simulation optimisation examples

® Traffic: Optimise traffic light controller

® Manufacturing: Find optimal dispatching rules
® Engineering: Find optimal wing design

® Finance: Find better investment strategies

Warwick Business School whbs.ac.uk

Challenges

1. Simulations are mostly black boxes \/
2. Simulations are computationally expensive

3. Simulations are often stochastic

Warwick Business School

Outline
® Strategies to deal with expensive evaluations

e Parallelisation
e Surrogate models

® Strategies to deal with noise
e Selecting the best system
¢ Simulation optimisation

® Applications
e Design of traffic light controller
e Design of dispatching rules

e Design of caching strategies

Warwick Business School
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Parallellisation

WARWICK BUSINESS SCHOOL

=

a. Parallel evaluations

e Multi-core/Multi-processor

L . . « Graphics Processing Unit
Dealing with expensive evaluations raphics Frocessing Lnits

b. Parallel selection
e Grid/cloud computing

e.g. [Nedjah et al. 2006]

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk

How long can you wait? Surrogate models

® EAs typically require 100,000 function ® “Substitute”
evaluations ® Often also called
® If every simulation takes 1 minute... “Metamodel”
® ... this is 70 days runtime! ® Much cheaper, but not necessarily as accurate
® Replace some of the expensive function
\“ evaluations by surrogate-model based
- evaluations
4\

For survey, see e.g. [Jin 2011]

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk
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Where does the surrogate model

come from? Which solutions to evaluate?

Simplified: ® Promising solutions?
® More coarse grained simulation ® Representative solutions?
® Smaller simulation

) ) ® Solutions where surrogate model is uncertain?
® Abort simulation early

® Solutions that improve accuracy of surrogate

Learned: model?
® From data systematically sampled from search ® Fixed or flexible budget?
space

® From data collected during the run

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk

Learning vs. optimisation

Metamodel deS|gn questions From an optimisation point of view, we want to

e Fully evaluate the best solutions
® Type of model, or ensemble Y ,
) _ _ ) e Fully evaluate where we are most uncertain

e Linear/quadratic regression, Gaussian Process,

. :
Artificial Neural Network, etc. Ensure the selection works accurately

® Training data From a modelling point of view, we want to

e Evaluate where we can most improve model accuracy
¢ Global vs. local models

e . e Evaluate where we are most uncertain
® Which individuals to evaluate based on

metamodel, which on full model ® EAs evaluate many solutions in promising areas,

so these areas can be modelled accurately

® Model does not need to accurately predict fitness,
only accurately predict ranking

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk
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Most typical uses of metamodels Benefit of pre-selection ernkesschmiat 2004

T T T T T T T T I
el Interpolation
Regression ------

® Pre-selection e T N All valuated === E
® Locally optimise each solution E

g

Z’ LE

8

0.1 L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Evaluations

Pre-selection Trust region method
® Generate an abundance of children For each individual

Repeat at most k times, or until no better solution found

® Pre-select A children based on metamodel .
Build local surrogate model

® FuIIy evaluate pre—selected children Perform local search on surrogate model within Trust region
Evaluate best found solution
parents A* children A children parents (t+1) Replace individual with best found solution if better

@Q‘@ o
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Multi-fidelity optimisation Efficient Global Optimisation (EGO)

[Jones, Schonlau, Welch 1998]

® Sometimes, multiple surrogate models with ® Fit a Gaussian Process (GP) to data
different trade off between accuracy and ® Response model provides information about
running time e expected value
® Use fast, rough models to approximate good e uncertainty
region ® Use response model to determine next data
® Use slower, more accurate models to refine the point (replaces genetic operators)
best solution ® Expected improvement makes explicit trade-off

between exploration and exploitation

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk

Use of partially converged simulation Efficient Global Optimisation (EGO)

[Branke et al. 2017]

® Simulation can be stopped, and later continued _ _
PP ® Fit a Gaussian Process (GP) to data

® Evaluate all solutions using short runs f(7) ~ GP(m(2), K (&, 7))
® Clearly good solutions survive, E h .
clearly poor solutions are discarded, = where m(z) = 0

. . f I 0.12 k(fl -CE]_) ]{f(fl fn)
remaining are run ror ljonger , ,
300 0.11 -
= 7/ Fidelity-1 K _
2 250 ‘ N\\Fidelity-2| ‘ H ‘ 2.,
2 E isiFidelity-3| ¢ 1 || u i >: B B . )
2200: E:g:::gg Lyl oo k(x'ru CUl) k(xna .T'n,)
2150 1INl Fidelity-6 | 2
% ‘ E & 0.08
= i .
S 100 (w - m )
8 = =\ __ d d 9 . y
2 v k(Z,7) = 69717( Z 2 2 0.0(Z, ")
Z d=1 \,./ —~ .
00 10 20 30 40 0'060 2 4 6 8 10 kernel max cov length scale measurement noise

Generations Evaluation Budget x10*

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk

868




Example: GP in 1 dimension

Max expected improvement principle

80

EGO lllustration

80

20

40 60
Expected improvement

80

100

Warwick Business Schoo
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EGO algorithm

Take initial n, samples
Build GP model

WHILE stopping criterion not met DO

Estimate hyperparameters using maximum

Take additional sample at position with

likelihood estimation

maximum El

Update GP model

Return best found solution

Warwick Business Schor

Outline
® Strategies to deal with expensive evaluations

ol

e Parallelisation

e Surrogate models

@® Strategies to deal with noise

e Selecting the best system

e Simulation optimisation

® Applications

e Design of traffic light controller

¢ Design of dispatching rules

Warwick Business Schoo
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Standard: Equal allocation

® Sample each system n times

Selecting the Best System 1
® Reduces standard error by Jn

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.ul

Ranking and selection problem Variance Reduction Techniques
_ ® Try to reduce variance without additional runs, but
® Select, out of k systems, the one with best mean instead by influencing the settings of the experiments
performance

e Common Random Numbers
Antithetic Variates
Control Variates

@ Let X;; be output of jth replication of jith system
(X7 =1,2,..} "% Normal(w;,02,) i=1,...,k

® Sample statistics: x; and 6? based on n;
observations seen so far

® Order statistics: T(1) < Z2) < ... < Tg)

® Correct selection if selected system (k) is the true
best system [k]

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.ul
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Common Random Numbers

Intuition:
® Compare two alternatives under similar conditions
® Keep track of performance differences in identical environments

® The observed differences are more likely attributable to the
actual system differences, rather than to the differences in
environmental conditions

Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y)
Hope: Cov(X,Y)>0

Warwick Business School whs.ac.uk

Common Random Numbers

How to generate similar conditions
® Conditions are influenced by random number generator
® But: random number generator cannot produce random numbers

® Note: random numbers are used in different contexts

e arrival rate of customers
® processing times

e action selection by agents
* etc.

@ ltis necessary to ensure that the random numbers are used for the

same purposes in the simulations of the two systems ->
synchronization

® Best way to maintain synchronization: Use separate random
number streams to corresponding sources of randomness

Warwick Business School whs.ac.uk
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Common Random Numbers(fm

® CRN works only if random numbers
influence performance in the same way

® Can backfire, if that is not the case (rare)

-> Run some initial experiments with and

m: Law&Kelton, 2000)

without CRN to test the influence of CRN 0

Warwick Business School

Common Random Numbers

Example:

Compare M/M/1 and
M/M/2 production system
(from Law&Kelton,2000)

Warwick Business School
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Comparison of the effect of

e increasing the number of samples (n) and Comparison Of m>2 alternatives
e using CRN
From Law&Kelton, 2000
oo oo o _ Independent O i
=20 | et o ® Allocate samples sequentially
t { (exact) — — — . . . .
o o oomammom oy ® Maximise the value of information
—
I
I
0 OO ODETIMOIPInOmomnon 0 0 =s
- I 0-00 oo some—
o D mo oo muu:un:nmmmn:&mm oo o O 0 0 =}
- }n=1
| i : 1 1
-15 ~10 -5 0 5 10 15 ® Collect more information on promising solutions
Zj

® Collect more information where uncertainty i
But: the effect very much depends on the model properties! Collect more informatio ere uncertainty Is

Possible problem: may invalidate (or at least complicate) statistical hlgh
analysis methods (ranking&selection, ANOVA)
Design of experiments Performance criteria
@ Stratified sampling @ Latin Hypercube ® Probability of correct selection (PCS)
sampling PCS — P(w(k) _ w[k])

® Probability of good selection (PGS)
PGS = P(wgy > wy) — 9)

® Expected opportunity cost (EOC)
EOC = E(w[k] — w(k))

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk
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Myopic approach to maximize
probability of correct selection

[Chick, Branke, Schmidt: J. of Computing, 2010]

® Assume we can take only one more sample

® If the sample doesn’t change selected solution
-> information had no value

® PCS: Expected value of information is probability

of a change in the index of the individual with
the best mean

® EOC: Expected value of information is expected
change in the value of the selected individual

Warwick Business School

whs.ac.ul

Expected value of information (PCS)

Change of best system if

® system (i) # (k) is evaluated and becomes new best system

® system (k) is evaluated and becomes worse than second best

.

(I)n(i) -1

(I)n(k) —1

(
\

Z(i) —Z(k)

6.2
@)

T(k—1)—T(k)

\/

&2
(k)

(k) (M (k) T

Warwick Business School

if (1) # (k)

if (3)

(F)

whs.ac.ul
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Algorithm

Sample each alternative n, times

Determine sample statistics z;and afand order
statistics (1) < ... < Zg)

WHILE stopping criterion not reached DO

Take additional sample of system i with
maximal EVI

Update sample and order statistics
Pick solution with maximal ZI;

Warwick Business School whs.ac.uk

Stoppi ng ru Ie [Branke, Chick, Schmidt, Mngmt Sci, 2007]

® So far: Fixed budget

® Now: Estimate Probability of Correct Selection (PCS)
PCSBayes = Pr(Wi = max W) | =}
> ][ Pr(Wu > W) |5}
J:(3)#(k)
~ H (I)Vm(k)( §k)
J:(3)#(k)

o o)
with &%, = (2 — ) [ 28 4 20
ik (@@w) —2(5) (n(k) n(j))

| whs.ac.uk
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Empirical evaluation (iavest out of 10 systems)

Equal (5) ——
i o Jpa—
Simulation Optimisation
: 50 100 150 200E(N) 250 300 350 400
Similar approaches If the number of alternatives is large
® Optimal Computing Budget Allocation (OCBA)
e Asymptotic assumption [Chen&Lee 2011] ® If the number of possible alternatives is large, it
® Racing (siattari et al. 2010] is no longer possible to evaluate each

. . alternative a few times
¢ |n each iteration, allocate one sample to each

alternative “still in the race” ® We need an optimization heuristic
e F-test to detect whether there is significant difference ® Typical:
e Eliminate alternatives that are significantly worse than Simulated annealing, evolutionary algorithm

best alternative ® If computational budget is very limited,

dimensionality small and variables continuous:
Bayesian optimisation

e Stop when budget has been used up or only one
alternative is left

e Version that runs with fixed budget [ranke&Elomari 2012]

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.ul
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Bayesian Optimisation

® Extends naturally to the noisy case

® Sequential Parameter Optimisation [sartz-Beielstein et al.
2005], Stochastic Kriging Optimization (Huang et al. 2006,
Knowledge Gradient [Frazier et al. 2009]

Warwick Business School

250

200

150

1001

whs.ac.uk

Effect of noise

Effect on noise level:o =0

Effect on noise level:o, =1

, 200 _
/ 1 150 4

/, 1 100 4
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Simulated Annealing
® Stochastic local search

® Inspired by physical annealing processes

P = f(0E,¢)
P

Cost

Search space

Warwick Business School whs.ac.uk

Simulated Annealing

® Acceptance of solution is

probabilistic and depends on 1 M iorber
quality difference 6 and 08T i
temperature T = %8 i
o 04l 1
0.2 -
Pa(5) _ 6_5/T 0—10 -I8 -25 -I4 -I2 l) I2 Ll 23 I8 10
Pa(_(s) [
PMetTopolis (5) — 1 : 0 < 0
“ e 9/T 0>0
1
PGlauber 5) =

Warwick Business School whs.ac.uk




Simulated Annealing in Noisy

Effect of noise i
Environments (SANE) ranke et al. 2008

1 —T— —T—T 1600 — Idea:
0s L I 1400 * Always accept seemingly better solution
- osl I * Number of samples depends on temperature and
= c 1000 o .
<l I . probability to accept worse solution
02 b % * Keep sampling until the probability to erroneously
S 400 . select the worse solution is smaller than the
e e s g = ° o 100008 acceptance probability for the worse solution
Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk
i . Simulated Annealing in Noisy
Using the noise )
o Environments (SANE) ieranke et ai 2008
Noise in SA/EA Noise in real-world problems
Where? generally stochastic environment
® Selection What from? n— Nogp = 1
® Mutation ©  Simulation based evaluation Draw ng = 1 sample from AE and estimate & by &
® Replacement ® Measure errors —~ —|5|\/ﬁ
What for? . © Uncertainty 'Derr(é) — (D ( OAE ) while estimated error probability
® Get out of local optima < is greater than Glauber’s
@ Explore search space while P.,, > Pf/auber(|6|) do probability of picking worse
How? How?
® Artificial, pseudo-random ® “Naturally” Draw angther Sample (n — n-+ 1)
Noise , Noise Update 6 and Pe,,
desired &7‘ not desired end while
e © Use Noise Accept better solution always pick better solution
Warwick Business School } L whbs.ac.uk Warwick Business School whbs.ac.uk
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Empirical comparison
® TSP with normally distributed noise

® Comparison with Alkhamis et al. (AAT) [aikhamis, Ahmed, Tuan, 1999]

T AAT
SANE ———
900 fi g

800 |- |

700

Tourlength

600

500 - —
—

0 200000 400000 600000 800000 1e+06
Evaluations

whs.ac.uk

Optimal Stochastic Annealing (OSA)

[Ball et al. 2017]

® Assumes known Gaussian noise
® Uses sequential sampling

® At every stage, decision to accept, reject or
continue

® Acceptance criterion modified to maintain
detailed balance

® Acceptance criterion has optimal efficiency
(acceptance probability per sample)

Warwick Business School whbs.ac.uk
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OSA acceptance rule

® Based on sum of samples taken so far
n
Cn = Z 51
i=1
® Acceptance probability at current stage:

Alcn, cn-1) = { § en < ~B0%/2

e~ 2(entB0/2)(cn1+60%/2)  otherwise

® If not accepted, reject if ¢,>0
® Continue otherwise

Warwick Business School whbs.ac.uk

Benchmark algorithms
@ SANE [Branke et al. 2007]

e Sequential sampling and adjusted acceptance
criterion

e Current state-of-the-art, shown to outperform several
other methods

® CD1 [ceperley&Dewing 1999]
¢ Adjusted acceptance criterion, obeys detailed balance
@ CDlO[Ceperley&Dewing 1999]

e As CD1, but with 10 samples per move decision

Warwick Business School whbs.ac.uk



o Evolutionary algorithm
Efficiency (o/7=10)

INITIALIZE population

14 'I ' (set of solutions)
| EVALUATE Individuals
0.8 'I according to goal ("fitness")
' '. REPEAT
0.6 : [ SELECT parents ] @ (YD
n ; RECOMBINE parents (CROSSOVER) "
0 4 | MUTATE Offspring MIITNNN JR NNM
. !
' EVALUATE offspring N 9
0.2 ln [ FORM next population] AN\ LIS
b [NN\\\\\P} TR
0 UNTIL termination-condition SIS 14 (I 7
-100 ZZZZ T 4
Optimization performance (rsp, 5>=3200) Populations are robust to noise
A ) ‘ OSA - o« e . .
300 I | CDO1 --a- ® Implicit averaging over the neighbourhood
4 CD 10 --e- e e . . .
Z CD 100 ---u-- ® With infinite populations, fitness proportional
g SANE —--— selection is not affected by noise (wiler & Goldberg 1996]
_§ 600 . ® Theory for optimal population sizes in simplified
é L . CaSes [Arnold&Beyer 2000]
. ® Black-box Optimization Benchmark competitions
450 . . . . . show advantages of EAs in noisy environments
0 5 10 15 20 25
samples/10°

Warwick Business School

whs.ac.uk Warwick Business School whs.ac.uk
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Explicit averaging Change sample size over the run

® Reduce noise by factor sqrt(n) @ Increase sample size over the run (aizawahawah 1993]

® Optimise distribution of samples over the run
[Branke 2001]

® Clean up after optimisation [soesel et al. 03]

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk

CRN and Evolutionary Algorithms Optimal distribution of
[Branke 2001]
® Use CRN for all individuals to be compared within samples over run sranke 2001

a generation

e may drastically improve probability of correct ranking

e risk of optimizing for one random seed 1000 generations 2000 generations

1000 generatiohs 5000 generatiohs

Z T

® Change random number seeds from generation to
generation

¢ Only individuals that work on a wide range of scenarios
will survive for a long time

no. of samples per individual
no. of samples per individual

J ]

.l
® Re-evaluate elite individuals L
0 : : : : 0 : : : :
e A “lucky” individual should be prevented from surviving ° * S qeneraton. ® e *  qeneraton. ° 1
forever

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk
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Use metamodels — average over space

[Branke & Schmidt 2001]

f(x)
w(d)

f(x)

~
f(x*)
X*
2h
Warwick Business School whbs.ac.uk

Benefit

T
rel lin Reg ——
1-Sample -~~~
10-Sample --------
100-Sample

1 1 1 1
0 2000 4000 6000 8000 10000
Evaluations

Warwick Business School whbs.ac.uk
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Integrating Ranking&Selection

[Schmidt et al. 2006]

Reprg ion

Population
P

Offspring

m

Warwick Business School whbs.ac.uk

The relevant comparisons

®Steady-State-EA with 2-Tournament Tl OgSEr:edsran:qngs O
Population size: 9, offspring: 1
e Replacement: Worst individual
e Stopping criterion: Best individual
e Selection: Best out of {3, 7} and {2, 5}
* (5,10)-Evolution strategy
Population size:5, offspring: 10
— Replacement: 5 best individuals
— Stopping criterion : Best individual

Observed ranking

112|3|4(5|6|7|8|9] 10

olo|lNw|lo|lu|s|w|n|[r]|wVv

X | x [ x| x [x|x|x|x]|x

i
o

PGS, == [[Too PUstiF575735:))

i#(k))eC

Observed ranking
olw|[~w|oflau|ls|w|[n]m|v
x x x x x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

Warwick Business School whbs.ac.uk



Integrating OCBA and EA

Procedure OCBAFA

1.

Evaluate each new individual ny times. Estimate

the ranks

Determine set of relevant comparisons C

WHILE evidence is not sufficient

a) allocate new sample to individual according to

modified OCBA rule
b) if ranks have changed, update C

Warwick Business School

Benefits over the run

Konvergenz

— det '
Standard (Budget=20)
EA mit OCBA 1

0.01

0.001

Fitness

1e-04

o] 200 400 600
Generationen

Warwick Business School
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1000
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Integrating KG and CMA-ES

® CMA-ES only needs to identify top u individuals
® Uses this to adapt the mutation step size
® Which individual, if re-evaluated, has biggest

potential impact on - e

—— Standard KG
—}— Uniform

resulting mutation
distribution?

® See paper at this GECCO

(d) Ackley Function

Warwick Business School whbs.ac.uk

Outline
® Strategies to deal with expensive evaluations

e Parallelisation
e Surrogate models
® Strategies to deal with noise
e Selecting the best system
¢ Simulation optimisation
® Applications
e Design of traffic light controller

e Design of dispatching rules

e Design of caching strategies

Warwick Business School whbs.ac.uk




Example: Optimisation of a
traffic light controller

controller

Warwick Business School whs.ac.uk

Results

0,63

AReference solution
g 095 X XRun A (NSGA-Il 60 gen., pop. size 2

£053 ?® %L

#Run A - Non-dominated set
% X X

»

0,20 0,21 0,22 0.23 0.24 0,25 0,26 0,27
avg. delay

‘ EA finds better solutions than traffic engineer

Warwick Business School whs.ac.uk

Example 2: Evolution of
Job Shop Dispatching Rules picardtetal. 20121

® Complex wafer manufacturing system
¢ 31 work centres (35 machines)
¢ 10 batching machines, 2 machines with setup times
e 7 different products
e 20-100 operations per job (cycles)

Warwick Business School whs.ac.ul

Dispatching rule based scheduling

* Determine job priorities based on job and
machine attributes

* Whenever a machine becomes idle, process the
job with highest priority next

* Popular examples: FIFO, SPT, EDD, CoverT
Advantages:

» Always take latest information into account
« Easy to implement and to compute

Warwick Business School whs.ac.ul




Automatic generation of
dispatching rules

@ Genetic Programming can generate Lisp
expressions

® Evaluation of a dispatching rule via stochastic

simulation
- Dispatching rule
% -

Warwick Business School whbs.ac.uk

Terminals

Processing time

Processing time on next machine
Number of operations remaining
Remaining processing time

Work in next queue

Time in queue

Time in system

Slack

Time until deadline

Weight

Setup time

®©@ ®©® ® ® ®©® ®© ® ® ® ©®© ©® ©

Number of compatible jobs for batching

Warwick Business School whbs.ac.uk
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Results

® Rule of length 9: w/max(L,P)-s+b

® Rule of length 98:

ifte(max(1,r) — max(1,n,L),w,b) x b * max(r/L + max(—ifte(b —L,w,b) +s+b,S+ b *
ifte(max(1,r) —max(L,d),w,b) —s—max(1,r,L)+max(1,r)+ 1) *ifte(b—L,w,b) —s5,S+
bxifte(max(1,r) —L,w,b)* (2%r/L—5s)+r/L—s+1)

Warwick Business School

Results (2)

wbs.ac.uk

Comparison with best rules from literature

Util 93.8%; Product mix 30/70

m WeightedTardiness

ATCS/MBS(5) 2336
GP9S 782

Util 85%; Product mix 70/30

WeightedTardiness

WMOD/MBS(1) 216
GP98 51

Util 85%; Product mix 30/70

m WeightedTardiness

ATCS/MBS(4) 451
GP98 47

Util 93.8%; Product mix 70/30
WeightedTardiness

WMOD/MBS(3) 1245
GP98 206

Warwick Business School

wbs.ac.uk



Example 3: Evolving Caching Strategies

The WWW: A huge distributed database

Documents are relayed by a sequence of routers

[Branke et al. 2007]

The same document is sent many times

Problems: congestion, delays, timeouts, ...
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Potential solution: Caching

® Storing replicas of frequently requested documents
at nearby nodes

® Possible because requested servers and documents
have powerlaw-distribution

® Common on browser level and proxy level
® New idea: En-route web caching

Goals:

® Reduce Internet traffic

® Reduce load on highly requested servers
® Reduce latencies

Warwick Business School whs.ac.ul

With En-Route Caching

Second request can be serviced from nearby replica
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. Cache Symmetry Problem
En-Route Caching

® All nodes/routers involved in relaying an object have

an opportunity to keep a cached copy © All nodes use
n u

® Potential for huge resource savings identical rule

® Problem: limited memory

® All may end up
with identical

cache
. ‘ Caching Policy = Decision Rule == Caches should complement each other

® Question: Which documents to delete? == Coordination necessary
Challenges State of the art:
® Large, dynamically changing distributed system ® LRU (default rule, ighores network aspects)
® No global information ® RANDOM (often better than LRU, ignores
® No global authority everything)
® How good a strategy is depends on what ® GDSF [Cherkasova 2001]

neighbors do e GCCESS count - distance ing fact
® Symmetry problem proorty = size ageng Jactor
® How can global efficiency and coordination Goal:

emerge from local caching rules? Automated design of better en-route caching strategies

Use evolutionary algorithms to explore the space of
caching rules

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk
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Evolving caching strategies Network Simulator

1. Create network topology

Main chaIIenges: *  Find paths from all to all
finiti f h 2. Create random set of objects
® Definition of searc space e Random size

e Identify relevant document attributes * Power-law distributed set of demands
e Distributed among hosts

* Use GP to form priority rule 3. Poisson process for each host

® How to evaluate a caching strategy *  Generate requests for documents
. . . . 4.  Routing
° Only simulation pOSSIbIe due to emergent behavior e Break object in packets, send them along shortest path
e Requires parallelisation 5. Bandwidth
e Each network link is a queue of requests
6. Caching

e Always send first replica found down request path

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk

GP Evolves Caching Strategies Internet-like Networks (scale-free)

Priority rules encoded by GP

Inputs = information about the object ® Internet-like random networks

a) Time of document creation * 100 nodes
b) Document size e Scale-free topology (Bu & Towsley 02)
c) Access count @ Noisy fitness

d) Time of last access

e) Distance from sender

f) Frequency (no. accesses / second)
g) Random Constant

Functions

¢ Different random topologies and request patterns lead to
large differences in latency

e Test in 3 different random nets per generation
e Change test scenario in every generation

" . . ¢ Evaluate results on many networks
+ — / sin cos exp iflte

Output = priority

Warwick Business School whbs.ac.uk Warwick Business School whbs.ac.uk
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RUDF

® Often, resulting rules are very complex

(* (b (+ (+ (* b (+ (- 0.994 b))
(exp e)))))) (* d e)) (exp e))) (iflte
(iflte 0.694 £ d a) (- b b))) (exp (exp
c)))) (iflte b (* ¢ (- 0.139 (*
(iflte d a 0.601 (- £ (- a e))
(+ (+ (exp d) d) (* a b))))))

(+ a

(iflte (+

1.616 a))) 0.444
c £)) b)

(* b (+ (* be) (exp
(exp £) (*
(+ a £) £) (exp
(iflte e

(exp (* ¢

(*

e 0.507

® One of the runs yielded a short, powerful rule
lastTimeAccessed [ (distance + accessCount)

® RUDF outperforms all the comparison rules,

including GDSF.

Warwick Business School

Performance on test networks

Caching Strategy |@ rank(latency)
RUDF 1.13 £ 0.06
GDSF 2.80 £0.15
30nodes  DISTANCE 3.10 + 0.28
LRU 370 £0.16
RANDOM 427 £0.14
RUDF 1.03 £0.03
DISTANCE 2.234+0.16
300 nodes  GDSF 3.20+£0.11
RANDOM 420+ 0.16
LRU 433 +0.13

Warwick Business School

whs.ac.uk

whs.ac.uk
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Linear Networks

® We can find optimal caching analytically

OO0 0202020202020
1 2 3 4 5 6 7 8 9

Original 0
Replica 5 6 7 8 9 0 1 2 3 4
Caching strategy | Avg. latency
® Result: Evolved GP policy OPTIMAL 31.58 £ 0.03
yields near-optimal BESTGP 31.98 = 0.06
performance, far better than RUDF 35.80 = 0.43
comparison algorithms GDSF 47.67 = 1.17
DISTANCE 50.40 = 1.24
RANDOM 61.65 = 0.14
LRU 74.77 = 0.19

Warwick Business School whs.ac.ul
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Conclusion and additional resources
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Conclusion Further resources

® The Winter Simulation Conference always has a

next step in the design of complex systems ® GECCO tutorial on cloud computing

® Metaheuristics hold great promise ® Library of simulation optimisation problems

@ Challenges of runtime and noise can be tackled http://www.simopt.ore

® Available solvers:
e OptQuest (http://http://www.opttek.com/OptQuest)
e COMPASS (http://www.iscompass.net)
e SPOT (https://cran.r-project.org/web/packages/SPOT/)
e irace (http://iridia.ulb.ac.be/irace/)

Warwick Business School whs.ac.uk Warwick Business School whs.ac.uk
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