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We live in a complex world

� Large number of 
interacting elements

� Emergence

� Can not be understood by 
analysis of components

� Simulation can capture 
emergent phenomena

Warwick Business School

Example: Traffic

� Street networks
� Reactive traffic light controllers
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Example: Manufacturing
Simulate machine breakdowns, 
stochastic processing times, complex 
scheduling rules,
etc.
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Example: Engineering
Simulation can replace physical testing
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Example: Stock market
Simulation allows taking into account
� bounded rationality
� learning agents
� heterogeneous agents
� network effects

Famous:
Santa Fe Stock Market:
Expectations of learning agents lead to technical
trading
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Simulation as
knowledge generation tool
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Great tool to understand and analyse complex real-world systems!
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The next step: 
Simulation optimisation

� Automatically search vast spaces of parameter 
settings to find “optimal” settings

� Model calibration
� Automated design and optimisation of complex 

systems

SimulationParameters Objective value
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Simulation optimisation examples
� Traffic: Optimise traffic light controller
� Manufacturing: Find optimal dispatching rules
� Engineering: Find optimal wing design
� Finance: Find better investment strategies
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Challenges

1. Simulations are mostly black boxes
2. Simulations are computationally expensive
3. Simulations are often stochastic
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Outline
� Strategies to deal with expensive evaluations

� Parallelisation
� Surrogate models

� Strategies to deal with noise
� Selecting the best system
� Simulation optimisation

� Applications
� Design of traffic light controller
� Design of dispatching rules
� Design of caching strategies

864



Warwick Business School

Dealing with expensive evaluations

Warwick Business School

How long can you wait?

� EAs typically require 100,000 function 
evaluations

� If every simulation takes 1 minute…
� … this is 70 days runtime!

Warwick Business School

Parallellisation

a. Parallel evaluations
� Multi-core/Multi-processor
� Graphics Processing Units

b. Parallel selection
� Grid/cloud computing

e.g. [Nedjah et al. 2006]
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Surrogate models

� “Substitute”
� Often also called 

“Metamodel”
� Much cheaper, but not necessarily as accurate
� Replace some of the expensive function 

evaluations by surrogate-model based 
evaluations

For survey, see e.g. [Jin 2011]
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Where does the surrogate model 
come from?
Simplified:
� More coarse grained simulation
� Smaller simulation
� Abort simulation early

Learned:
� From data systematically sampled from search 

space
� From data collected during the run
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Metamodel design questions

� Type of model, or ensemble
� Linear/quadratic regression, Gaussian Process, 

Artificial Neural Network, etc.
� Training data

� Global vs. local models
� Which individuals to evaluate based on 

metamodel, which on full model
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Which solutions to evaluate?

� Promising solutions?
� Representative solutions?
� Solutions where surrogate model is uncertain?
� Solutions that improve accuracy of surrogate 

model?
� Fixed or flexible budget?
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Learning vs. optimisation
From an optimisation point of view, we want to 

� Fully evaluate the best solutions
� Fully evaluate where we are most uncertain
� Ensure the selection works accurately

From a modelling point of view, we want to
� Evaluate where we can most improve model accuracy
� Evaluate where we are most uncertain

� EAs evaluate many solutions in promising areas, 
so these areas can be modelled accurately

� Model does not need to accurately predict fitness, 
only accurately predict ranking
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Most typical uses of metamodels

� Pre-selection
� Locally optimise each solution

Warwick Business School

Pre-selection

� Generate an abundance of children
� Pre-select λ children based on metamodel
� Fully evaluate pre-selected children

parents λ* children λ children parents (t+1)

Warwick Business School

Benefit of pre-selection [Branke&Schmidt 2004] 

Konvergenzkurven auf Ackley-Funktion [Branke&Schmidt, 20

Warwick Business School

Trust region method

For each individual
Repeat at most k times, or until no better solution found

Build local surrogate model
Perform local search on surrogate model within Trust region
Evaluate best found solution
Replace individual with best found solution if better
Adapt Trust region
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Multi-fidelity optimisation

� Sometimes, multiple surrogate models with 
different trade off between accuracy and 
running time

� Use fast, rough models to approximate good 
region

� Use slower, more accurate models to refine the 
best solution

Warwick Business School

Use of partially converged simulation 
[Branke et al. 2017]

� Simulation can be stopped, and later continued
� Evaluate all solutions using short runs
� Clearly good solutions survive, 

clearly poor solutions are discarded,
remaining are run for longer
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Fig. 2. Test function.

TABLE V
MSE AND THE RANK CORRELATION COEFFICIENT

(KENDALL TAU) BETWEEN THE FIDELITIES OF
THE 1-D ARTIFICIAL TEST FUNCTION

TABLE VI
MSE AND THE RANK CORRELATION COEFFICIENT

(KENDALL TAU) BETWEEN THE FIDELITIES
OF THE 2-D ARTIFICIAL TEST FUNCTION

Fig. 3. USS Dallas RC toy submarine.

B. Toysub Benchmark Problem

As a complement to the artificially designed 1-D bench-
mark function, the toysub benchmark problem is designed to
be more similar to a real-world problem as listed in Table VII.
The task is to design a toy submarine (Fig. 3) with the goal to
minimize the drag, while still obeying all volume constraints.
The problem involves eight variables defining the geometry of
the submarine as shown in Fig. 4. The design variables are:
the position of the internal components along the Z-axis, i.e.,

Fig. 4. Design variables.

TABLE VII
PERFORMANCE CRITERIA OF THE USS DALLAS RC TOY SUBMARINE

the position of the controller (ZC), position of the propeller
unit for pitch (ZV ) and yaw (ZL) movements, position of the
battery compartment (ZB), smaller diameter (dt) and length (lt)
of the tail and shape variation coefficient (nn) and length (ln)
of the nose. The bounds of the variables are presented in (11).
The drag is estimated using ANSYS FLUENT 13.0.

The overall problem can be formulated as

Minimize: f (1) = D

Variable bounds:

0 ≤ ZC ≤ 300 mm; 0 ≤ ZV ≤ 300 mm

0 ≤ ZB ≤ 300 mm; 0 ≤ ZL ≤ 300 mm

35 ≤ dt ≤ 50 mm; 80 ≤ lt ≤ 150 mm

1.5 ≤ nn ≤ 3; 45 ≤ ln ≤ 100 mm. (11)

However, testing each solution using the CFD solver would
make solving the problem too time consuming to be a sen-
sible benchmark. Also, only researchers with access to the
ANSYS FLUENT 13.0 software would be able to replicate
results or compare their algorithms. Since the body is axisym-
metric, a quarter model of the bare hull can be used to reduce
the CFD analysis costs, but it would still be too slow to be
practical. To solve this predicament, we have generated 284
designs using Latin hypercube sampling and estimated their
drag using ANSYS FLUENT 13.0. The velocity at the inlet
was set to 0.5 m/s while that at the outlet was set to zero.
We recorded the drag values for these designs after 5, 10,
25, 50, 75, and 100 iterations resulting in six different fidelity
levels with computational cost of 5, 10, 25, 50, 75, and 100
units, respectively. This data was then “expanded” to the full
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Fig. 12. Convergence plot for MFEA with and without forcing on the simple
test function.

Fig. 13. Convergence plot for various probability of reversal thresholds on
the Toysub test problem.

budget. In particular, MFEA only required about 40 000 com-
putational units to reach the same solution quality that the
high fidelity approach (fidelity-6) has reached after a compu-
tational budget of 100 000 units, thus effectively saving 60%
of the computational cost.

Looking at the results in Tables XI and XII, this general
impression is confirmed. MFEA significantly outperforms the
progressive fidelity approach also fidelity 1, 2, and 6. Fidelity-
4 reaches a slightly better mean performance at the end than
MFEA, however, the difference is not statistically significant.
In terms of average performance over the run, fidelity-3 is
slightly better, but again not statistically significant. Note that
in a real world problem, one would not know which fidelity
would yield best results with a given computational budget, so
comparing the MFEA to the best of the single fidelity models
is not a fair comparison.

Again, to gain a deeper understanding of the algorithm, we
examine some additional aspects. When looking at the benefit
of forcing (Fig. 14), this time there is a clearly visible benefit.

TABLE XI
BEST FUNCTION VALUE: TOYSUB

TABLE XII
AVERAGE PERFORMANCE OVER THE RUN ON THE TOYSUB PROBLEM

Fig. 14. Convergence plot for MFEA with and without forcing on the Toysub
test problem.

Fig. 15shows the number of individuals that were evalu-
ated at each fidelity level, for a typical run. Obviously, in each
generation, the 48 children are all evaluated with fidelity 1. On
the higher fidelity levels, it can be any subset of children plus
a subset of the parents that have not yet been evaluated to this
level. But we can see that, except for full evaluation of the
initial population, the actual evaluations performed are clearly
less than if all individuals would be evaluated in the high-
est fidelity. Also, there is a clear trend toward higher fidelity
evaluations in the later stages of the run, which makes perfect
sense as solutions to be compared become more similar, which
makes a selection based on lower fidelity levels less reliable,
and also because we use a linearly decreasing threshold for
the probability of reversal.

Finally, we once again compare the convergence of MFEA
that uses six fidelity levels to one that uses only fidelity lev-
els 1 and 6. As can be seen in Fig. 16, the larger number of
fidelity levels is again beneficial, and the difference appears
larger than for the artificial test problem in Fig. 11.
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Fig. 15. Number of fitness evaluations performed at different fidelity levels,
over the course of the run.

Fig. 16. Comparison of convergence with different number of fidelity levels
in forced condition for Toysub test problem.

E. Additional Test Problems

To better understand in what situations our algorithm might
work well and whether it is able to adapt to different situations,
we designed two additional test problems. In the first one,
PF1, all the fidelities are identical and correspond to fidelity
level 6 of our simple artificial test function. In such a case,
clearly only using fidelity 1 is the best possible strategy, as
higher fidelity levels do not provide more accurate information
but only incur a higher computational cost. The opposite sce-
nario is a problem where the different fidelities have nothing
in common. We designed such a function PF2 by assigning
each fidelity level independently a different function, some-
times shifted to make sure they do not happen to have the
same optimum, see Tables XIII and XIV for the MSE and
Kendall Tau correlation. For such a function, the best strategy
should be to only use fidelity level 6, as lower fidelity levels
do not provide useful information.

The results on these two problems are depicted in
Figs. 17 and 18. As expected, for PF1, using fidelity 1 only

TABLE XIII
DIFFERENT FIDELITIES OF FUNCTION PF2. THE VARIABLE (x)

RANGE FOR ALL LEVELS IS SET TO [−8, 8]

TABLE XIV
MSE AND THE RANK CORRELATION COEFFICIENT (KENDALL TAU)

BETWEEN THE FUNCTIONS IN PF2

Fig. 17. Convergence plot for various approaches on the PF1 test function.

would perform best. Our MFEA is a bit slower in the begin-
ning as it has to learn first that higher fidelity levels are not
helpful, and the forcing mechanism forces the algorithm to
fully evaluate at least one individual in every generation. Still,
it is much faster than picking a fidelity level at random or using
the highest fidelity only. For example, where the algorithm
using fidelity 6 requires approx. 1500 function evaluations to
converge, MFEA only requires a third, i.e., approx. 500 func-
tion evaluations. Using a progressive fidelity level also works
very well for this function, basically because it starts with
fidelity 1 and has almost converged by the time it switches to
the next higher fidelity level.

For PF2, clearly fidelity level 6 is required to allow any
sensible optimization. Again, MFEA adapts to that scenario
and performs almost as well as the algorithm with preset
fidelity level 6. MFEA learns the correct fidelity level very
quickly and, different from PF1, forcing is not causing unnec-
essary function evaluations. The algorithms with a preset
lower fidelity level optimize the wrong function, and their
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Efficient Global Optimisation (EGO)
[Jones, Schonlau, Welch 1998]

� Fit a Gaussian Process (GP) to data
� Response model provides information about

� expected value
� uncertainty

� Use response model to determine next data 
point (replaces genetic operators)

� Expected improvement makes explicit trade-off 
between exploration and exploitation
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Efficient Global Optimisation (EGO)

� Fit a Gaussian Process (GP) to data

where
f(~x) ⇠ GP

�
m(~x), K(~x, ~x0)

�

m(~x) = 0

~K =

2

64
k(~x1, ~x1) · · · k(~x1, ~xn)

...
. . .

...
k(~xn, ~x1) · · · k(~xn, ~xn)

3

75

k(~x, ~x0)| {z }
kernel

= �2
f|{z}

max cov

exp

✓
�

DX

d=1

(xd � x0
d)

2

2 `2d|{z}
length scale

◆
+ �2

n�(~x, ~x0)| {z }
measurement noise
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Example: GP in 1 dimension

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

1.5

Effect of length scale: L=0.5
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Max expected improvement principle
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EGO Illustration
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EGO algorithm
Take initial n0 samples
Build GP model
WHILE stopping criterion not met DO

Estimate hyperparameters using maximum 
likelihood estimation

Take additional sample at position with 
maximum EI

Update GP model
Return best found solution

Warwick Business School

Outline
� Strategies to deal with expensive evaluations

� Parallelisation
� Surrogate models

� Strategies to deal with noise
� Selecting the best system
� Simulation optimisation

� Applications
� Design of traffic light controller
� Design of dispatching rules
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Selecting the Best System

Warwick Business School

Ranking and selection problem

� Select, out of k systems, the one with best mean 
performance

� Let Xij be output of jth replication of ith system

� Sample statistics:        and       based on ni
observations seen so far

� Order statistics:
� Correct selection if selected system (k) is the true 

best system [k]

{Xij : j = 1, 2, . . .} i.i.d.⇠ Normal(wi, �
2
i , ) i = 1, . . . , k

x̄i

x̄(1)  x̄(2)  . . .  x̄(k)

�̂2
i

Warwick Business School

Standard: Equal allocation

� Sample each system n times

� Reduces standard error by  
1p
n

Warwick Business School

� Try to reduce variance without additional runs, but 
instead by influencing the settings of the experiments
� Common Random Numbers
� Antithetic Variates
� Control Variates
� …

Variance Reduction Techniques
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Intuition:
� Compare two alternatives under similar conditions

� Keep track of performance differences in identical environments

� The observed differences are more likely attributable to the 
actual system differences, rather than to the differences in 
environmental conditions

Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y)

Hope: Cov(X,Y)>0

Common Random Numbers

Warwick Business School

Common Random Numbers
How to generate similar conditions
� Conditions are influenced by random number generator
� But: random number generator cannot produce random numbers
� Note: random numbers are used in different contexts

� arrival rate of customers
� processing times
� action selection by agents
� etc.

� It is necessary to ensure that the random numbers are used for the 
same purposes in the simulations of the two systems -> 
synchronization

� Best way to maintain synchronization: Use separate random 
number streams to corresponding sources of randomness

Warwick Business School

Common Random Numbers

� CRN works only if random numbers 
influence performance in the same way

� Can backfire, if that is not the case (rare)
-> Run some initial experiments with and 

without CRN to test the influence of CRN

(from: Law&Kelton, 2000)

Warwick Business School

Example: 
Compare M/M/1 and 
M/M/2 production system
(from Law&Kelton,2000)

Common Random Numbers
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Common Random NumbersComparison of the effect of 
� increasing the number of samples (n) and 
� using CRN

But: the effect very much depends on the model properties!
Possible problem: may invalidate (or at least complicate) statistical 

analysis methods (ranking&selection, ANOVA)

From Law&Kelton, 2000

Warwick Business School

Design of experiments

� Stratified sampling � Latin Hypercube 
sampling

Warwick Business School

Comparison of m>2 alternatives

� Allocate samples sequentially
� Maximise the value of information

� Collect more information on promising solutions
� Collect more information where uncertainty is 

high

Warwick Business School

Performance criteria

� Probability of correct selection (PCS)

� Probability of good selection (PGS)

� Expected opportunity cost (EOC)

PCS = P (w(k) = w[k])

PGS = P (w(k) � w[k] � �)

EOC = E(w[k] � w(k))
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Myopic approach to maximize 
probability of correct selection
[Chick, Branke, Schmidt: J. of Computing, 2010] 

� Assume we can take only one more sample
� If the sample doesn’t change selected solution

-> information had no value
� PCS: Expected value of information is probability 

of a change in the index of the individual with 
the best mean

� EOC: Expected value of information is expected 
change in the value of the selected individual

Warwick Business School

Expected value of information (PCS)
Change of best system if
� system (i) ≠ (k) is evaluated and becomes new best system
� system (k) is evaluated and becomes worse than second best

EVI(i) =

8
>>>>>>>><

>>>>>>>>:

�n(i)�1

0

B@ x̄(i)�x̄(k)s
�̂2
(i)

n(i)(n(i)+1)

1

CA if (i) 6= (k)

�n(k)�1

0

B@ x̄(k�1)�x̄(k)s
�̂2
(k)

n(k)(n(k)+1)

1

CA if (i) = (k)
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Algorithm

Sample each alternative n0 times
Determine sample statistics      and       and order

statistics
WHILE stopping criterion not reached DO

Take additional sample of system i with 
maximal EVI

Update sample and order statistics
Pick solution with maximal x̄i

x̄i �2
i

x̄(1) � . . . � x̄(k)
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Stopping rule [Branke, Chick, Schmidt, Mngmt Sci, 2007] 

� So far: Fixed budget
� Now: Estimate Probability of Correct Selection (PCS)

PCSBayes = Pr(W(k) � max
j 6=(k)

W(j)) | ⌅}

�
Y

j:(j) 6=(k)

Pr(W(k) > W(j)) | ⌅}

⇡
Y

j:(j) 6=(k)

�⌫(j)(k)(d
⇤
jk)

d⇤jk = (x̄(k) � x̄(j))

 
�̂2

(k)

n(k)
+

�̂2
(j)

n(j)

!�1/2

with
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Empirical evaluation (find best out of 10 systems)

Warwick Business School

Similar approaches
� Optimal Computing Budget Allocation (OCBA)

� Asymptotic assumption [Chen&Lee 2011]

� Racing [Birattari et al. 2010]

� In each iteration, allocate one sample to each 
alternative “still in the race”

� F-test to detect whether there is significant difference

� Eliminate alternatives that are significantly worse than 
best alternative

� Stop when budget has been used up or only one 
alternative is left

� Version that runs with fixed budget [Branke&Elomari 2012]

Warwick Business School

Simulation Optimisation

Warwick Business School

If the number of alternatives is large

� If the number of possible alternatives is large, it 
is no longer possible to evaluate each 
alternative a few times

� We need an optimization heuristic
� Typical: 

Simulated annealing, evolutionary algorithm
� If computational budget is very limited, 

dimensionality small and variables continuous: 
Bayesian optimisation
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Bayesian Optimisation

� Extends naturally to the noisy case
� Sequential Parameter Optimisation [Bartz-Beielstein et al. 

2005] , Stochastic Kriging Optimization [Huang et al. 2006], 
Knowledge Gradient [Frazier et al. 2009]
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Effect of noise

0 1 2 3 4 5 6

−50

0

50

100

150

200

250

Effect on noise level: σ
n
 = 0

0 1 2 3 4 5 6

0

50

100

150

200

250

Effect on noise level: σ
n
 = 1

0 1 2 3 4 5 6

0

50

100

150

200

250

300

Effect on noise level: σ
n
 = 5

0 1 2 3 4 5 6

0

50

100

150

200

Effect on noise level: σ
n
 = 20

Warwick Business School

Simulated Annealing
� Stochastic local search
� Inspired by physical annealing processes

C
os

t

Search space

P

yx x

),( tEfP ∂=

Eδ

y
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Simulated Annealing
� Acceptance of solution is 

probabilistic and depends on 
quality difference δ and 
temperature T

Pa(�)
Pa(��)

= e��/T

PMetropolis
a (�) =

⇢
1 : �  0

e��/T : � > 0

PGlauber
a (�) =

1
1 + e�/T

δ

P a
(δ

)  
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Effect of noise
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Using the noise
Noise in SA/EA

Where?
� Selection
� Mutation
� Replacement
What for?
� Get out of local optima
� Explore search space
How?
� Artificial, pseudo-random

Noise in real-world problems
generally stochastic environment
What from?
� Simulation based evaluation
� Measure errors
� Uncertainty

How?
� “Naturally”

Noise
desired

Noise
not desired

Use Noise

Warwick Business School

Simulated Annealing in Noisy 
Environments (SANE) [Branke et al. 2008]

Idea:
• Always accept seemingly better solution
• Number of samples depends on temperature and 

probability to accept worse solution
• Keep sampling until the probability to erroneously

select the worse solution is smaller than the
acceptance probability for the worse solution

Warwick Business School

Simulated Annealing in Noisy 
Environments (SANE) [Branke et al 2008]

Simulated Annealing
Simulated Annealing for Noisy Environments (SANE)

Empirical Comparison
Conclusion

Basic idea
Sequential sampling
Comparison

Sequential sampling

n = n0 = 1
Draw n0 = 1 sample from �E and estimate � by �̂

Perr (�̂) = ⇥
�
�|�̂|

⇤
n

⇥�E

⇥

while Perr > PGlauber
a (|�̂|) do

Draw another sample (n� n + 1)
Update �̂ and Perr

end while
Accept better solution

J. Branke Institute AIFB, University of Karlsruhe

while estimated error probability
is greater than Glauber’s
probability of picking worse

always pick better solution
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Empirical comparison
� TSP with normally distributed noise
� Comparison with Alkhamis et al. (AAT) [Alkhamis, Ahmed, Tuan, 1999]

To
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Optimal Stochastic Annealing (OSA)
[Ball et al. 2017]

� Assumes known Gaussian noise
� Uses sequential sampling
� At every stage, decision to accept, reject or 

continue
� Acceptance criterion modified to maintain 

detailed balance
� Acceptance criterion has optimal efficiency 

(acceptance probability per sample)

Warwick Business School

OSA acceptance rule
� Based on sum of samples taken so far

� Acceptance probability at current stage:

� If not accepted, reject if cn>0
� Continue otherwise

cn =
n�

i=1

�i

A(cn, cn�1) =
�

1 cn < ���2/2
e�2(cn+��2/2)(cn�1+��2/2) otherwise

Warwick Business School

Benchmark algorithms
� SANE [Branke et al. 2007]

� Sequential sampling and adjusted acceptance 
criterion

� Current state-of-the-art, shown to outperform several 
other methods

� CD1 [Ceperley&Dewing 1999]

� Adjusted acceptance criterion, obeys detailed balance
� CD10[Ceperley&Dewing 1999]

� As CD1, but with 10 samples per move decision

877



Warwick Business School

Efficiency (σ/T=10)
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Optimization performance (TSP, σ2=3200)
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Evolutionary algorithm
INITIALIZE population

(set of solutions)

REPEAT

UNTIL termination-condition

EVALUATE Individuals
according to goal  ("fitness")

SELECT parents

RECOMBINE parents (CROSSOVER)

MUTATE offspring 

EVALUATE offspring

2 10
1

7

27

5
12

8

14 9 17 4

9 10

17
7

47

14
12

8

FORM next population
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Populations are robust to noise

� Implicit averaging over the neighbourhood
� With infinite populations, fitness proportional 

selection is not affected by noise [Miller & Goldberg 1996]

� Theory for optimal population sizes in simplified 
cases [Arnold&Beyer 2000]

� Black-box Optimization Benchmark competitions 
show advantages of EAs in noisy environments
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Explicit averaging

� Reduce noise by factor sqrt(n)

Warwick Business School

CRN and Evolutionary Algorithms
[Branke 2001]

� Use CRN for all individuals to be compared within 
a generation
� may drastically improve probability of correct ranking
� risk of optimizing for one random seed

� Change random number seeds from generation to 
generation
� Only individuals that work on a wide range of scenarios 

will survive for a long time
� Re-evaluate elite individuals

� A “lucky” individual should be prevented from surviving 
forever

Warwick Business School

Change sample size over the run

� Increase sample size over the run [Aizawah&Wah 1993]

� Optimise distribution of samples over the run 
[Branke 2001]

� Clean up after optimisation [Boesel et al. 03]

Warwick Business School

Optimal distribution of 
samples over run [Branke 2001]
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Use metamodels – average over space 
[Branke & Schmidt 2001]

Warwick Business School
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Integrating Ranking&Selection
[Schmidt et al. 2006]
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The relevant comparisons
�Steady-State-EA with 2-Tournament

Population size: 9, offspring: 1
� Replacement: Worst individual
� Stopping criterion: Best individual
� Selection: Best out of {3, 7} and {2, 5}

• (5,10)-Evolution strategy
Population size:5, offspring: 10

– Replacement: 5 best individuals
– Stopping criterion : Best individual
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Integrating OCBA and EA

Procedure OCBAEA

1. Evaluate each new individual n0 times. Estimate 
the ranks

2. Determine set of relevant comparisons C
3. WHILE evidence is not sufficient

a) allocate new sample to individual according to 
modified OCBA rule

b) if ranks have changed, update C

Warwick Business School

Benefits over the run

Warwick Business School

GECCO ’18, July 15–19, 2018, Kyoto, Japan and

(a) Sphere Function (b) Rastrigin Function

(c) Rosenbrock Function (d) Ackley Function

Figure 3: Performance of CMA-ES optimisation for each function and sampling method over 40 generations. Error refers to
the di�erence between a function’s value evaluated at the mean of the CMA-ES distribution and the global minimum.
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Integrating KG and CMA-ES

� CMA-ES only needs to identify top ! individuals
� Uses this to adapt the mutation step size
� Which individual, if re-evaluated, has biggest 

potential impact on 
resulting mutation 
distribution?

� See paper at this GECCO

Warwick Business School

Outline
� Strategies to deal with expensive evaluations

� Parallelisation
� Surrogate models

� Strategies to deal with noise
� Selecting the best system
� Simulation optimisation

� Applications
� Design of traffic light controller
� Design of dispatching rules
� Design of caching strategies
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Example: Optimisation of a 
traffic light controller

traffic engineer

VS+

Simulation

parameters

controller

traffic data

EA

Warwick Business School

Results

EA finds better solutions than traffic engineer

avg. delay

Warwick Business School

Example 2: Evolution of
Job Shop Dispatching Rules [Pickardt et al. 2012]

� Complex wafer manufacturing system
� 31 work centres (35 machines)
� 10 batching machines, 2 machines with setup times
� 7 different products
� 20-100 operations per job (cycles)

Warwick Business School

Dispatching rule based scheduling
• Determine job priorities based on job and 

machine attributes
• Whenever a machine becomes idle, process the 

job with highest priority next
• Popular examples: FIFO, SPT, EDD, CoverT

Advantages:
• Always take latest information into account
• Easy to implement and to compute
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Automatic generation of 
dispatching rules
� Genetic Programming can generate Lisp 

expressions
� Evaluation of a dispatching rule via stochastic 

simulation

GP
Simulation

Dispatching rule

Fitness

Warwick Business School

Terminals
� Processing time
� Processing time on next machine
� Number of operations remaining
� Remaining processing time
� Work in next queue
� Time in queue
� Time in system
� Slack
� Time until deadline
� Weight
� Setup time
� Number of compatible jobs for batching

Warwick Business School

Results

� Rule of length 9: w/max(L,P)-s+b
� Rule of length 98: 

Warwick Business School

Rule WeightedTardiness
ATCS/MBS(5) 2336

GP98 782

Rule WeightedTardiness
WMOD/MBS(3) 1245

GP98 206

Rule WeightedTardiness
ATCS/MBS(4) 451

GP98 47

Rule WeightedTardiness
WMOD/MBS(1) 216

GP98 51

Util 93.8%; Product mix 30/70

Util 93.8%; Product mix 70/30Util 85%; Product mix 70/30

Util 85%; Product mix 30/70

Results (2)
Comparison with best rules from literature
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Example 3: Evolving Caching Strategies
The WWW: A huge distributed database [Branke et al. 2007]

Documents are relayed by a sequence of routers

Warwick Business School

The same document is sent many times
Problems: congestion, delays, timeouts, …

Warwick Business School

Potential solution: Caching
� Storing replicas of frequently requested documents 

at nearby nodes
� Possible because requested servers and documents 

have powerlaw-distribution
� Common on browser level and proxy level
� New idea: En-route web caching
Goals:
� Reduce Internet traffic
� Reduce load on highly requested servers
� Reduce latencies

Warwick Business School

With En-Route Caching
Second request can be serviced from nearby replica
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En-Route Caching
� All nodes/routers involved in relaying an object have 

an opportunity to keep a cached copy
� Potential for huge resource savings
� Problem: limited memory

� Question: Which documents to delete?

?
Caching Policy = Decision Rule

Warwick Business School

Challenges

� Large, dynamically changing distributed system
� No global information
� No global authority
� How good a strategy is depends on what 

neighbors do
� Symmetry problem
� How can global efficiency and coordination 

emerge from local caching rules?

Warwick Business School

Cache Symmetry Problem

� All nodes use 
identical rule

� All may end up 
with identical 
cache

Caches should complement each other
Coordination necessary

Warwick Business School

State of the art:

� LRU (default rule, ignores network aspects)

� RANDOM (often better than LRU, ignores 
everything)

� GDSF [Cherkasova 2001]

Goal: 

Automated design of better en-route caching strategies
Use evolutionary algorithms to explore the space of 

caching rules
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Evolving caching strategies

Main challenges:
� Definition of search space

� Identify relevant document attributes
� Use GP to form priority rule

� How to evaluate a caching strategy
� Only simulation possible due to emergent behavior
� Requires parallelisation

Warwick Business School

GP Evolves Caching Strategies
Priority rules encoded by GP

Inputs = information about the object
a) Time of document creation

b) Document size

c) Access count
d) Time of last access

e) Distance from sender

f) Frequency (no. accesses / second)

g) Random Constant

Functions:

+    *   – /   sin   cos exp iflte

Output = priority

Warwick Business School

Network Simulator
1. Create network topology

� Find paths from all to all
2. Create random set of objects

� Random size
� Power-law distributed set of demands
� Distributed among hosts

3. Poisson process for each host
� Generate requests for documents

4. Routing
� Break object in packets, send them along shortest path

5. Bandwidth
� Each network link is a queue of requests

6. Caching
� Always send first replica found down request path

Warwick Business School

Internet-like Networks (scale-free)

� Internet-like random networks
� 100 nodes
� Scale-free topology (Bu & Towsley 02)

� Noisy fitness
� Different random topologies and request patterns lead to 

large differences in latency
� Test in 3 different random nets per generation
� Change test scenario in every generation
� Evaluate results on many networks 
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RUDF

� Often, resulting rules are very complex

� One of the runs yielded a short, powerful rule
lastTimeAccessed � (distance + accessCount)

� RUDF outperforms all the comparison rules, 
including GDSF.

Warwick Business School

Performance on  test networks

30 nodes

300 nodes

Warwick Business School

Linear Networks

� We can find optimal caching analytically

¤ Result: Evolved GP policy 
yields near-optimal 
performance, far better than 
comparison algorithms

Caching strategy Avg. latency
OPTIMAL 31.58 � 0.03
BESTGP 31.98 � 0.06

RUDF 35.80 � 0.43
GDSF 47.67 � 1.17

DISTANCE 50.40 � 1.24
RANDOM 61.65 � 0.14

LRU 74.77 � 0.19

Warwick Business School

Conclusion and additional resources
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Conclusion
� Combining simulation and optimisation is the 

next step in the design of complex systems
� Metaheuristics hold great promise
� Challenges of runtime and noise can be tackled

Warwick Business School

What I have not talked about

� Stochastic Approximation
� Handling of multiple objectives
� Combinatorial problems
� Warm-up period
� Worst-case optimisation

Warwick Business School

Further resources
� The Winter Simulation Conference always has a 

stream on simulation optimisation
� GECCO tutorial on cloud computing
� Library of simulation optimisation problems 

http://www.simopt.org
� Available solvers: 

� OptQuest (http://http://www.opttek.com/OptQuest)
� COMPASS (http://www.iscompass.net) 
� SPOT (https://cran.r-project.org/web/packages/SPOT/)
� irace (http://iridia.ulb.ac.be/irace/)

Warwick Business School
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