Neuroevolution for
Deep Reinforcement Learning Problems

David Ha
Google Brain
Tokyo, Japan

hadavid@google.com

http://gecco-2019.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

GECCO '19 Companion, July 13—17, 2019, Prague, Czech Republic
© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3323370

550

Instructor

*» David Ha is currently a research scientist at

Google Brain. His research interests include

Recurrent Neural Networks, Creative Al,
Evolutionary Computing, and Robotics. Prior to
Jjoining Google, He worked at Goldman Sachs
as a Managing Director, where he co-ran the
fixed-income trading business in Japan. He
obtained undergraduate and graduate degrees

iIn Engineering Science and Applied Math from

the University of Toronto.

551

Tutorial Agenda

% Introduction

% Review of OpenAl Gym Environment

% Brief Review

of Neuroevolution

% Neuroevolution for Continuous Control Tasks

e Case Stuc

e Case Stuc

e Case Stuc

y: PyBullet and Roboschool Environments
v: Bipedal Walker in OpenAl Gym
y: Sim2Real Applications

*» Brief Overview of Deep Generative Models

% World Models: Combine Generative Models with Evolution

% Questions &

Discussion

552

OpenAl Gym Environments

] customenv.py

import gym
env = gym.make (‘‘Pendulum-v1’’)
observation = env.reset()
for _ in range(1000):
env.render () 1P
your agent here (just random actions)
action = env.action_space.sample()
obs, reward, done, info = env.step(action)

*» Standard interface for single-agent RL environment.

** The simple APl has been adopted by RL community.

553

Why Evolve Weights for RL?

% Credit assignment, especially long term rewards, is hard!

*» Easy to get stuck in local optima.
» Why Not?

554

Neuroevolution Algorithms

Optimisation Problem: Genetic Algorithm Evolution Strategies
Shifted 2D Rastrigin

555

Neuroevolution Algorithms

REINFORCE (OpenAl) Parameter-Exploring CMA-ES
Policy Gradients

< We want to use a standard interface for all these methods.

*» Standardise Gym Environments to use with Neuroevolution.

556

CMA-ES for Dummies

Step 1 Step 2 Step 3 Step 4

1. Calculate the fitness score of each candidate solution in generation.

2. Isolates the best 25% of the population in generation, in purple.

3. Using only the best solutions, and using the mean of the current generation
(the green dot), calculate the covariance matrix of the next generation.

4. Sample a new set of candidate solutions using the updated mean and
covariance matrix.

557

rrnes

100-D Rastrigin Function

[1 0 [{ 10)
J.95435074 10.9249350464 0.C12C0777 10.2543580G4 2.02504136
J 10 1u. Y. ULS)L _5h 0.
3.005342 3¢ 0. 10.59455364 8.0103€776 10.93495804
J.95eIngsq 10, Y, UUSCLALST LU ILAI%ERI 10.93495864
A.N0R4T W 0. 9.00%0413%6 10.3%43%8AY 0.
J. 20405853 8.0LC03°76 10,5204895363 14, 0.) F | I . h CMA ES d d
J.25c 5853 #.008049137 10.59495863 G.59P9999 0. ’Q’ |na SO UtIOn t at - ISCOVGI’e
1. . 10. n. 0.
17.254258%49 10, 10, J.00524.37 2.00504137 - .
] : 0Ncnel s 0,693958 0% 10, 3Ca¥5xne 0.,.0700X0 for]_OO—D Rastrlgln functlon_
3.0052413C 10, 2.005C4136 10, 0.
1Je P.UISYIVIY LU, [(H 7. 9IY990YY
13. 3.00%04137 10, 10. 3.03504136) 1 I 1
3.00604127 10, o a,00504127 §,3C834900), ’0’ GlObal Optlmal SO|UtIOﬂ |S a].OO_
3.0C%041 % 2.00%03136 10.C0000D20° 10, “0.
F.0090423€C 10,.93495€64 10, 10, 2543586¢ 0. ’ b
_J.l.-:-.._ﬁc.;.x 10.00C0J001 10, ‘).JL;J-C._% 0. 99495863 dlmenSIOﬂa| VeCtOI’ Of exaCﬂy 10
A.NNNT4T I IN.S3495865 0. a. 'N.000000)
2.25929%%% 10, 10,50895564 9,20929990 10, |

D4 -

'4 P o ———
/ ;4—/ D ————

20001 / //

o [

S0Ca Lptnum

]

- 10000 — TWAFS
— PG /AES
pony =S

0 1097 190 2000 2500
ganaraton 558

™ -

What is Fitness Shaping?

= L1000 0.4/
~12000 .
\; .u: 0..‘
] o
£ ~13000 | £
= = 0cC
2 B
o~ 140001 aé
s e
-U.4
~L5000 1
-0.4
- 16O0N |
0 n 20 0 s 50 &0 c a0 a0 100 a 10 2 30 40 50 RO 70 ac an 10C
sorted solusion sorted solution

% |f we have large outliers, the gradient estimation might
become dominated by this outliers and increase the chance
of the algorithm being stuck in a local optimum.

s Automatically normalises rewards.

10

559

MNIST with Neuroevolution

°
=

> B

30

Method ~ Train Set ~ Test Set
Adam (SGD) 99.8 98.9
Simple GA 82.1 82.4
CMA-ES 98.4 98.1
OpenAl-ES 96.0 96.2
PEPG 98.5 98.0

100
————————
- ——
R . o N WVW
/"/ '\.AMI__WW\M/ TN "‘\A" ——r—A
N TN it Nt
/-/v‘ ‘w/
f

B —

—————

A Ar A ~'MVA‘ N\ r ANe n
/VJV VI\\/\/M,U \ J/" \f VI W\ﬂ I\ WVV\'NWA\“V‘, ,\/\ / \VUL,VV WI\J

— GA

w— OpanALES
— PED
— CMAES

25 5C 75 100 125 150 175 20
ep

560

11

Neuroevolution with OpenAl Gym

env = gym.make('worlddomination-v0')
use our favourite algorithm
solver = OurNeuroevolutionAlgo()
while True:

ask the ES to give set of params
solutions = solver.ask()
create array to hold the results
fitlist = np.zeros(solver.popsize)
evaluate for each given solution
for i in range(solver.popsize):

init the agent with a solution

agent = Agent(solutions[i])

rollout env with this agent

def rollout(agent, env):

obs = env.reset()

done = False

total reward = 0

while not done:
a = agent.get action(obs)
obs, reward, done = env.step(a)
total reward += reward

return total reward

fitlist[i] = rollout(agent, env)
give scores results back to ES
solver.tell(fitness list)
get best param & fitness from ES
bestsol, bestfit = solver.result()
see 1f our task is solved
if bestfit > MY REQUIREMENT:

break

** We only care about the terminal, cumulative reward.
% Simple implementation at

12

561

http://github.com/hardmaru/estool

ES Solved Bipedal\WalkerHardcore-vO cec

% Simple averaging technique -> Much more robust policies.

562

13

ES Solved Bipedal\WalkerHardcore-vO

CMA-ES PEPG

% First solution to achieve score > 300 over 100 random trials.

14

563

ESTool with PyBullet, Roboschool

% We can solve a large set of standard continuous control tasks.

15

564

% Kuka grasping tasks easily solvable. Can incorporate vision.

565

16

Transfer Learning PyBullet Models
< MIT Racecar, Minitaur, Kuka Arm

566

17

PyBullet Minitaur Task

*» PyBullet includes realistic models of actual robots.

% Useful to experiment with transfer learning.

567

18

Sim2Real Minitaur

¥
o 4 ""; ~ ~ ’ -

Dl ' e - A=
- -) . —T_J - e . >

 Difficult to transfer learned policy from simulation to

568

reality.

19

% Optimizing Simulations with Noise-Tolerant Structured Exploration (ICRA 2018)

569

20

% Optimizing Simulations with Noise-Tolerant Structured Exploration (ICRA 2018)

570

21

Robust Minitaur Environments

*» Add more difficult task to the existing environment.

% End rollout once either objective failed.

571

22

Robust Minitaur Environments

% Adding a ball made 1t cheat. Must be careful with objectives.

572

23

% Showed it who Is boss.

573

24

Sim2Real Minitaur

Fig. 1: The simulated and the real Minitaurs learned to gallop
using deep remforcement learning.

% Sim-to-Real: Learning Agile Locomotion For Quadruped Robots (RSS 2018).

25

574

Sim2Real Minitaur

Sim-to-Real: Learning Agile Locomotion

For Quadruped Robots

Paper-1D 31

Y/

% Sim-to-Real: Learning Agile Locomotion For Quadruped Robots

575

(RSS 2018).

26

Sim2Real Kuka Arm: Apply “CycleGAN"

Monet = Photos

Zebras T = Horses Summer T, Winter

2ebra — ar*

horse = zebrs

Photogrepn Monct

% Unpaired Image-to-Image Translation using CycleGAN(Zhu, Park et al. 2017)

27

576

Sim2Real Kuka Arm: Apply “CycleGAN”

A \\\J
»

(a) Synthatic Images

ic) Sirmulated Samples (d) Real Samples

(b) Synthetic Images
Adapted with our Approach B

* Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic

Grasping (2017)

577

28

Sim2Real Kuka Arm

Sim-to-Real: Learning Agile Locomotion

For Quadruped Robots

Paper-1D 31

Y/

% Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic
Grasping (2017)

World Models

WORLY CoNTRCL MoPgL.
e NETWORK NETWeRK
(3 out
N
. /’;ﬂﬁ\\{\ e
o [RN
A | ’T \ S "\\
/ ?/\ //’/ S
Lq \ ::: s \\,-—;‘oé ‘Pﬁf’o‘i
VA NE X e N/ /
\ \ ,/,{’/ S \),2/
L7 el S0 TRED,
N ©

% Ha and Schmidhuber (2018)
< Schmidhuber (1990, 1991, 2015)

579

30

% Schmidhuber (1990, 1991, 2015)

580

8 J

Basic Algorithmic Information Theory Argument e,

N

s Many RL tasks requires representation
learning and predicting the future.

» We can efficiently train highly expressive
models to learn representations of space
and time with backprop.

s Use these representations as features to

learn a compact policy, using
Neuroevolution, to achieve the task.

32

581

Reconstruction

% Compress Famous People into 64D Floats with Gaussian Prior

33

582

Generative Model: Mixture Density Network:seccdg™

»

sketch-rnn mosquito predictor.

clear drawing mosquito g4 random predict

* Train an RNN to predict the probability distribution of next pen
strokes. Model PDF as a Mixture of Gaussian distribution.

583

34

g 8 & =& 2 5 4

2 8 & W ¥ B o

VAE
32-dim z

MDN-RNN
z, Zon Zo P(zt-l-l ’ ag, zt, ht)
A T T
{ ," ! 3 '; }'
\ MDN ; s VDN / 2

—

TTT

1“‘»‘ NN

T

n

h.,

h
» PRNN L » PRNN 2 y,

b

Train VAE and MDN-RNN with Deep Learning.
Train controller policy with Neuroevolution to determine

action:
ar = We |z¢ hel + be

35

584

Car Racing Task

«» Continuous control task to learn from pixels in a top-
down racing environment.

*» Maps are randomly generated for each trial.

% Actions Space: left/right, accelerate, break

«» Cumulative Reward is:
1000 x Fraction of Tiles Visited - 0.1 x Time Taken

+» Episode finishes when all tiles are visited or when t >
1000

*» For example, if you have finished in 732 frames, your
reward is 1000 - 0.1*732 = 926.8 points.

 Task considered solved when Avg Score > 900 over
100 random trials

36

585

Car Racing Task - Training Procedure

1. Collect 10.000 rollouts from a random policy.

2. Train VAE (V) to encode frames into z € R32.

w

Train MDN-RNN (M) to model Pz, 1 ay, zi, Ay).
Define Controller (C) as a; = W, z he] + be.

L

Use CMA-ES to solve for a W. and b.. that maximizes
the expected cumulalive reward.

MODEL PARAMETER COUNT
VAE 4,348,547
MDN-RNN 422,368

CONTROLLER 867

586

37

Car Racing Task - Results

METHOD AVG. SCORE

DON (PriEUR, 2017) 343+ 18
AZC (CONTINUDUS) (JANG BT A, 2017) 591 + 45
A3C (DISCRETE) (KHAN & ELIBOL, 2016) 652+ 10

CEOBILLIONAIRE (GYM LEADTRBOARD) 838+ 11
VY MODEL 632 + 251
Y MODEL WITH HIDDEN LAY R 788 + 141
FuLL WORLD MODEL 906 + 21

Table . CarEacing-vU scores achieved using various methods.

587

38

Car Racing Dreams

588

39

VizDoom: Take Cover

% Avoid Fireballs from Monsters

% Actions Space:
| left / stay put / right |

% Reward is 1 for each frame survived.

% Max Reward = 2100 time steps

«» Task Is considered solved when
average reward of 100 runs > 750
time steps

40

589

VizDoom: Take Cover - Training Procedure

2

e

. Colleet 10,000 rollouts from a random policy.

. Train VAE (V) to encode each frame into a latent vector

z & R%, and use V to convert the images collected
from (1) into the latent space representation.,

. Train MDN-RNN (M) to model

P2y 10y 1 | agy 2 by).
Deline Controller (C) as a, = W, |z, i

Use CMA-ES to solve for a W, that maximizes the
expected survival time inside the virtual environment.

Use learned policy from (5) on actual environment.

MODEL PARAMETER CQUNT

VAE 4,446,915
MDN-RNN 1,678,785
CONTROLLER 1,088

590

41

VizDoom: Take Cover - Adversarial Policy

TEMPERATURE 7 VIRTUAL SCORE ACTUAL SCORE

0.10 2086 £ 140 193 £ 58
0.50 2060 + 277 196 + 50
1.00 1145 + 690 868 =511
1.15 018 = 546 1092 4+ 556
1.30 732 L 269 753 L 139
RaNDOM POLICY N/A 210 £ 108
GYM LEADER N/A 820 1 58

Table 2. Take Cover scores at various temperature settings.

% Agent learned actions to take advantage
of flaws of virtual environment.

% Adjust temperature parameter in the
sampling to control uncertainty.

42

591

Iterative Training Policy

I. Initialize M, C with random model parameters.

2. Rollout to actual environment [V times. Save all actions
a; and observations x; during rollouts Lo storage.

3. Train M to model P(.’E“ 15741 Ot 1,(115 1 I;l?f,, (it h-t)
and train C to optimize expected rewards inside of M.

4. Go back to (2) 1f task has not been completed.

592

43

Discussion

*» Hidden states + policy contain PDF of the future. No need to roll out future scenarios.
% Train in “latent-space” / “thought vector” land.
+» Agent has access to all the hidden secret variables of the “game engine”.

% TensorFlow Virtual environment is much more efficient tha VizDoom. Works on multi-threaded
environment, MPI, GPU acceleration.

«» Gaussian prior for VAE's z useful for correcting “bad samples” from MDN-RNN.
% Potentially useful to “explain” why an agent took a certain action (in both space and time).
«» Camera-based robotic applications.

% Non-pixel-based complex tasks, such as Humanoid.

593

44

