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fixed-income trading business in Japan. He 
obtained undergraduate and graduate degrees 
in Engineering Science and Applied Math from 
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Tutorial Agenda 

❖ Introduction 
❖ Review of OpenAI Gym Environment 
❖ Brief Review of Neuroevolution 
❖ Neuroevolution for Continuous Control Tasks 

• Case Study: PyBullet and Roboschool Environments 
• Case Study: Bipedal Walker in OpenAI Gym 
• Case Study: Sim2Real Applications 

❖ Brief Overview of Deep Generative Models 
❖ World Models: Combine Generative Models with Evolution 
❖ Questions & Discussion
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OpenAI Gym Environments 

❖ Standard interface for single-agent RL environment. 
❖ The simple API has been adopted by RL community.

import gym 
env = gym.make(“Pendulum-v1”) 
observation = env.reset() 
for _ in range(1000): 
  env.render() 
  # your agent here (just random actions) 
  action = env.action_space.sample() 
  obs, reward, done, info = env.step(action)
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Why Evolve Weights for RL? 

❖ Credit assignment, especially long term rewards, is hard! 
❖ Easy to get stuck in local optima. 
❖ Why Not?
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Neuroevolution Algorithms

❖ Many out there: GA, NEAT, CMA-ES, PEPG, RS

Optimisation Problem: 
Shifted 2D Rastrigin

Genetic Algorithm Evolution Strategies
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Neuroevolution Algorithms

REINFORCE (OpenAI) Parameter-Exploring 
Policy Gradients

CMA-ES

❖ We want to use a standard interface for all these methods. 
❖ Standardise Gym Environments to use with Neuroevolution.
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CMA-ES for Dummies

Step 1 Step 2 Step 3

1. Calculate the fitness score of each candidate solution in generation. 
2. Isolates the best 25% of the population in generation, in purple. 
3. Using only the best solutions, and using the mean of the current generation 

(the green dot), calculate the covariance matrix of the next generation. 
4. Sample a new set of candidate solutions using the updated mean and 

covariance matrix.

Step 4
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100-D Rastrigin Function

❖ Final solution that CMA-ES discovered 
for 100-D Rastrigin function. 

❖ Global optimal solution is a 100-
dimensional vector of exactly 10.
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What is Fitness Shaping?

❖ If we have large outliers, the gradient estimation might 
become dominated by this outliers and increase the chance 
of the algorithm being stuck in a local optimum. 

❖ Automatically normalises rewards.
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MNIST with Neuroevolution
Method Train Set Test Set
Adam (SGD) 99.8 98.9
Simple GA 82.1 82.4
CMA-ES 98.4 98.1
OpenAI-ES 96.0 96.2
PEPG 98.5 98.0
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Neuroevolution with OpenAI Gym 

❖ We only care about the terminal, cumulative reward. 
❖ Simple implementation at http://github.com/hardmaru/estool

def rollout(agent, env):
  obs = env.reset()
  done = False
  total_reward = 0
  while not done:
    a = agent.get_action(obs)
    obs, reward, done = env.step(a)
    total_reward += reward
  return total_reward

env = gym.make('worlddomination-v0')
# use our favourite algorithm
solver = OurNeuroevolutionAlgo()
while True:
  # ask the ES to give set of params
  solutions = solver.ask()
  # create array to hold the results
  fitlist = np.zeros(solver.popsize)
  # evaluate for each given solution
  for i in range(solver.popsize):
    # init the agent with a solution
    agent = Agent(solutions[i])
    # rollout env with this agent
    fitlist[i] = rollout(agent, env)
  # give scores results back to ES
  solver.tell(fitness_list)
  # get best param & fitness from ES
  bestsol, bestfit = solver.result()
  # see if our task is solved
  if bestfit > MY_REQUIREMENT:
    break
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ES Solved BipedalWalkerHardcore-v0 

❖ Simple averaging technique -> Much more robust policies.
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ES Solved BipedalWalkerHardcore-v0 

❖ First solution to achieve score > 300 over 100 random trials.

CMA-ES PEPG
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ESTool with PyBullet, Roboschool 

❖ We can solve a large set of standard continuous control tasks.
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ESTool with PyBullet Kuka Arm 

❖ Kuka grasping tasks easily solvable. Can incorporate vision.
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Transfer Learning PyBullet Models 
❖ MIT Racecar, Minitaur, Kuka Arm
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PyBullet Minitaur Task 

❖ PyBullet includes realistic models of actual robots. 
❖ Useful to experiment with transfer learning.
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Sim2Real Minitaur 

❖ Difficult to transfer learned policy from simulation to reality.
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Simpler Task - Stand up with 2 legs 

❖ Optimizing Simulations with Noise-Tolerant Structured Exploration (ICRA 2018)
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Simpler Task - Stand up with 2 legs 

❖ Optimizing Simulations with Noise-Tolerant Structured Exploration (ICRA 2018)
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Robust Minitaur Environments 

❖ Add more difficult task to the existing environment. 
❖ End rollout once either objective failed.

571



!23

Robust Minitaur Environments 

❖ Adding a ball made it cheat. Must be careful with objectives.
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Robust Minitaur Environments 

❖ Showed it who is boss.
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Sim2Real Minitaur 

❖ Sim-to-Real: Learning Agile Locomotion For Quadruped Robots (RSS 2018).
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Sim2Real Minitaur 

❖ Sim-to-Real: Learning Agile Locomotion For Quadruped Robots (RSS 2018).
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Sim2Real Kuka Arm: Apply “CycleGAN” 

❖ Unpaired Image-to-Image Translation using CycleGAN(Zhu, Park et al. 2017)
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Sim2Real Kuka Arm: Apply “CycleGAN” 

❖ Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic 
Grasping (2017)
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Sim2Real Kuka Arm 

❖ Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic 
Grasping (2017)
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World Models 

❖ Ha and Schmidhuber (2018) 
❖ Schmidhuber (1990, 1991, 2015)
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We have a predictive model of the world. 

❖ Schmidhuber (1990, 1991, 2015)
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Basic Algorithmic Information Theory Argument 

❖ Many RL tasks requires representation 
learning and predicting the future. 

❖ We can efficiently train highly expressive 
models to learn representations of space 
and time with backprop. 

❖ Use these representations as features to 
learn a compact policy, using 
Neuroevolution, to achieve the task.
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Generative Model: Variational Autoencoder 

❖ Compress Famous People into 64D Floats with Gaussian Prior
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Generative Model: Mixture Density Networks 

❖ Train an RNN to predict the probability distribution of next pen 
strokes. Model PDF as a Mixture of Gaussian distribution.
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Learning a Generative Model of a Gym Environment 

Train VAE and MDN-RNN with Deep Learning. 
Train controller policy with Neuroevolution to determine 
action:
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Car Racing Task 

❖ Continuous control task to learn from pixels in a top-
down racing environment. 

❖ Maps are randomly generated for each trial. 

❖ Actions Space: left/right, accelerate, break 

❖ Cumulative Reward is: 
1000 x Fraction of Tiles Visited - 0.1 x Time Taken 

❖ Episode finishes when all tiles are visited or when t > 
1000 

❖ For example, if you have finished in 732 frames, your 
reward is 1000 - 0.1*732 = 926.8 points.  

❖ Task considered solved when Avg Score > 900 over 
100 random trials 
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Car Racing Task - Training Procedure 
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Car Racing Task - Results 
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Car Racing Dreams 
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VizDoom: Take Cover 

❖ Avoid Fireballs from Monsters 

❖ Actions Space: 
[ left / stay put / right ] 

❖ Reward is 1 for each frame survived. 

❖ Max Reward = 2100 time steps 

❖ Task is considered solved when 
average reward of 100 runs > 750 
time steps 

589



!41

VizDoom: Take Cover - Training Procedure 
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VizDoom: Take Cover - Adversarial Policy 

❖ Agent learned actions to take advantage 
of flaws of virtual environment. 

❖ Adjust temperature parameter in the 
sampling to control uncertainty. 
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Iterative Training Policy 
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Discussion 

❖ Hidden states + policy contain PDF of the future. No need to roll out future scenarios. 

❖ Train in “latent-space” / “thought vector” land. 

❖ Agent has access to all the hidden secret variables of the “game engine”. 

❖ TensorFlow Virtual environment is much more efficient tha VizDoom. Works on multi-threaded 
environment, MPI, GPU acceleration. 

❖ Gaussian prior for VAE’s z useful for correcting “bad samples” from MDN-RNN. 

❖ Potentially useful to “explain” why an agent took a certain action (in both space and time). 

❖ Camera-based robotic applications. 

❖ Non-pixel-based complex tasks, such as Humanoid. 
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