
!1

Neuroevolution for
Deep Reinforcement Learning Problems

David Ha
Google Brain
Tokyo, Japan

hadavid@google.com

http://gecco-2019.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3323370

550

!2

❖ David Ha is currently a research scientist at
Google Brain. His research interests include
Recurrent Neural Networks, Creative AI,
Evolutionary Computing, and Robotics. Prior to
joining Google, He worked at Goldman Sachs
as a Managing Director, where he co-ran the
fixed-income trading business in Japan. He
obtained undergraduate and graduate degrees
in Engineering Science and Applied Math from
the University of Toronto.

Instructor

551

!3

Tutorial Agenda

❖ Introduction
❖ Review of OpenAI Gym Environment
❖ Brief Review of Neuroevolution
❖ Neuroevolution for Continuous Control Tasks

• Case Study: PyBullet and Roboschool Environments
• Case Study: Bipedal Walker in OpenAI Gym
• Case Study: Sim2Real Applications

❖ Brief Overview of Deep Generative Models
❖ World Models: Combine Generative Models with Evolution
❖ Questions & Discussion

552

!4

OpenAI Gym Environments

❖ Standard interface for single-agent RL environment.
❖ The simple API has been adopted by RL community.

import gym
env = gym.make(“Pendulum-v1”)
observation = env.reset()
for _ in range(1000):
 env.render()
 # your agent here (just random actions)
 action = env.action_space.sample()
 obs, reward, done, info = env.step(action)

553

!5

Why Evolve Weights for RL?

❖ Credit assignment, especially long term rewards, is hard!
❖ Easy to get stuck in local optima.
❖ Why Not?

554

!6

Neuroevolution Algorithms

❖ Many out there: GA, NEAT, CMA-ES, PEPG, RS

Optimisation Problem:
Shifted 2D Rastrigin

Genetic Algorithm Evolution Strategies

555

!7

Neuroevolution Algorithms

REINFORCE (OpenAI) Parameter-Exploring
Policy Gradients

CMA-ES

❖ We want to use a standard interface for all these methods.
❖ Standardise Gym Environments to use with Neuroevolution.

556

!8

CMA-ES for Dummies

Step 1 Step 2 Step 3

1. Calculate the fitness score of each candidate solution in generation.
2. Isolates the best 25% of the population in generation, in purple.
3. Using only the best solutions, and using the mean of the current generation

(the green dot), calculate the covariance matrix of the next generation.
4. Sample a new set of candidate solutions using the updated mean and

covariance matrix.

Step 4

557

!9

100-D Rastrigin Function

❖ Final solution that CMA-ES discovered
for 100-D Rastrigin function.

❖ Global optimal solution is a 100-
dimensional vector of exactly 10.

558

!10

What is Fitness Shaping?

❖ If we have large outliers, the gradient estimation might
become dominated by this outliers and increase the chance
of the algorithm being stuck in a local optimum.

❖ Automatically normalises rewards.

559

!11

MNIST with Neuroevolution
Method Train Set Test Set
Adam (SGD) 99.8 98.9
Simple GA 82.1 82.4
CMA-ES 98.4 98.1
OpenAI-ES 96.0 96.2
PEPG 98.5 98.0

560

!12

Neuroevolution with OpenAI Gym

❖ We only care about the terminal, cumulative reward.
❖ Simple implementation at http://github.com/hardmaru/estool

def rollout(agent, env):
 obs = env.reset()
 done = False
 total_reward = 0
 while not done:
 a = agent.get_action(obs)
 obs, reward, done = env.step(a)
 total_reward += reward
 return total_reward

env = gym.make('worlddomination-v0')
use our favourite algorithm
solver = OurNeuroevolutionAlgo()
while True:
 # ask the ES to give set of params
 solutions = solver.ask()
 # create array to hold the results
 fitlist = np.zeros(solver.popsize)
 # evaluate for each given solution
 for i in range(solver.popsize):
 # init the agent with a solution
 agent = Agent(solutions[i])
 # rollout env with this agent
 fitlist[i] = rollout(agent, env)
 # give scores results back to ES
 solver.tell(fitness_list)
 # get best param & fitness from ES
 bestsol, bestfit = solver.result()
 # see if our task is solved
 if bestfit > MY_REQUIREMENT:
 break

561

http://github.com/hardmaru/estool

!13

ES Solved BipedalWalkerHardcore-v0

❖ Simple averaging technique -> Much more robust policies.

562

!14

ES Solved BipedalWalkerHardcore-v0

❖ First solution to achieve score > 300 over 100 random trials.

CMA-ES PEPG

563

!15

ESTool with PyBullet, Roboschool

❖ We can solve a large set of standard continuous control tasks.

564

!16

ESTool with PyBullet Kuka Arm

❖ Kuka grasping tasks easily solvable. Can incorporate vision.

565

!17

Transfer Learning PyBullet Models
❖ MIT Racecar, Minitaur, Kuka Arm

566

!18

PyBullet Minitaur Task

❖ PyBullet includes realistic models of actual robots.
❖ Useful to experiment with transfer learning.

567

!19

Sim2Real Minitaur

❖ Difficult to transfer learned policy from simulation to reality.

568

!20

Simpler Task - Stand up with 2 legs

❖ Optimizing Simulations with Noise-Tolerant Structured Exploration (ICRA 2018)

569

!21

Simpler Task - Stand up with 2 legs

❖ Optimizing Simulations with Noise-Tolerant Structured Exploration (ICRA 2018)

570

!22

Robust Minitaur Environments

❖ Add more difficult task to the existing environment.
❖ End rollout once either objective failed.

571

!23

Robust Minitaur Environments

❖ Adding a ball made it cheat. Must be careful with objectives.

572

!24

Robust Minitaur Environments

❖ Showed it who is boss.

573

!25

Sim2Real Minitaur

❖ Sim-to-Real: Learning Agile Locomotion For Quadruped Robots (RSS 2018).

574

!26

Sim2Real Minitaur

❖ Sim-to-Real: Learning Agile Locomotion For Quadruped Robots (RSS 2018).

575

!27

Sim2Real Kuka Arm: Apply “CycleGAN”

❖ Unpaired Image-to-Image Translation using CycleGAN(Zhu, Park et al. 2017)

576

!28

Sim2Real Kuka Arm: Apply “CycleGAN”

❖ Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic
Grasping (2017)

577

!29

Sim2Real Kuka Arm

❖ Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic
Grasping (2017)

578

!30

World Models

❖ Ha and Schmidhuber (2018)
❖ Schmidhuber (1990, 1991, 2015)

579

!31

We have a predictive model of the world.

❖ Schmidhuber (1990, 1991, 2015)

580

!32

Basic Algorithmic Information Theory Argument

❖ Many RL tasks requires representation
learning and predicting the future.

❖ We can efficiently train highly expressive
models to learn representations of space
and time with backprop.

❖ Use these representations as features to
learn a compact policy, using
Neuroevolution, to achieve the task.

581

!33

Generative Model: Variational Autoencoder

❖ Compress Famous People into 64D Floats with Gaussian Prior

582

!34

Generative Model: Mixture Density Networks

❖ Train an RNN to predict the probability distribution of next pen
strokes. Model PDF as a Mixture of Gaussian distribution.

583

!35

Learning a Generative Model of a Gym Environment

Train VAE and MDN-RNN with Deep Learning.
Train controller policy with Neuroevolution to determine
action:

584

!36

Car Racing Task

❖ Continuous control task to learn from pixels in a top-
down racing environment.

❖ Maps are randomly generated for each trial.

❖ Actions Space: left/right, accelerate, break

❖ Cumulative Reward is:
1000 x Fraction of Tiles Visited - 0.1 x Time Taken

❖ Episode finishes when all tiles are visited or when t >
1000

❖ For example, if you have finished in 732 frames, your
reward is 1000 - 0.1*732 = 926.8 points.

❖ Task considered solved when Avg Score > 900 over
100 random trials

585

!37

Car Racing Task - Training Procedure

586

!38

Car Racing Task - Results

587

!39

Car Racing Dreams

588

!40

VizDoom: Take Cover

❖ Avoid Fireballs from Monsters

❖ Actions Space:
[left / stay put / right]

❖ Reward is 1 for each frame survived.

❖ Max Reward = 2100 time steps

❖ Task is considered solved when
average reward of 100 runs > 750
time steps

589

!41

VizDoom: Take Cover - Training Procedure

590

!42

VizDoom: Take Cover - Adversarial Policy

❖ Agent learned actions to take advantage
of flaws of virtual environment.

❖ Adjust temperature parameter in the
sampling to control uncertainty.

591

!43

Iterative Training Policy

592

!44

Discussion

❖ Hidden states + policy contain PDF of the future. No need to roll out future scenarios.

❖ Train in “latent-space” / “thought vector” land.

❖ Agent has access to all the hidden secret variables of the “game engine”.

❖ TensorFlow Virtual environment is much more efficient tha VizDoom. Works on multi-threaded
environment, MPI, GPU acceleration.

❖ Gaussian prior for VAE’s z useful for correcting “bad samples” from MDN-RNN.

❖ Potentially useful to “explain” why an agent took a certain action (in both space and time).

❖ Camera-based robotic applications.

❖ Non-pixel-based complex tasks, such as Humanoid.

593

