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Benjamin Doerr: Theory of Evolutionary Computation

Instructor: Benjamin Doerr
Benjamin Doerr is a full professor at the French École Polytechnique. 

He received his diploma (1998), PhD (2000) and habilitation (2005) in 
mathematics from the university of Kiel (Germany). His research area is 
the theory both of problem-specific algorithms and of randomized search 
heuristics like evolutionary algorithms. Major contributions to the latter 
include runtime analyses for evolutionary algorithms and ant colony 
optimizers, as well as the further development of the drift analysis 
method, in particular, multiplicative and adaptive drift. In the young area 
of black-box complexity, he proved several of the current best bounds. 

Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several 
journals, among them Artificial Intelligence, Evolutionary Computation, 
Natural Computing, and Theoretical Computer Science. Together with 
Anne Auger, he edited the book Theory of Randomized Search 
Heuristics.
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This Tutorial: A Real Introduction to Theory
GECCO, CEC, PPSN always had a good number of theory tutorials

They did a great job in educating the theory community

However, not much was offered for those attendees which

have little experience with theory

but want to understand what the theory people are doing (and why)

This is the target audience of this tutorial. We try to answer those 
questions which come before the classic theory tutorials.
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Questions Answered in This Tutorial 
What is theory in evolutionary computation (EC)?

Why do theory? How does it help us understanding EC?

How do I read and interpret a theory result?

What type of results can I expect from theory?

What are current “hot topics” in the theory of EC?

4
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Focus: EAs for Discrete Search Spaces
In principle, we try to answer these questions independent of a particular 
subarea of theory

However, to not overload you with definitions and notation, we focus 
mostly on  evolutionary algorithms for discrete search spaces

Hence we intentionally omit examples from

genetic programming, ant colony optimizers, swarm intelligence, …

continuous optimization

As said, this is for teaching purposes only. There is strong theory 
research in all these areas. All answers this tutorial give are equally valid 
for these areas
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A Final Word Before We Start
If I’m saying things you don’t understand or if you want to know more 
than what I had planned to discuss, 
don’t be shy to ask questions at any time!

This is “your” tutorial and I want it to be as useful for you as possible

I’m trying to improve the tutorial each time I give it. For this, your 
feedback (positive and negative) is greatly appreciated!

So talk to me after the tutorial, during the coffee breaks, social 
event, late-night beer drinking, … or send me an email
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Structure of the Tutorial
Part I: What is Theory of EC?

Part II: A Guided Walk Through a Famous Theory Result

an illustrative example to convey the main messages of this tutorial

Part III: How Theory Has Contributed to a Better Understanding of EAs

3 ways how theory has an impact

Part IV: Current Hot Topics in the Theory of EAs

EDAs (new), dynamic&noisy optimization (new), dynamic/adaptive 
parameter choices

Part V: Concluding Remarks

Appendix: glossary, references
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Part I:

What is 
Theory of EC

8

Definition of theory of EC

Other notions of theory

What can you achieve with theoretical research?

Comparison: theory vs. experiments
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What Do We Mean With Theory?
Definition (for this tutorial): 
By theory, we mean results proven with mathematical rigor

Mathematical rigor:

make precise the evolutionary algorithm (EA) you regard

make precise the problem you try to solve with the EA

formulate a precise statement how this EA solves this problem

prove this statement

Example:
Theorem: The (1+1) EA finds the optimum of the OneMax benchmark 
function in an expected number of at most 

iterations. 
Proof: blah, blah, …
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Other Notions of Theory
Theory: Mathematically proven results

Experimentally guided theory: Set up an artificial experiment to 
experimentally analyze a particular question

example: add a neutrality bit to two classic test functions, run a GA on 
these, and derive insight from the outcomes of the experiments

Descriptive theory: Try to describe/measure/quantify observations

example: fitness-distance correlation, schema theory, …

“Theories”: Unproven claims that (mis-)guide our thinking

example: building block hypothesis
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Why Do Theory? Because of the Results!
Absolute guarantee that the result is correct (it’s proven)

you can be sure

reviewers can check truly the correctness of results

readers can trust reviewers or, with moderate maths skills, check the 
correctness themselves

Many results can only be obtained by theory; e.g., because you make a 
statement on a very large or even infinite set

all bit-strings of length , 

all TSP instances on vertices, 

all input sizes ,

all possible algorithms for a problem

12
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Why Do Theory? Because of the Approach!
A proof (automatically) gives insight in

how things work ( working principles of EC)

why the result is as it is

Self-correcting/self-guiding effect of proving: 

when proving a result, you are automatically pointed to the questions 
that need more thought

you see what exactly is the bottleneck for a result

Trigger for new ideas

clarifying nature of mathematics

playful nature of mathematicians
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Limitations of Theoretical Research
All this has its price… Possible drawbacks of theory results include:

Restricted scope: So far, mostly simple algorithms could be analyzed for 
simple optimization problems

Less precise results: Constants are not tight, or not explicit as in 
“ ” = “less than for some unspecified constant ”

Less specific results: 

You obtain a (weaker) guarantee for all problem instances

but not a stronger guarantee for those instances which show up in 
your application

Theory results can be very difficult to obtain: The proof might be short 
and easy to read, but finding it took long hours

Usually, there is no generic way to the solution, but you need a  
completely new, clever idea

14
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Part II: 
A Guided Walk Through a 

Famous Theory Result

15

We use a simple but famous theory result 

as an example for a non-trivial result

to show how to read a theory result

to explain the meaning of such a theoretical statement

to illustrate what we just discussed
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A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function

in an expected number of iterations.

Reference:
[DJW02]  S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) 
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81, 
2002.

-- famous paper (500+ citations, maybe the most-cited pure EA theory paper)

-- famous problem (20+ papers working on exactly this problem, many highly 
useful methods were developed in trying to solve this problem)

16
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Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function

in an expected number of iterations.

(1+1) evolutionary algorithm to maximize :
1. choose uniformly at random
2. while not terminate do
3.     generate from by flipping each bit independently

with probability (“standard-bit mutation”)
4.     if then 
5. output 

Reading This Result

17

at most for some 
unspecified constant 

a hidden all-quantifier: we claim 
the result for all

performance measure: number of iterations or 
fitness evaluations, but not runtime in seconds

A mathematically 
proven result

should be made 
precise in the paper to 
avoid any ambiguity
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Why is This a Good Result?
Gives a proven performance guarantee

General: a statement for all linear functions in all dimensions 

Non-trivial 

Surprising 

Provides insight in how EAs work 

Theorem: The (1+1) evolutionary algorithm finds the maximum of any 
linear function 

in an expected number of iterations.

18

more on these 3 items 
on the next slides
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True

Hard to prove
7 pages complicated maths proof in [DJW02]
we can do better now, but only because we developed deep analysis 
techniques (drift analysis)

No “easy” explanation
monotonicity: if the are all positive, then “flipping a 0 to a 1 always 
increases the fitness” (monotonicity).

Are monotonic functions easy to optimize for a EAs (because you 
only need to collect 1s)?
No! Exponential runtimes can occur [DJS+13].

separability: a linear function can be written as a sum of functions 
such that the depend on disjoint sets of bits

Is the optimization time of such a sum small?

No! The can interact badly [DSW13].

20
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Surprising: Same Runtime For Very 
Different Fitness Landscapes

Example 1: OneMax, the function counting the number of 1s in a string, 

unique global maximum at 

perfect fitness distance correlation: if a search point has higher 
fitness, then it is closer to the global optimum

Example 2: BinaryValue (BinVal for short), the function mapping a bit-
string to the number it represents in binary

unique global maximum at 

Very low fitness-distance correlation.  

, distance to optimum is 

, distance to optimum is 
21 Benjamin Doerr: Theory of Evolutionary Computation

Insight in Working Principles
Insight from the result:

Even if there is a low fitness-distance correlation (as is the case for 
the BinVal function), EAs can be very efficient optimizers

Insight from the proof: 

For all linear functions , the Hamming distance of to the 
optimum measures very well the quality of the search point :

If the current search point is , then the expected number of 
iterations to find the optimum satisfies

independent of 

22
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A Glimpse on a Modern Proof
Theorem [DJW12]: For all problem sizes and all linear functions 
with the (1+1) EA finds the optimum of in an 
expected number of at most iterations.

1st proof idea: Without loss, we can assume that 

2nd proof idea: Regard an artificial fitness measure!

Define “artificial weights” from to 

Key lemma: Consider the (1+1) EA optimizing the original . Assume that 
some iteration starts with the search point and ends with the random 
search point . Then

expected artificial fitness distance reduces by a factor of 

3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t. 
the artificial fitness into a runtime bound

roughly: the expected runtime is at most the number of iterations needed to 
get the expected artificial fitness distance below one.

23

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen
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Multiplicative Drift Theorem
Theorem [DJW12]: Let be a sequence of random variables taking 
values in the set . Let . Assume that for all , we have

Let . Then 

On the previous slide, this theorem was used with 

and the estimate .

Bibliographical notes: Artificial fitness functions very similar to this were already used in 
Droste, Jansen, and Wegener [DJW02] (conference version [DJW98]). Drift analysis 
(“translating progress into runtime”) was introduced to the field by He and Yao [HY01] to 
give a simpler proof of the [DJW02] result. A different approach was given by Jägersküpper
[Jäg08]. The multiplicative drift theorem by D., Johannsen, and Winzen [DJW12] 
(conference version [DJW10]) proves the [DJW02] result in one page and is one of the 
most-used tools today.

24

“Drift analysis”: 
Translate expected 

progress into
expected (run-)time
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Limitations of the Linear Functions Result

An unrealistically simple EA: the (1+1) EA

Linear functions are “trivial” artificial test function

Not a precise result, but 

only in [DJW02] 

or a most likely significantly too large constant in the [DJW12] result 
just shown 

Two types of replies (details on the following slides)

despite these limitations, we gain insight

the 2002-results was the start, now we know much more
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Limitation 1: Only the Simple (1+1) EA
Insight: Using nothing else than standard-bit mutation is enough to 
optimize problems with low fitness-distance correlation

Newer Result: The (1+ ) EA optimizes any linear function in time 
(= number of fitness evaluations)

This bound is sharp for BinVal, but not for OneMax, where the 
optimization time is 

Not all linear functions have the same optimization time! [DK15]

We are optimistic that we will make progress towards more complicated 
EAs. Known open problems include, e.g., how crossover-based 
algorithms and ant colony optimizers optimize linear functions.

26
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Limitation 2: Only Linear Functions
Insight: Linear functions are easy, monotonic functions can be difficult

some understanding which problems are easy and hard for EAs

Newer runtime analyses for the (1+1) EA (and some other algorithms): 
Eulerian cycles [Neu04,DHN07,DKS07,DJ07]
shortest paths [STW04,DHK07,BBD+09]
minimum spanning trees [NW07,DJ10,Wit14]
and many other poly-time optimization problems

We also have some results on approximate solutions for NP-complete 
problems like partition [Wit05], vertex cover [FHH+09,OHY09], maximum 
cliques [Sto06]

We have some results on dynamic and noisy optimization
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Limitation 3: 
Insight: Linear functions are easy for the (1+1) EA – for this insight, a 
rough result like is enough

Newer result [Wit13]: The runtime of the (1+1) EA on any linear function 
is , that is, at most for some constant 

still an asymptotic result, but the asymptotics are only in a lower order 
term

[Wit13] also has a non-asymptotic result, but it is harder to digest

28
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Summary “Guided Tour”
We have seen one of the most influential theory results: 
The (1+1) EA optimizes any linear function in iterations

We have seen how to read and understand such a result

We have seen why this result is important

non-trivial and surprising

gives insights in how EAs work

spurred the development of many important tools (e.g., drift analysis)

We have discussed the limitations of this theory result

29 Benjamin Doerr: Theory of Evolutionary Computation

Part III: 
How Theory Can Help 

Understanding and 
Designing EAs

30

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and 
algorithms

3. Invent new representations, operators, and algorithms
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Contribution 1: Debunk Misconceptions

When working with EAs, it is easy to conjecture some general rule from 
observations, but without theory it is hard to distinguish between “we 
often observe” and “it is true that”

Reason: it is often hard to falsify a conjecture experimentally

the conjecture might be true “often enough”, but not in general

Danger: misconceptions prevail in the EA community and mislead the 
future development of the field

2 (light) examples on the following slides
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Misconception 1: Functions Without Local 
Optima are Easy to Optimize

A function has no local optima if each non-optimal search point has 
a neighbor with better fitness

if ( ) is not maximal, then by flipping a single bit of you can get a better 
solution

Misconception: Such functions are easy to optimize…

“because all you need is flipping single bits”

Truth: There are functions 

without local optima, but 

where all reasonable EAs with high probability need time exponential in to 
find even a reasonably good solution [HGD94,Rud97,DJW98]

Reason: yes, it is easy to find a better neighbor if you’re not optimal yet, but you 
may need to do this an exponential number of times because all improving paths 
to the optimum are that long

32
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Misconception 2: Monotonic Functions are 
Easy to Optimize for EAs

A function is monotonically strictly increasing if the fitness increases 
whenever you flip a 0-bit to 1

special case of “no local optima”: each neighbor with additional ones is better

Misconception: Such functions are easy to optimize for standard EAs…

because already a simple hill-climber flipping single bits (randomized local 
search) does the job in time 

Truth: There are (many) monotonically strictly increasing functions such that with 
high probability the (1+1) EA with mutation probability needs exponential time 
to find the optimum [DJS+13]

Lengler, Steger [LS18]: the can be lowered to ]

Lengler [Len18]: Essentially the same result holds for a broad class of 
mutation-based algorithms (independent of population sizes)
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Summary Misconceptions

Intuitive reasoning or experimental observations can lead to wrong beliefs.

It is hard to falsify them experimentally, because

counter-examples may be rare (so random search does not find them)

counter-examples may have an unexpected structure

There is nothing wrong with keeping these beliefs as “rules of thumb”, but 
it is important to know what is a rule of thumb and what is really the truth

Theory is the right tool for this!

34
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Contribution 2: Help Designing EAs

When designing an EA, you have to decide between a huge number of 
design choices: the basic algorithm, the operators and representations, 
and the parameter settings.

Theory can help you with deep and reliable analyses of scenarios similar 
to yours

The question “what is a similar scenario” remains, but you have the 
same difficulty when looking for advice from experimental research

Examples:

fitness-proportionate selection

edge-based representations in graph problems

when to use crossover (or not)

good values for mutation rate, population size, etc.

35

more on these 2     
on the next slides
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Designing EAs: 
Fitness-Proportionate Selection

Fitness-proportionate selection has been criticized (e.g., because it is not 
invariant under re-scaling the fitness), but it is still used a lot.

Theorem [OW15]: If you use

the Simple GA as proposed by Goldberg [Gol89] (generational GA, 
fitness-proportionate selection) 

to optimize the OneMax test function 

with a population size or less

then with high probability the GA in any polynomial number of iterations 
does not create any individual that is 1% better than a random individual

Interpretation: Most likely, fitness-proportionate selection makes sense 
only in rare circumstances in generational GAs

more difficulties with fitness-proportionate selection: [HJKN08, NOW09]

36
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Designing EAs: Representations
Several theoretical works on shortest path problems [STW04, DHK07, 
BBD+09]. All use a vertex-based representation: 

each vertex points to its predecessor in the path

mutation: rewire a random vertex to a random neighbor

[DJ10]: How about an edge-based representation?

individuals are set of edges (forming reasonable paths)

mutation: add a random edge (and delete the one made obsolete)

Result: All previous algorithms become faster by a factor of 

[JOZ13]: edge-based representation also preferable for vertex cover

Interpretation: While there is no guarantee for success, it may be useful 
to think of an edge-based representation for graph-algorithmic problems

37

typical theory-
driven curiosity
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Summary Designing EAs
By analyzing rigorously simplified situations, theory can suggest 

which algorithm to use

which representation to use

which operators to use

how to choose parameters

As with all particular research results, the question is how representative  
such a result is for the general usage of EAs

38
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Contribution 3: Invent New Operators
and Algorithms

Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms. 

Example 1: What is the right way to do mutation?

A thorough analysis how EAs optimize jump functions suggests a 
heavy-tailed mutation operator (instead of a binomial one)
[best-paper award in the GECCO 2017 Genetic Algorithms track]

Example 2 (maybe omitted for reasons of time): The GA

Invent an algorithm that profits from inferior search points
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Example 1: Invent a New Mutation Operator
Short storyline: The recommendation to flip bits independently with 
probability might be overfitted to ONEMAX or other easy functions. 

Longer storyline of this (longer) part:

A first-year Master project asks what is the best mutation rate to 
optimize jump functions (which are not “easy”)

Surprise: for jump size , the right mutation rate is and this 
speeds-up things by a factor of roughly 

But: missing this optimal mutation rate by a small factor of 
increases the runtime by a factor of at least  

Solution: design a parameter-less mutation operator where the 
Hamming distance of parent and offspring follows a power-law

solves all problems 

40
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General Belief on Mutation

Note: We only deal with bit-string representations, that is, the search 
space is for some .

Similar general insights hold for other discrete search spaces.

General belief: A good way of doing mutation is standard-bit mutation, 
that is, flipping each bit independently with some probability (“mut. rate”)

global: from any parent you can generate any offspring (possibly with 
very small probability) 

algorithms cannot get stuck forever in a local optimum

General recommendation: Use a small mutation rate like 
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Informal Justifications for 

If you want to flip a particular single bit, then

a mutation rate of is the one that maximizes this probability

reducing the rate by a factor of reduces this prob. by a factor of 

increasing the rate by a factor of reduces this prob. by a factor of 

Mutation is destructive: If your current search point has a Hamming 
distance of less than from the optimum , then the offspring 
has (in expectation) a larger Hamming distance and this increase is 
proportional to :

42

at most for some constant 
at least for some constant 
both and 
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Proven Results Supporting a Mut. Rate
Optimal mutation rates for (1+1) EA:

for OneMax [Müh92; Bäc93]

for LeadingOnes [BDN10]

for all linear functions [Wit13]

monotonic functions [Jan07, DJSWZ13, LS18]: 

, gives a runtime on all monotonic functions 
with unique optimum, 

gives , 

gives an exponential runtime on some monotonic functions.

When , then the optimal mutation rate for the EA optimizing 
OneMax is [GW17].

43

Theory supports 
using standard-bit 
mutation with 
mutation rate 
around 
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Really?
Can we really say that is good (at least “usually”)?

More provocative: Can we really say that standard-bit mutation the right 
way of doing mutation?

Note: all results regard easy unimodal optimization problems

OneMax, LeadingOnes, linear functions, monotonic functions

flipping single bits is a very good way of making progress

Plan for the next few slides:

regard functions (not unimodal)

observe something very different

design a new mutation operator

show that it is pretty good for many problems

44
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Jump Functions [DJW02]
: fitness of an -bit string is the number of ones, except if

, then the fitness is the number of zeroes. 

Observations: 

All with form an easy to reach local optimum.

From there, only flipping (the right) bits gives an improvement.

The unique global optimum is .
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Runtime Analysis
Theorem: Let denote the expected optimization time of the (1+1) 
EA optimizing with mutation rate . For ,

Corollary (speed-up at least exponential in ): For any ,

Clearly, here is not a very good mutation rate!

Proof of theorem uses standard theory methods:

upper bound: classic fitness level method

lower bound: argue that the runtime is essentially the time it takes to 
go from the local to the global optimum

46

here and later: all implicit 
constants indep. of and 
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Optimal Mutation Rates

Theorem: Let . Then:

.

If or , then 

In simple words: is essentially the optimal mutation rate, but a small 
deviation increases the runtime massively. 

Dilemma: To find a good mutation rate, you have to know how many 
bits you need to flip 

Reason for the dilemma: When flipping bits independently at random 
(standard-bit mutation), then the Hamming distance of parent and 
offspring is strongly concentrated around the mean 

exponential tails of the binomial distribution

Maybe standard-bit mutation is not the right thing to do?
47 Benjamin Doerr: Theory of Evolutionary Computation

Solution: Heavy-tailed Mutation
Recap: What do we need?

No strong concentration of 

Larger numbers of bits flip with reasonable probability

1-bit flips occur with constant probability (otherwise we do bad on easy 
functions)

Solution: Heavy-tailed mutation (with parameter , say ) 

choose randomly with [power-law distrib.]

perform standard-bit mutation with mutation rate 

Some maths: The probability to flip bits is 

no exponential tails 

, e.g., 32% for ( 37% for classic mut.)

48
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Heavy-tailed Mutation: Results
Theorem: The (1+1) EA with heavy-tailed mutation ( ) has an 
expected optimization time on of

This one algorithm for all is only an factor slower than 
the EA using the (for this ) optimal mutation rate!

Compared to the classic EA, this is a speed-up by a factor of .

Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than 
– by taking – is unavoidable:

For sufficiently large, any distribution on the mutation rates in has an 
such that .
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Experiments (m=8, n=20..150)

50

Runtime of the (1+1) EA on (average over 1000 runs). To allow this number of 
experiments, the runs where stopped once the local optimum was reached and the remaining 
runtime was sampled directly from the geometric distribution describing this waiting time.

Benjamin Doerr: Theory of Evolutionary Computation

Beyond Jump Functions
Example (maximum matching): Let be an undirected graph having 
edges. A matching is a set of non-intersecting edges. Let be the size 
of a maximum matching. Let be constant and . 

The classic (1+1) EA finds a matching of size in an expected 
number of at most iterations, where is some number in 

. [GW03]

The (1+1) EA with heavy-tailed mutation does the same in expected 
time of at most . 

2nd example: Vertex cover in bipartite graphs (details omitted)

51

Riemann zeta function:
for 
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Performance in Classic Results
Since the heavy-tailed mutation operator flips any constant number of 
bits with constant probability, many classic results for the standard (1+1) 
EA remain valid (apart from constant factor changes):

runtime on OneMax

runtime on LeadingOnes

runtime on MinimumSpanningTree [NW07]

and many others…

The largest expected runtime that can occur on an is

for the classic (1+1) EA [DJW02 (Trap); Wit05 (minimum 
makespan scheduling)]

for the heavy-tailed (1+1) EA

52
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Working Principle of Heavy-Tailed Mutation
Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

Distribute this free probability mass in a power-law fashion on all other 
-bit flips 

increases the prob. for a -bit flip from roughly to roughly 
reduces the waiting time for a -bit flip from to 

This redistribution of probability mass is a good deal, because we 
usually spend much more time on finding a good multi-bit flip

: spend time on all 1-bit flips, but time to find 
the one necessary -bit flip

These elementary observations are a good reason to believe that 
heavy-tailed mutation is advantageous for a wide range of multi-modal 
problems. 
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Heavy-Tailed “Fast”
Heavy-tailed mutation has been experimented with in continuous 
optimization (with mixed results as far as I understand)

simulated annealing [Szu, Hartley ‘87]

evolutionary programming [Yao, Lui, Lin ‘99]

evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger, 
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

estimation of distribution algorithms [Posik ’09, ‘10]

Algorithms using heavy-tailed mutation were called fast by their 
inventors, e.g., fast simulated annealing.

we propose to call our mutation fast mutation and the resulting 
EAs fast, e.g., 

54

Benjamin Doerr: Theory of Evolutionary Computation

Summary Fast Mutation – A Theory-Guided 
Invention

By rigorously analyzing the performance of a simple mutation-based EA on 
the non-unimodal JUMP fitness landscape, we observe that

higher mutation rates are useful to leave local optima

standard-bit mutation with a fixed rate is sub-optimal on most problems

Solution: Use standard-bit mutation, but with a random mutation rate 
sampled from a power-law distribution

factor speed-up for 

factor improvement of the runtime guarantee for max. matching

first promising experimental results

Big question: Will this work in practice and will practitioners use it?

First results are promising
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Example 2: Invent New Algorithms (1/3)
Theory can also, both via the deep understanding gained from proofs 
and by “theory-driven curiosity” invent new operators and algorithms. 
Here is one recent example: 

Theory-driven curiosity: Explain the following dichotomy!

the theoretically best possible black-box optimization algorithm for 
OneMax (and all isomorphic fitness landscapes) needs only 

fitness evaluations

all known (reasonable) EAs need at least fitness evaluations

One explanation (from looking at the proofs): profits from all search 
points it generates, whereas most EAs gain significantly only from search 
points as good or better than the previous-best

Can we invent an EA that also gains from inferior search points?

YES [DDE13,GP14,DD15a,DD15b,Doe16,BD17], see next slides
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New Algorithms (2/3)
A simple idea to exploit inferior search points (in a (1+1) fashion):

1. create mutation offspring from the parent by flipping random bits

2. select the best mutation offspring (“mutation winner”)

3. create crossover offspring via a biased uniform crossover of 
mutation winner and parent, taking bits from mutation winner with 
probability only

4. select the best crossover offspring (“crossover winner”)

5. elitist selection: crossover winner replaces parent if not worse

Underlying idea: 

If is larger than one, then the mutation offspring will often be much 
worse than the parent (large mutation rates are destructive)

However, the best of the mutation offspring may have made some 
good progress (besides all destruction)

Crossover with parent repairs the destruction, but keeps the progress
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New Algorithms (3/3)
Performance of the new algorithm, called (1+( , )) GA:

solves OneMax in time (=number of fitness evaluations) 
, which is for 

the parameter can be chosen dynamically imitating the 1/5th rule, 
this gives an ( ) runtime

experiments: 

these improvements are visible already for small values of and 
small problem sizes 

[GP14]: good results for satisfiability problems 

Interpretation: Theoretical considerations can suggest new algorithmic 
ideas. Of course, much experimental work and fine-tuning is necessary 
to see how such ideas work best for real-world problems.
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Summary Part 3
Theory has contributed to the understanding and use of EAs by

debunking misbeliefs (drawing a clear line between rules of thumb and 
proven fact)

e.g., “no local optima” and “monotonic” do not mean “easy”

giving hints how to choose parameters, representations, operators, and 
algorithms

e.g., if fitness-proportionate selection with comma selection cannot 
even optimize OneMax, maybe it is not a good combination

inventing new representations, operators, and algorithms: this is fueled 
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

e.g., if leaving local optima generally needs more bits to be flipped, 
then we need a mutation operator that does so sufficiently often 

heavy-tailed mutation
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Part IV: 
Current Topics of Interest

in the Theory of EC

60

Estimation-of-distribution algorithms
Dynamic and noisy optimization
Dynamic/adaptive parameter choices
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Estimation-of-distribution Algorithms (EDA)
Example: compact Genetic Algorithm (cGA) of Harik, Lobo, and Goldberg 
[HLG99] with hypothetical pop. size to maximize 

initialize 
while not terminate

sample such that indep. for all 
sample such that indep. for all 
if then 
for all do 

Instead of storing concrete search points, EDAs develop a probabilistic 
model (represented by the frequency vector in the cGA).

Hope: more powerful algorithms by more expressive representations. 

Contrast: A parent in the (1+1) EA corresponds to the frequency vector 
with if and otherwise.

The (1+1) EA only admits the models .
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Do We Profit From This Model Building?
Problem: When a bit has no influence on whether or is better 
(because other bits have a higher impact), then the frequency 
performs a random walk step:

with probability 
with probability 

otherwise

Such random movements can bring the frequency to a random boundary 
value convergence to a sub-optimal solution.

Common solution: Artificially cap the frequencies so that at all times 

Problem remains: If frequencies are mostly at the artificial boundary 
values, then our probabilistic model is not richer than for the (1+1) EA
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Frequencies At Boundaries
For a neutral bit, it takes an expected number of iterations to reach 
a random boundary value (Zheng, Yang, D. [ZYD18])

the problem of random movements is real!

Witt [Wit17], Lengler, Sudholt, Witt [LSW18]: When optimizing OneMax, 
there are three regimes.

When is small, then many frequencies reach the boundary values, 
but it is easy to bring them to the right boundary value (since the 
changes move the frequencies quickly) runtime
When is large, then the random movements of the frequencies are 
slow. The fitness moves the frequencies in parallel into the right 
direction runtime
When is “in the middle”, then some frequencies reach boundaries, 
but it is costly to move them to the right value 

no runtime is possible
Disclaimer: I formulated things in the cGA language, some of these 
results are proven only for UMDA
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Can We Avoid That Frequencies Drift to the 
Boundaries Without Good Reason?

Friedrich, Kötzing, Krejca [FKK16]: “EDAs cannot be balanced and stable”
balanced: when is a neutral bit
stable: frequencies of neutral bits do not move quickly to boundaries

if we want stability, we have to abandon balancedness

The following algorithms are stable
stable-cGA [FKK16]: cGA with an artificially modified frequency update.

runtime on LeadingOnes
exponential runtime on OneMax (D., Krejca [DK18]).

sig-cGA [DK18]: regard a longer history, change frequencies only when 
there is sufficient evidence for it.

runtime on both LeadingOnes and OneMax
Binary differential evolution: Provably stable, but no fully rigorous 
runtime results [ZYD18]
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Summary EDA-Theory
Significant progress in the last 3 years.

Main problem: 
Frequencies move to boundaries in a random fashion.
This can lead to an undesired behavior (imitation of EAs) and to 
longer runtimes.

Some suggestions for stable algorithms, but it is not clear yet how good 
they really are.
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Hot Topic 2: 
Dynamic and Noisy Optimization

Dynamic optimization: Optimization when the problem to be solved 
changes over time

Noisy optimization: Optimization in the presence of (typically random) 
errors in the problem data

Common question: How do EAs perform when the evolutionary 
optimization process is disturbed by some external (random) source.

General belief: due to their randomized nature, EAs can cope well with 
such stochastic disturbances
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Dynamic OneMax
First theory result (Droste [Dro02]): 

OneMax function with optimum : 

Dynamic OneMax with 1-bit dynamics: in each iteration, with some 
small probability the current optimum is replaced by a random 
Hamming neighbor (=a random bit of is flipped)

Result: If , then the (1+1) EA finds the optimum of this 
dynamic OneMax function in iterations (expectation).

Droste [Dro03]: If the dynamic is such that independently with prob. 
each bit of the optimum is flipped (same expected change), 

then the runtime bound is . 

Improved to by Kötzing, Lissovoi, Witt [KLW15]

Improved to by Dang-Nhu et al.[DNDD+18], 
valid for all dynamics changing the opt. by at most in expect.
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Interpretation of These Results
Evolutionary algorithms can be surprisingly robust to dynamically 
changing problem instances!

If in the 1-bit dynamic, then in average, every iterations the 
optimum moves to a Hamming neighbor 

and we lose a fitness level (almost always)

If the fitness distance is , then we need a roughly iterations to 
improve the fitness (without dynamic changes)

When close to the optimum ( constant),

it takes expected time to gain one fitness level without dynamics

but we lose expected fitness levels because of the dynamic.

Despite this, the EA finds the optimum in polynomial time
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Why?
From the proofs in Dang-Nhu et al. [DNDD+18] it seems that EAs make 
progress by repeatedly 

hoping for a phase of few dynamic changes

and then making exceptionally fast progress
supports the general belief that the randomized nature of EAs is 

the reason for their robustness
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A plot of a typical run (fitness 
distance over time) for =100, 
1-bit dynamic with =(ln )/
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Noisy Optimization
Very roughly speaking, similar results hold for noisy optimization, see 
Droste [Dro04], Giessen, Kötzing [GK16], Qian, Bian, Jiang, Tang 
[QBJT17], Dang-Nhu et al. [DNDD+18], Sudholt [Sud18]

Additional aspect: We can tolerate higher noise levels by 

resampling (Akimoto, Astete-Morales, Teytaud [AMT15], Qian et al. 
[QBJT17], D. and Sutton [DS19]), 

using larger population sizes (Giessen and Kötzing [GK16]), 

using other algorithms like 

ant colony optimizer (e.g. Sudholt and Thyssen [ST12]), or 

EDAs (Friedrich, Kötzing, Krejca, Sutton [FKKS17])

70

Benjamin Doerr: Theory of Evolutionary Computation

Summary Dynamic and Noisy Optim.
Due to their randomized nature, EAs cope well with moderate levels of 
noise and moderate changes of the problem instance.

For noisy optimization, one can try to reduce the effect of noise by 
resampling, larger population size, etc. For dynamic optimization, nothing 
is known on how to make algorithms more robust. 
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Hot Topic 3: Dynamic Parameter Choices
Instead of fixing a parameter (mutation rate, population size, …) once 
and forever (static parameter choice), it might be preferable to change 
the parameter values during the run of the EA

Hope:
different parameter settings may be optimal at different stages of the 
optimization process, so by changing the parameter value we can 
improve the performance
we can let the algorithm optimize the parameters itself (on-the-fly 
parameter choice, self-adjusting parameters)

Experimental work suggests that dynamic parameter choices often 
outperform static ones (for surveys see [EHM99,KHE15])
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Theory for Dynamic Parameter Choices: 
Deterministic Schedules

Deterministic variation schedule for the mutation rate (Jansen and 
Wegener [JW00, JW06]): 

Toggle through the mutation rates 

Result: There is a function where this dynamic EA takes time 
, but any static EA takes exponential time

For most functions, the dynamic EA is slower by a factor of  

First (artificial) example proving that dynamic parameter choices can 
be beneficial.
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Theory for Dynamic Parameter Choices: 
Depending on the Fitness

Fitness-dependent mutation rate [BDN10]: When optimizing the 
LeadingOnes test function with the (1+1) EA

the fixed mutation rate gives a runtime of 

the fixed mutation rate gives (optimal fixed mut. rate)

the mutation rate gives (optimal dynamic rate)

Fitness-dependent offspring pop. size for the GA [DDE15]:

if you choose , then the optimization time on OneMax drops 

from roughly to 

Fitness-dependent parameters can pay off. It is hard to find the optimal 
dependence, but many others give improvements as well.

74

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Success-based Dynamics

Success-based choice of island number: You can reduce of the parallel 
runtime (but not the total work) of an island model when choosing the 
number of islands dynamically (Lässig and Sudholt [LS11]):

double the number of islands after each iteration without fitness gain
half the number of islands after each improving iteration

Success-based choice (1/5-th rule) of in the (1+( , )) GA finds the 
optimal mutation strength [DD15a,DD18a] ( a constant):

after each iteration without fitness gain
after each improving iteration

Important that the fourth root is taken ( 1/5-th rule). 
The doubling scheme of [LS11] would not work

Simple mechanisms to automatically find the current-best parameter 
setting (note: this is great even when the optimal parameter does not 
change over time, but is hard to know beforehand)
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A Run of the Self-Adjusting GA
on OneMax ( )

76

self-adjusting parameter value
optimal parameter value
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Theory for Dynamic Parameter Choices:
Self-Adaptation

In all dynamic parameter choices discussed so far, we added an extra 
mechanism onto the EA to control the parameters.

Self-adaptation: Let the usual variation-selection cycle do this for you!
Add the parameter to the individual (extended representation)
Extended mutation: first mutate the parameter, then mutate the 
individual taking into account the new parameter value
Hope: Better parameter values lead to fitter individuals which are 
preferred by the (non-extended) selection mechanisms of the EA

Dang, Lehre [DL16]: First proof that this can work (artificial example)
D., Witt, Yang [DWY18]: Proof that self-adaptation can find the right 
mutation rate for the (1+ EA on OneMax (classic benchmark)

Generic way to adapt parameters, but not well-understood
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Summary Dynamic Parameter Choices
State of the art: A growing number of results, some very promising

personal opinion: this is the future of discrete EC, as it allows to 
integrate very powerful natural principles like adaption and learning

survey on theory: D. and Doerr [DD18b]
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An extension of the classi-
fication of Eiben, Hinterding, 
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,DDE15]

[DL16,DWY18]

[LS11,DD15a,DDK16,DDY16,BD17,
DGWY17,DD18a,ELG+18,DDL19]
[hyper-heuristics: AL14,LOW17,DLOW18]
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Part V: 
Conclusion
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Summary
Theoretical research gives deep insights in the working principles of EC, 
with results that are of a different nature than in experimental work

“very true” (=proven), but often apply to idealized settings only

for all instances and problem sizes, but sometimes less precise

often only asymptotic results instead of absolute numbers

proofs tell us why certain facts are true

The different nature of theoretical and experimental results implies that 
a real understanding is best obtained from a combination of both

Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms
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How to Use Theory in Your Work?
Try to read theory papers (or listen to the talks in one of the 4 theory 
track sessions), but don’t expect more than from other papers 

Neither a theory nor an experimental paper can tell you the best 
algorithm for your particular problem, but both can suggest ideas

Try “theory thinking”: take a simplified version of your problem and 
imagine what could work and why

Don’t be shy to talk to the theory people!

they will not have the ultimate solution and their mathematical 
education makes them very cautious presenting an ultimate solution

but they might be able to prevent you from a wrong path or suggest 
alternatives to your current approach
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Recent Books (Written for Theory People, 
But Not Too Hard to Read)

Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization, 
Springer

Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

Jansen (2013). Analyzing Evolutionary Algorithms, Springer

Doerr/Neumann (2019?). Theory of Discrete Optimization Heuristics, Springer
Most chapters are already on the arxiv
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Appendix A
Glossary of Terms Used 

in This Tutorial

85

Big-Oh notation

Optimization, global and local optima

Discrete, pseudo-Boolean

Runtime of an EA
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Big-Oh Notation: Motivation
Big-Oh notation, also called asymptotic notation or Landau symbols, are 
a convenient way to roughly describe how a quantity depends on 
another, e.g., how the runtime depends on the problem size .

We need this, because often

it is often impossible to precisely compute as function of , and

we sometimes intentionally only aim at a general description of a 
phenomenon (e.g., the runtime is linear, quadratic, or exponential) 
than a precise, but hard to understand formula (e.g., the following 
result from [Wit13]).
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Big-Oh Notation: Definition 
Let us continue to use the example of the expected runtime of 
some algorithm on some problem that is defined for all problems sizes 
(e.g., the expected runtime of the (1+1) EA on the -dimensional 
ONEMAX function.

Big-Oh notation allows to describe the asymptotic behavior of the 
runtime, that is, how the runtime depends on when we think of being 
large. On the other hand, we do not say anything for a concrete, fixed 
value of like .

Definition: We say that is for some function if 
there is a constant such for all .  

We write or . Note that the first version does not 
make much sense, but is more common. 

We write when 
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Big-Oh Notation: 
Asymptotic upper bound: 

if there is a constant such for all .  

Asymptotic lower bound: 

if there is a constant such for all .  

Asymptotically equal: 

if and .  

Asymptotically smaller, grows slower than :

if 

Asymptotically larger, grows faster than :

if 
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Optimization
Optimization means that we try to find an optimum (maximum or 
minimum, depending on context) of a given function . 

is a maximum of if for all 

is a minimum of if for all 

In practice, we often resort to finding a solution with .

A local optimum is a solution that is an optimum of restricted to a 
small neighborhood around (where “neighborhood” depends on the 
context). 
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local optima

Global optimum
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Discrete and Pseudo-Boolean Optimization
Discrete optimization: The search space is a finite set.

Note: In principle, this allows to find an  optimum by computing for 
all . Naturally, we aim at more efficient algorithms. Still, the 
theoretical possibility to find a global optimum is a crucial difference to 
continuous optimization, where (generally) only approximations to 
global optima can be found.

When and , we call a pseudo-Boolean function.

These are very common in evolutionary computation, since there are 
natural variation operators (mutation, crossover) for this representation.
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Runtimes of Evolutionary Algorithms
To make statements on the performance of an evolutionary algorithm 
(EA) in an implementation-independent manner, we regard as runtime (or 
optimization time) the number of fitness evaluations that the EA used 
until it queries for the first time an optimal solution. 

This models that fact that in many EAs, the fitness evaluations are the 
most costly part.

All EAs are randomized algorithms, i.e., they take random decisions 
during the optimization process. Consequently, the runtime (and almost 
everything) are random variables.
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Definition: Runtime of an EA 
Let be an EA, let be a function to be maximized, and let be 
the series of search points evaluated by in a run when optimizing (the 

are also random variables). Then the runtime of on the problem 
is defined by

Several features of this random variable are interesting. We mostly care 
about the expected runtime of an EA. This number is the average 
number of function evaluations that are needed until an optimal solution 
is evaluated for the first time.

Caution: sometimes runtime is stated in terms of generations, not 
function evaluations. Hence this runtime is smaller than ours by a factor 
equal to the number of search points evaluated per iteration.
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Expected Runtimes – Caution!
Caution: Regarding the expectation only can be misleading. For this 
reason, it is desirable to obtain more information about the runtime, e.g., 
its concentration behavior around the expectation.

Misleading expectation: The expected runtime is large, when

occasionally the EA takes very very long, 

but usually the EA is very efficient.

In this case, the expectation does not tell you the full truth. For example, 
the EA with a restart strategy or with parallel runs is very efficient for this 
problem

Example: The DISTANCE function regarded in [DJW02], see next slide
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Expected Runtimes – Caution! 
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Formally, 

We regard a simple hill climber 
(Randomized Local Search, RLS) 
which is 

initialized uniformly at random, 

flips one bit at a time,

always accepts search points of 
best-so-far fitness

With probability (almost) 1/2, the 
algorithm has optimized DISTANCE 

after steps

With probability ~1/2 it does not find 
the optimum at all, thus having an 
infinite expected optimization time
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Appendix B
List of References
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[Bäc93] Thomas Bäck. Optimal mutation rates in genetic search. In International Conference on Genetic Algorithms, ICGA 1993,
pages 2–8. Morgan Kaufmann, 1993.

[BBD+09] Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, and Frank Neumann. Computing
single source shortest paths using single-objective fitness. In Foundations of Genetic Algorithms, FOGA 2009, pages 59–
66. ACM, 2009.

[BD17] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF
formulas. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 1343–1350. ACM, 2017. Full
version available at http://arxiv.org/abs/1704.04366.
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