
Introductory Tutorial:
Theory for Non Theoreticians

Benjamin Doerr
École Polytechnique, CNRS
Laboratoire d’Informatique (LIX)

Palaiseau, France
lastname@lix.polytechnique.fr

http://gecco 2019.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
GECCO ’19 Companion, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ISBN 978-1-4503-6748-6/19/07 $15.00
DOI 10.1145/3319619.3323373

Benjamin Doerr: Theory of Evolutionary Computation

Instructor: Benjamin Doerr
Benjamin Doerr is a full professor at the French École Polytechnique.

He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from the university of Kiel (Germany). His research area is
the theory both of problem-specific algorithms and of randomized search
heuristics like evolutionary algorithms. Major contributions to the latter
include runtime analyses for evolutionary algorithms and ant colony
optimizers, as well as the further development of the drift analysis
method, in particular, multiplicative and adaptive drift. In the young area
of black-box complexity, he proved several of the current best bounds.

Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several
journals, among them Artificial Intelligence, Evolutionary Computation,
Natural Computing, and Theoretical Computer Science. Together with
Anne Auger, he edited the book Theory of Randomized Search
Heuristics.

2

Benjamin Doerr: Theory of Evolutionary Computation

This Tutorial: A Real Introduction to Theory
GECCO, CEC, PPSN always had a good number of theory tutorials

They did a great job in educating the theory community

However, not much was offered for those attendees which

have little experience with theory

but want to understand what the theory people are doing (and why)

This is the target audience of this tutorial. We try to answer those
questions which come before the classic theory tutorials.

3 Benjamin Doerr: Theory of Evolutionary Computation

Questions Answered in This Tutorial
What is theory in evolutionary computation (EC)?

Why do theory? How does it help us understanding EC?

How do I read and interpret a theory result?

What type of results can I expect from theory?

What are current “hot topics” in the theory of EC?

4

523

Benjamin Doerr: Theory of Evolutionary Computation

Focus: EAs for Discrete Search Spaces
In principle, we try to answer these questions independent of a particular
subarea of theory

However, to not overload you with definitions and notation, we focus
mostly on evolutionary algorithms for discrete search spaces

Hence we intentionally omit examples from

genetic programming, ant colony optimizers, swarm intelligence, …

continuous optimization

As said, this is for teaching purposes only. There is strong theory
research in all these areas. All answers this tutorial give are equally valid
for these areas

5 Benjamin Doerr: Theory of Evolutionary Computation

A Final Word Before We Start
If I’m saying things you don’t understand or if you want to know more
than what I had planned to discuss,
don’t be shy to ask questions at any time!

This is “your” tutorial and I want it to be as useful for you as possible

I’m trying to improve the tutorial each time I give it. For this, your
feedback (positive and negative) is greatly appreciated!

So talk to me after the tutorial, during the coffee breaks, social
event, late-night beer drinking, … or send me an email

6

Benjamin Doerr: Theory of Evolutionary Computation

Structure of the Tutorial
Part I: What is Theory of EC?

Part II: A Guided Walk Through a Famous Theory Result

an illustrative example to convey the main messages of this tutorial

Part III: How Theory Has Contributed to a Better Understanding of EAs

3 ways how theory has an impact

Part IV: Current Hot Topics in the Theory of EAs

EDAs (new), dynamic&noisy optimization (new), dynamic/adaptive
parameter choices

Part V: Concluding Remarks

Appendix: glossary, references

7 Benjamin Doerr: Theory of Evolutionary Computation

Part I:

What is
Theory of EC

8

Definition of theory of EC

Other notions of theory

What can you achieve with theoretical research?

Comparison: theory vs. experiments

524

Benjamin Doerr: Theory of Evolutionary Computation

What Do We Mean With Theory?
Definition (for this tutorial):
By theory, we mean results proven with mathematical rigor

Mathematical rigor:

make precise the evolutionary algorithm (EA) you regard

make precise the problem you try to solve with the EA

formulate a precise statement how this EA solves this problem

prove this statement

Example:
Theorem: The (1+1) EA finds the optimum of the OneMax benchmark
function in an expected number of at most

iterations.
Proof: blah, blah, …

9 Benjamin Doerr: Theory of Evolutionary Computation

Other Notions of Theory
Theory: Mathematically proven results

Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question

example: add a neutrality bit to two classic test functions, run a GA on
these, and derive insight from the outcomes of the experiments

Descriptive theory: Try to describe/measure/quantify observations

example: fitness-distance correlation, schema theory, …

“Theories”: Unproven claims that (mis-)guide our thinking

example: building block hypothesis

10

Benjamin Doerr: Theory of Evolutionary Computation

Other Notions of Theory
Theory: Mathematically proven results

Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question

example: add a neutrality bit to two classic test functions, run a GA on
these, and derive insight from the outcomes of the experiments

Descriptive theory: Try to describe/measure/quantify observations

example: fitness-distance correlation, schema theory, …

“Theories”: Unproven claims that (mis-)guide our thinking

example: building block hypothesis

11 Benjamin Doerr: Theory of Evolutionary Computation

Why Do Theory? Because of the Results!
Absolute guarantee that the result is correct (it’s proven)

you can be sure

reviewers can check truly the correctness of results

readers can trust reviewers or, with moderate maths skills, check the
correctness themselves

Many results can only be obtained by theory; e.g., because you make a
statement on a very large or even infinite set

all bit-strings of length ,

all TSP instances on vertices,

all input sizes ,

all possible algorithms for a problem

12

525

Benjamin Doerr: Theory of Evolutionary Computation

Why Do Theory? Because of the Approach!
A proof (automatically) gives insight in

how things work (working principles of EC)

why the result is as it is

Self-correcting/self-guiding effect of proving:

when proving a result, you are automatically pointed to the questions
that need more thought

you see what exactly is the bottleneck for a result

Trigger for new ideas

clarifying nature of mathematics

playful nature of mathematicians

13 Benjamin Doerr: Theory of Evolutionary Computation

Limitations of Theoretical Research
All this has its price… Possible drawbacks of theory results include:

Restricted scope: So far, mostly simple algorithms could be analyzed for
simple optimization problems

Less precise results: Constants are not tight, or not explicit as in
“ ” = “less than for some unspecified constant ”

Less specific results:

You obtain a (weaker) guarantee for all problem instances

but not a stronger guarantee for those instances which show up in
your application

Theory results can be very difficult to obtain: The proof might be short
and easy to read, but finding it took long hours

Usually, there is no generic way to the solution, but you need a
completely new, clever idea

14

Benjamin Doerr: Theory of Evolutionary Computation

Part II:
A Guided Walk Through a

Famous Theory Result

15

We use a simple but famous theory result

as an example for a non-trivial result

to show how to read a theory result

to explain the meaning of such a theoretical statement

to illustrate what we just discussed

Benjamin Doerr: Theory of Evolutionary Computation

A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

in an expected number of iterations.

Reference:
[DJW02] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81,
2002.

-- famous paper (500+ citations, maybe the most-cited pure EA theory paper)

-- famous problem (20+ papers working on exactly this problem, many highly
useful methods were developed in trying to solve this problem)

16

526

Benjamin Doerr: Theory of Evolutionary Computation

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

in an expected number of iterations.

(1+1) evolutionary algorithm to maximize :
1. choose uniformly at random
2. while not terminate do
3. generate from by flipping each bit independently

with probability (“standard-bit mutation”)
4. if then
5. output

Reading This Result

17

at most for some
unspecified constant

a hidden all-quantifier: we claim
the result for all

performance measure: number of iterations or
fitness evaluations, but not runtime in seconds

A mathematically
proven result

should be made
precise in the paper to
avoid any ambiguity

Benjamin Doerr: Theory of Evolutionary Computation

Why is This a Good Result?
Gives a proven performance guarantee

General: a statement for all linear functions in all dimensions

Non-trivial

Surprising

Provides insight in how EAs work

Theorem: The (1+1) evolutionary algorithm finds the maximum of any
linear function

in an expected number of iterations.

18

more on these 3 items
on the next slides

Benjamin Doerr: Theory of Evolutionary Computation

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

19 Benjamin Doerr: Theory of Evolutionary Computation

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

Hard to prove
7 pages complicated maths proof in [DJW02]
we can do better now, but only because we developed deep analysis
techniques (drift analysis)

No “easy” explanation
monotonicity: if the are all positive, then “flipping a 0 to a 1 always
increases the fitness” (monotonicity).

Are monotonic functions easy to optimize for a EAs (because you
only need to collect 1s)?
No! Exponential runtimes can occur [DJS+13].

separability: a linear function can be written as a sum of functions
such that the depend on disjoint sets of bits

Is the optimization time of such a sum small?

No! The can interact badly [DSW13].

20

527

Benjamin Doerr: Theory of Evolutionary Computation

Surprising: Same Runtime For Very
Different Fitness Landscapes

Example 1: OneMax, the function counting the number of 1s in a string,

unique global maximum at

perfect fitness distance correlation: if a search point has higher
fitness, then it is closer to the global optimum

Example 2: BinaryValue (BinVal for short), the function mapping a bit-
string to the number it represents in binary

unique global maximum at

Very low fitness-distance correlation.

, distance to optimum is

, distance to optimum is
21 Benjamin Doerr: Theory of Evolutionary Computation

Insight in Working Principles
Insight from the result:

Even if there is a low fitness-distance correlation (as is the case for
the BinVal function), EAs can be very efficient optimizers

Insight from the proof:

For all linear functions , the Hamming distance of to the
optimum measures very well the quality of the search point :

If the current search point is , then the expected number of
iterations to find the optimum satisfies

independent of

22

Benjamin Doerr: Theory of Evolutionary Computation

A Glimpse on a Modern Proof
Theorem [DJW12]: For all problem sizes and all linear functions
with the (1+1) EA finds the optimum of in an
expected number of at most iterations.

1st proof idea: Without loss, we can assume that

2nd proof idea: Regard an artificial fitness measure!

Define “artificial weights” from to

Key lemma: Consider the (1+1) EA optimizing the original . Assume that
some iteration starts with the search point and ends with the random
search point . Then

expected artificial fitness distance reduces by a factor of

3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t.
the artificial fitness into a runtime bound

roughly: the expected runtime is at most the number of iterations needed to
get the expected artificial fitness distance below one.

23

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen

Benjamin Doerr: Theory of Evolutionary Computation

Multiplicative Drift Theorem
Theorem [DJW12]: Let be a sequence of random variables taking
values in the set . Let . Assume that for all , we have

Let . Then

On the previous slide, this theorem was used with

and the estimate .

Bibliographical notes: Artificial fitness functions very similar to this were already used in
Droste, Jansen, and Wegener [DJW02] (conference version [DJW98]). Drift analysis
(“translating progress into runtime”) was introduced to the field by He and Yao [HY01] to
give a simpler proof of the [DJW02] result. A different approach was given by Jägersküpper
[Jäg08]. The multiplicative drift theorem by D., Johannsen, and Winzen [DJW12]
(conference version [DJW10]) proves the [DJW02] result in one page and is one of the
most-used tools today.

24

“Drift analysis”:
Translate expected

progress into
expected (run-)time

528

Benjamin Doerr: Theory of Evolutionary Computation

Limitations of the Linear Functions Result

An unrealistically simple EA: the (1+1) EA

Linear functions are “trivial” artificial test function

Not a precise result, but

only in [DJW02]

or a most likely significantly too large constant in the [DJW12] result
just shown

Two types of replies (details on the following slides)

despite these limitations, we gain insight

the 2002-results was the start, now we know much more

25 Benjamin Doerr: Theory of Evolutionary Computation

Limitation 1: Only the Simple (1+1) EA
Insight: Using nothing else than standard-bit mutation is enough to
optimize problems with low fitness-distance correlation

Newer Result: The (1+) EA optimizes any linear function in time
(= number of fitness evaluations)

This bound is sharp for BinVal, but not for OneMax, where the
optimization time is

Not all linear functions have the same optimization time! [DK15]

We are optimistic that we will make progress towards more complicated
EAs. Known open problems include, e.g., how crossover-based
algorithms and ant colony optimizers optimize linear functions.

26

Benjamin Doerr: Theory of Evolutionary Computation

Limitation 2: Only Linear Functions
Insight: Linear functions are easy, monotonic functions can be difficult

some understanding which problems are easy and hard for EAs

Newer runtime analyses for the (1+1) EA (and some other algorithms):
Eulerian cycles [Neu04,DHN07,DKS07,DJ07]
shortest paths [STW04,DHK07,BBD+09]
minimum spanning trees [NW07,DJ10,Wit14]
and many other poly-time optimization problems

We also have some results on approximate solutions for NP-complete
problems like partition [Wit05], vertex cover [FHH+09,OHY09], maximum
cliques [Sto06]

We have some results on dynamic and noisy optimization

27 Benjamin Doerr: Theory of Evolutionary Computation

Limitation 3:
Insight: Linear functions are easy for the (1+1) EA – for this insight, a
rough result like is enough

Newer result [Wit13]: The runtime of the (1+1) EA on any linear function
is , that is, at most for some constant

still an asymptotic result, but the asymptotics are only in a lower order
term

[Wit13] also has a non-asymptotic result, but it is harder to digest

28

529

Benjamin Doerr: Theory of Evolutionary Computation

Summary “Guided Tour”
We have seen one of the most influential theory results:
The (1+1) EA optimizes any linear function in iterations

We have seen how to read and understand such a result

We have seen why this result is important

non-trivial and surprising

gives insights in how EAs work

spurred the development of many important tools (e.g., drift analysis)

We have discussed the limitations of this theory result

29 Benjamin Doerr: Theory of Evolutionary Computation

Part III:
How Theory Can Help

Understanding and
Designing EAs

30

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and
algorithms

3. Invent new representations, operators, and algorithms

Benjamin Doerr: Theory of Evolutionary Computation

Contribution 1: Debunk Misconceptions

When working with EAs, it is easy to conjecture some general rule from
observations, but without theory it is hard to distinguish between “we
often observe” and “it is true that”

Reason: it is often hard to falsify a conjecture experimentally

the conjecture might be true “often enough”, but not in general

Danger: misconceptions prevail in the EA community and mislead the
future development of the field

2 (light) examples on the following slides

31 Benjamin Doerr: Theory of Evolutionary Computation

Misconception 1: Functions Without Local
Optima are Easy to Optimize

A function has no local optima if each non-optimal search point has
a neighbor with better fitness

if () is not maximal, then by flipping a single bit of you can get a better
solution

Misconception: Such functions are easy to optimize…

“because all you need is flipping single bits”

Truth: There are functions

without local optima, but

where all reasonable EAs with high probability need time exponential in to
find even a reasonably good solution [HGD94,Rud97,DJW98]

Reason: yes, it is easy to find a better neighbor if you’re not optimal yet, but you
may need to do this an exponential number of times because all improving paths
to the optimum are that long

32

530

Benjamin Doerr: Theory of Evolutionary Computation

Misconception 2: Monotonic Functions are
Easy to Optimize for EAs

A function is monotonically strictly increasing if the fitness increases
whenever you flip a 0-bit to 1

special case of “no local optima”: each neighbor with additional ones is better

Misconception: Such functions are easy to optimize for standard EAs…

because already a simple hill-climber flipping single bits (randomized local
search) does the job in time

Truth: There are (many) monotonically strictly increasing functions such that with
high probability the (1+1) EA with mutation probability needs exponential time
to find the optimum [DJS+13]

Lengler, Steger [LS18]: the can be lowered to]

Lengler [Len18]: Essentially the same result holds for a broad class of
mutation-based algorithms (independent of population sizes)

33 Benjamin Doerr: Theory of Evolutionary Computation

Summary Misconceptions

Intuitive reasoning or experimental observations can lead to wrong beliefs.

It is hard to falsify them experimentally, because

counter-examples may be rare (so random search does not find them)

counter-examples may have an unexpected structure

There is nothing wrong with keeping these beliefs as “rules of thumb”, but
it is important to know what is a rule of thumb and what is really the truth

Theory is the right tool for this!

34

Benjamin Doerr: Theory of Evolutionary Computation

Contribution 2: Help Designing EAs

When designing an EA, you have to decide between a huge number of
design choices: the basic algorithm, the operators and representations,
and the parameter settings.

Theory can help you with deep and reliable analyses of scenarios similar
to yours

The question “what is a similar scenario” remains, but you have the
same difficulty when looking for advice from experimental research

Examples:

fitness-proportionate selection

edge-based representations in graph problems

when to use crossover (or not)

good values for mutation rate, population size, etc.

35

more on these 2
on the next slides

Benjamin Doerr: Theory of Evolutionary Computation

Designing EAs:
Fitness-Proportionate Selection

Fitness-proportionate selection has been criticized (e.g., because it is not
invariant under re-scaling the fitness), but it is still used a lot.

Theorem [OW15]: If you use

the Simple GA as proposed by Goldberg [Gol89] (generational GA,
fitness-proportionate selection)

to optimize the OneMax test function

with a population size or less

then with high probability the GA in any polynomial number of iterations
does not create any individual that is 1% better than a random individual

Interpretation: Most likely, fitness-proportionate selection makes sense
only in rare circumstances in generational GAs

more difficulties with fitness-proportionate selection: [HJKN08, NOW09]

36

531

Benjamin Doerr: Theory of Evolutionary Computation

Designing EAs: Representations
Several theoretical works on shortest path problems [STW04, DHK07,
BBD+09]. All use a vertex-based representation:

each vertex points to its predecessor in the path

mutation: rewire a random vertex to a random neighbor

[DJ10]: How about an edge-based representation?

individuals are set of edges (forming reasonable paths)

mutation: add a random edge (and delete the one made obsolete)

Result: All previous algorithms become faster by a factor of

[JOZ13]: edge-based representation also preferable for vertex cover

Interpretation: While there is no guarantee for success, it may be useful
to think of an edge-based representation for graph-algorithmic problems

37

typical theory-
driven curiosity

Benjamin Doerr: Theory of Evolutionary Computation

Summary Designing EAs
By analyzing rigorously simplified situations, theory can suggest

which algorithm to use

which representation to use

which operators to use

how to choose parameters

As with all particular research results, the question is how representative
such a result is for the general usage of EAs

38

Benjamin Doerr: Theory of Evolutionary Computation

Contribution 3: Invent New Operators
and Algorithms

Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms.

Example 1: What is the right way to do mutation?

A thorough analysis how EAs optimize jump functions suggests a
heavy-tailed mutation operator (instead of a binomial one)
[best-paper award in the GECCO 2017 Genetic Algorithms track]

Example 2 (maybe omitted for reasons of time): The GA

Invent an algorithm that profits from inferior search points

39 Benjamin Doerr: Theory of Evolutionary Computation

Example 1: Invent a New Mutation Operator
Short storyline: The recommendation to flip bits independently with
probability might be overfitted to ONEMAX or other easy functions.

Longer storyline of this (longer) part:

A first-year Master project asks what is the best mutation rate to
optimize jump functions (which are not “easy”)

Surprise: for jump size , the right mutation rate is and this
speeds-up things by a factor of roughly

But: missing this optimal mutation rate by a small factor of
increases the runtime by a factor of at least

Solution: design a parameter-less mutation operator where the
Hamming distance of parent and offspring follows a power-law

solves all problems

40

532

Benjamin Doerr: Theory of Evolutionary Computation

General Belief on Mutation

Note: We only deal with bit-string representations, that is, the search
space is for some .

Similar general insights hold for other discrete search spaces.

General belief: A good way of doing mutation is standard-bit mutation,
that is, flipping each bit independently with some probability (“mut. rate”)

global: from any parent you can generate any offspring (possibly with
very small probability)

algorithms cannot get stuck forever in a local optimum

General recommendation: Use a small mutation rate like

41 Benjamin Doerr: Theory of Evolutionary Computation

Informal Justifications for

If you want to flip a particular single bit, then

a mutation rate of is the one that maximizes this probability

reducing the rate by a factor of reduces this prob. by a factor of

increasing the rate by a factor of reduces this prob. by a factor of

Mutation is destructive: If your current search point has a Hamming
distance of less than from the optimum , then the offspring
has (in expectation) a larger Hamming distance and this increase is
proportional to :

42

at most for some constant
at least for some constant
both and

Benjamin Doerr: Theory of Evolutionary Computation

Proven Results Supporting a Mut. Rate
Optimal mutation rates for (1+1) EA:

for OneMax [Müh92; Bäc93]

for LeadingOnes [BDN10]

for all linear functions [Wit13]

monotonic functions [Jan07, DJSWZ13, LS18]:

, gives a runtime on all monotonic functions
with unique optimum,

gives ,

gives an exponential runtime on some monotonic functions.

When , then the optimal mutation rate for the EA optimizing
OneMax is [GW17].

43

Theory supports
using standard-bit
mutation with
mutation rate
around

Benjamin Doerr: Theory of Evolutionary Computation

Really?
Can we really say that is good (at least “usually”)?

More provocative: Can we really say that standard-bit mutation the right
way of doing mutation?

Note: all results regard easy unimodal optimization problems

OneMax, LeadingOnes, linear functions, monotonic functions

flipping single bits is a very good way of making progress

Plan for the next few slides:

regard functions (not unimodal)

observe something very different

design a new mutation operator

show that it is pretty good for many problems

44

533

Benjamin Doerr: Theory of Evolutionary Computation

Jump Functions [DJW02]
: fitness of an -bit string is the number of ones, except if

, then the fitness is the number of zeroes.

Observations:

All with form an easy to reach local optimum.

From there, only flipping (the right) bits gives an improvement.

The unique global optimum is .

45 Benjamin Doerr: Theory of Evolutionary Computation

Runtime Analysis
Theorem: Let denote the expected optimization time of the (1+1)
EA optimizing with mutation rate . For ,

Corollary (speed-up at least exponential in): For any ,

Clearly, here is not a very good mutation rate!

Proof of theorem uses standard theory methods:

upper bound: classic fitness level method

lower bound: argue that the runtime is essentially the time it takes to
go from the local to the global optimum

46

here and later: all implicit
constants indep. of and

Benjamin Doerr: Theory of Evolutionary Computation

Optimal Mutation Rates

Theorem: Let . Then:

.

If or , then

In simple words: is essentially the optimal mutation rate, but a small
deviation increases the runtime massively.

Dilemma: To find a good mutation rate, you have to know how many
bits you need to flip

Reason for the dilemma: When flipping bits independently at random
(standard-bit mutation), then the Hamming distance of parent and
offspring is strongly concentrated around the mean

exponential tails of the binomial distribution

Maybe standard-bit mutation is not the right thing to do?
47 Benjamin Doerr: Theory of Evolutionary Computation

Solution: Heavy-tailed Mutation
Recap: What do we need?

No strong concentration of

Larger numbers of bits flip with reasonable probability

1-bit flips occur with constant probability (otherwise we do bad on easy
functions)

Solution: Heavy-tailed mutation (with parameter , say)

choose randomly with [power-law distrib.]

perform standard-bit mutation with mutation rate

Some maths: The probability to flip bits is

no exponential tails

, e.g., 32% for (37% for classic mut.)

48

534

Benjamin Doerr: Theory of Evolutionary Computation

Heavy-tailed Mutation: Results
Theorem: The (1+1) EA with heavy-tailed mutation () has an
expected optimization time on of

This one algorithm for all is only an factor slower than
the EA using the (for this) optimal mutation rate!

Compared to the classic EA, this is a speed-up by a factor of .

Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than
– by taking – is unavoidable:

For sufficiently large, any distribution on the mutation rates in has an
such that .

49 Benjamin Doerr: Theory of Evolutionary Computation

Experiments (m=8, n=20..150)

50

Runtime of the (1+1) EA on (average over 1000 runs). To allow this number of
experiments, the runs where stopped once the local optimum was reached and the remaining
runtime was sampled directly from the geometric distribution describing this waiting time.

Benjamin Doerr: Theory of Evolutionary Computation

Beyond Jump Functions
Example (maximum matching): Let be an undirected graph having
edges. A matching is a set of non-intersecting edges. Let be the size
of a maximum matching. Let be constant and .

The classic (1+1) EA finds a matching of size in an expected
number of at most iterations, where is some number in

. [GW03]

The (1+1) EA with heavy-tailed mutation does the same in expected
time of at most .

2nd example: Vertex cover in bipartite graphs (details omitted)

51

Riemann zeta function:
for

Benjamin Doerr: Theory of Evolutionary Computation

Performance in Classic Results
Since the heavy-tailed mutation operator flips any constant number of
bits with constant probability, many classic results for the standard (1+1)
EA remain valid (apart from constant factor changes):

runtime on OneMax

runtime on LeadingOnes

runtime on MinimumSpanningTree [NW07]

and many others…

The largest expected runtime that can occur on an is

for the classic (1+1) EA [DJW02 (Trap); Wit05 (minimum
makespan scheduling)]

for the heavy-tailed (1+1) EA

52

535

Benjamin Doerr: Theory of Evolutionary Computation

Working Principle of Heavy-Tailed Mutation
Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

Distribute this free probability mass in a power-law fashion on all other
-bit flips

increases the prob. for a -bit flip from roughly to roughly
reduces the waiting time for a -bit flip from to

This redistribution of probability mass is a good deal, because we
usually spend much more time on finding a good multi-bit flip

: spend time on all 1-bit flips, but time to find
the one necessary -bit flip

These elementary observations are a good reason to believe that
heavy-tailed mutation is advantageous for a wide range of multi-modal
problems.

53 Benjamin Doerr: Theory of Evolutionary Computation

Heavy-Tailed “Fast”
Heavy-tailed mutation has been experimented with in continuous
optimization (with mixed results as far as I understand)

simulated annealing [Szu, Hartley ‘87]

evolutionary programming [Yao, Lui, Lin ‘99]

evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger,
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

estimation of distribution algorithms [Posik ’09, ‘10]

Algorithms using heavy-tailed mutation were called fast by their
inventors, e.g., fast simulated annealing.

we propose to call our mutation fast mutation and the resulting
EAs fast, e.g.,

54

Benjamin Doerr: Theory of Evolutionary Computation

Summary Fast Mutation – A Theory-Guided
Invention

By rigorously analyzing the performance of a simple mutation-based EA on
the non-unimodal JUMP fitness landscape, we observe that

higher mutation rates are useful to leave local optima

standard-bit mutation with a fixed rate is sub-optimal on most problems

Solution: Use standard-bit mutation, but with a random mutation rate
sampled from a power-law distribution

factor speed-up for

factor improvement of the runtime guarantee for max. matching

first promising experimental results

Big question: Will this work in practice and will practitioners use it?

First results are promising
55 Benjamin Doerr: Theory of Evolutionary Computation

Example 2: Invent New Algorithms (1/3)
Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms.
Here is one recent example:

Theory-driven curiosity: Explain the following dichotomy!

the theoretically best possible black-box optimization algorithm for
OneMax (and all isomorphic fitness landscapes) needs only

fitness evaluations

all known (reasonable) EAs need at least fitness evaluations

One explanation (from looking at the proofs): profits from all search
points it generates, whereas most EAs gain significantly only from search
points as good or better than the previous-best

Can we invent an EA that also gains from inferior search points?

YES [DDE13,GP14,DD15a,DD15b,Doe16,BD17], see next slides

56

536

Benjamin Doerr: Theory of Evolutionary Computation

New Algorithms (2/3)
A simple idea to exploit inferior search points (in a (1+1) fashion):

1. create mutation offspring from the parent by flipping random bits

2. select the best mutation offspring (“mutation winner”)

3. create crossover offspring via a biased uniform crossover of
mutation winner and parent, taking bits from mutation winner with
probability only

4. select the best crossover offspring (“crossover winner”)

5. elitist selection: crossover winner replaces parent if not worse

Underlying idea:

If is larger than one, then the mutation offspring will often be much
worse than the parent (large mutation rates are destructive)

However, the best of the mutation offspring may have made some
good progress (besides all destruction)

Crossover with parent repairs the destruction, but keeps the progress
57 Benjamin Doerr: Theory of Evolutionary Computation

New Algorithms (3/3)
Performance of the new algorithm, called (1+(,)) GA:

solves OneMax in time (=number of fitness evaluations)
, which is for

the parameter can be chosen dynamically imitating the 1/5th rule,
this gives an () runtime

experiments:

these improvements are visible already for small values of and
small problem sizes

[GP14]: good results for satisfiability problems

Interpretation: Theoretical considerations can suggest new algorithmic
ideas. Of course, much experimental work and fine-tuning is necessary
to see how such ideas work best for real-world problems.

58

Benjamin Doerr: Theory of Evolutionary Computation

Summary Part 3
Theory has contributed to the understanding and use of EAs by

debunking misbeliefs (drawing a clear line between rules of thumb and
proven fact)

e.g., “no local optima” and “monotonic” do not mean “easy”

giving hints how to choose parameters, representations, operators, and
algorithms

e.g., if fitness-proportionate selection with comma selection cannot
even optimize OneMax, maybe it is not a good combination

inventing new representations, operators, and algorithms: this is fueled
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

e.g., if leaving local optima generally needs more bits to be flipped,
then we need a mutation operator that does so sufficiently often

heavy-tailed mutation

59 Benjamin Doerr: Theory of Evolutionary Computation

Part IV:
Current Topics of Interest

in the Theory of EC

60

Estimation-of-distribution algorithms
Dynamic and noisy optimization
Dynamic/adaptive parameter choices

537

Benjamin Doerr: Theory of Evolutionary Computation

Estimation-of-distribution Algorithms (EDA)
Example: compact Genetic Algorithm (cGA) of Harik, Lobo, and Goldberg
[HLG99] with hypothetical pop. size to maximize

initialize
while not terminate

sample such that indep. for all
sample such that indep. for all
if then
for all do

Instead of storing concrete search points, EDAs develop a probabilistic
model (represented by the frequency vector in the cGA).

Hope: more powerful algorithms by more expressive representations.

Contrast: A parent in the (1+1) EA corresponds to the frequency vector
with if and otherwise.

The (1+1) EA only admits the models .
61 Benjamin Doerr: Theory of Evolutionary Computation

Do We Profit From This Model Building?
Problem: When a bit has no influence on whether or is better
(because other bits have a higher impact), then the frequency
performs a random walk step:

with probability
with probability

otherwise

Such random movements can bring the frequency to a random boundary
value convergence to a sub-optimal solution.

Common solution: Artificially cap the frequencies so that at all times

Problem remains: If frequencies are mostly at the artificial boundary
values, then our probabilistic model is not richer than for the (1+1) EA

62

Benjamin Doerr: Theory of Evolutionary Computation

Frequencies At Boundaries
For a neutral bit, it takes an expected number of iterations to reach
a random boundary value (Zheng, Yang, D. [ZYD18])

the problem of random movements is real!

Witt [Wit17], Lengler, Sudholt, Witt [LSW18]: When optimizing OneMax,
there are three regimes.

When is small, then many frequencies reach the boundary values,
but it is easy to bring them to the right boundary value (since the
changes move the frequencies quickly) runtime
When is large, then the random movements of the frequencies are
slow. The fitness moves the frequencies in parallel into the right
direction runtime
When is “in the middle”, then some frequencies reach boundaries,
but it is costly to move them to the right value

no runtime is possible
Disclaimer: I formulated things in the cGA language, some of these
results are proven only for UMDA

63 Benjamin Doerr: Theory of Evolutionary Computation

Can We Avoid That Frequencies Drift to the
Boundaries Without Good Reason?

Friedrich, Kötzing, Krejca [FKK16]: “EDAs cannot be balanced and stable”
balanced: when is a neutral bit
stable: frequencies of neutral bits do not move quickly to boundaries

if we want stability, we have to abandon balancedness

The following algorithms are stable
stable-cGA [FKK16]: cGA with an artificially modified frequency update.

runtime on LeadingOnes
exponential runtime on OneMax (D., Krejca [DK18]).

sig-cGA [DK18]: regard a longer history, change frequencies only when
there is sufficient evidence for it.

runtime on both LeadingOnes and OneMax
Binary differential evolution: Provably stable, but no fully rigorous
runtime results [ZYD18]

64

538

Benjamin Doerr: Theory of Evolutionary Computation

Summary EDA-Theory
Significant progress in the last 3 years.

Main problem:
Frequencies move to boundaries in a random fashion.
This can lead to an undesired behavior (imitation of EAs) and to
longer runtimes.

Some suggestions for stable algorithms, but it is not clear yet how good
they really are.

65 Benjamin Doerr: Theory of Evolutionary Computation

Hot Topic 2:
Dynamic and Noisy Optimization

Dynamic optimization: Optimization when the problem to be solved
changes over time

Noisy optimization: Optimization in the presence of (typically random)
errors in the problem data

Common question: How do EAs perform when the evolutionary
optimization process is disturbed by some external (random) source.

General belief: due to their randomized nature, EAs can cope well with
such stochastic disturbances

66

Benjamin Doerr: Theory of Evolutionary Computation

Dynamic OneMax
First theory result (Droste [Dro02]):

OneMax function with optimum :

Dynamic OneMax with 1-bit dynamics: in each iteration, with some
small probability the current optimum is replaced by a random
Hamming neighbor (=a random bit of is flipped)

Result: If , then the (1+1) EA finds the optimum of this
dynamic OneMax function in iterations (expectation).

Droste [Dro03]: If the dynamic is such that independently with prob.
each bit of the optimum is flipped (same expected change),

then the runtime bound is .

Improved to by Kötzing, Lissovoi, Witt [KLW15]

Improved to by Dang-Nhu et al.[DNDD+18],
valid for all dynamics changing the opt. by at most in expect.

67 Benjamin Doerr: Theory of Evolutionary Computation

Interpretation of These Results
Evolutionary algorithms can be surprisingly robust to dynamically
changing problem instances!

If in the 1-bit dynamic, then in average, every iterations the
optimum moves to a Hamming neighbor

and we lose a fitness level (almost always)

If the fitness distance is , then we need a roughly iterations to
improve the fitness (without dynamic changes)

When close to the optimum (constant),

it takes expected time to gain one fitness level without dynamics

but we lose expected fitness levels because of the dynamic.

Despite this, the EA finds the optimum in polynomial time

68

539

Benjamin Doerr: Theory of Evolutionary Computation

Why?
From the proofs in Dang-Nhu et al. [DNDD+18] it seems that EAs make
progress by repeatedly

hoping for a phase of few dynamic changes

and then making exceptionally fast progress
supports the general belief that the randomized nature of EAs is

the reason for their robustness

69

A plot of a typical run (fitness
distance over time) for =100,
1-bit dynamic with =(ln)/

Benjamin Doerr: Theory of Evolutionary Computation

Noisy Optimization
Very roughly speaking, similar results hold for noisy optimization, see
Droste [Dro04], Giessen, Kötzing [GK16], Qian, Bian, Jiang, Tang
[QBJT17], Dang-Nhu et al. [DNDD+18], Sudholt [Sud18]

Additional aspect: We can tolerate higher noise levels by

resampling (Akimoto, Astete-Morales, Teytaud [AMT15], Qian et al.
[QBJT17], D. and Sutton [DS19]),

using larger population sizes (Giessen and Kötzing [GK16]),

using other algorithms like

ant colony optimizer (e.g. Sudholt and Thyssen [ST12]), or

EDAs (Friedrich, Kötzing, Krejca, Sutton [FKKS17])

70

Benjamin Doerr: Theory of Evolutionary Computation

Summary Dynamic and Noisy Optim.
Due to their randomized nature, EAs cope well with moderate levels of
noise and moderate changes of the problem instance.

For noisy optimization, one can try to reduce the effect of noise by
resampling, larger population size, etc. For dynamic optimization, nothing
is known on how to make algorithms more robust.

71 Benjamin Doerr: Theory of Evolutionary Computation

Hot Topic 3: Dynamic Parameter Choices
Instead of fixing a parameter (mutation rate, population size, …) once
and forever (static parameter choice), it might be preferable to change
the parameter values during the run of the EA

Hope:
different parameter settings may be optimal at different stages of the
optimization process, so by changing the parameter value we can
improve the performance
we can let the algorithm optimize the parameters itself (on-the-fly
parameter choice, self-adjusting parameters)

Experimental work suggests that dynamic parameter choices often
outperform static ones (for surveys see [EHM99,KHE15])

72

540

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Deterministic Schedules

Deterministic variation schedule for the mutation rate (Jansen and
Wegener [JW00, JW06]):

Toggle through the mutation rates

Result: There is a function where this dynamic EA takes time
, but any static EA takes exponential time

For most functions, the dynamic EA is slower by a factor of

First (artificial) example proving that dynamic parameter choices can
be beneficial.

73 Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Depending on the Fitness

Fitness-dependent mutation rate [BDN10]: When optimizing the
LeadingOnes test function with the (1+1) EA

the fixed mutation rate gives a runtime of

the fixed mutation rate gives (optimal fixed mut. rate)

the mutation rate gives (optimal dynamic rate)

Fitness-dependent offspring pop. size for the GA [DDE15]:

if you choose , then the optimization time on OneMax drops

from roughly to

Fitness-dependent parameters can pay off. It is hard to find the optimal
dependence, but many others give improvements as well.

74

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Success-based Dynamics

Success-based choice of island number: You can reduce of the parallel
runtime (but not the total work) of an island model when choosing the
number of islands dynamically (Lässig and Sudholt [LS11]):

double the number of islands after each iteration without fitness gain
half the number of islands after each improving iteration

Success-based choice (1/5-th rule) of in the (1+(,)) GA finds the
optimal mutation strength [DD15a,DD18a] (a constant):

after each iteration without fitness gain
after each improving iteration

Important that the fourth root is taken (1/5-th rule).
The doubling scheme of [LS11] would not work

Simple mechanisms to automatically find the current-best parameter
setting (note: this is great even when the optimal parameter does not
change over time, but is hard to know beforehand)

75 Benjamin Doerr: Theory of Evolutionary Computation

A Run of the Self-Adjusting GA
on OneMax ()

76

self-adjusting parameter value
optimal parameter value

541

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Self-Adaptation

In all dynamic parameter choices discussed so far, we added an extra
mechanism onto the EA to control the parameters.

Self-adaptation: Let the usual variation-selection cycle do this for you!
Add the parameter to the individual (extended representation)
Extended mutation: first mutate the parameter, then mutate the
individual taking into account the new parameter value
Hope: Better parameter values lead to fitter individuals which are
preferred by the (non-extended) selection mechanisms of the EA

Dang, Lehre [DL16]: First proof that this can work (artificial example)
D., Witt, Yang [DWY18]: Proof that self-adaptation can find the right
mutation rate for the (1+ EA on OneMax (classic benchmark)

Generic way to adapt parameters, but not well-understood

77 Benjamin Doerr: Theory of Evolutionary Computation

Summary Dynamic Parameter Choices
State of the art: A growing number of results, some very promising

personal opinion: this is the future of discrete EC, as it allows to
integrate very powerful natural principles like adaption and learning

survey on theory: D. and Doerr [DD18b]

78

An extension of the classi-
fication of Eiben, Hinterding,
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,DDE15]

[DL16,DWY18]

[LS11,DD15a,DDK16,DDY16,BD17,
DGWY17,DD18a,ELG+18,DDL19]
[hyper-heuristics: AL14,LOW17,DLOW18]

Benjamin Doerr: Theory of Evolutionary Computation

Part V:
Conclusion

79 Benjamin Doerr: Theory of Evolutionary Computation

Summary
Theoretical research gives deep insights in the working principles of EC,
with results that are of a different nature than in experimental work

“very true” (=proven), but often apply to idealized settings only

for all instances and problem sizes, but sometimes less precise

often only asymptotic results instead of absolute numbers

proofs tell us why certain facts are true

The different nature of theoretical and experimental results implies that
a real understanding is best obtained from a combination of both

Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms

80

542

Benjamin Doerr: Theory of Evolutionary Computation

How to Use Theory in Your Work?
Try to read theory papers (or listen to the talks in one of the 4 theory
track sessions), but don’t expect more than from other papers

Neither a theory nor an experimental paper can tell you the best
algorithm for your particular problem, but both can suggest ideas

Try “theory thinking”: take a simplified version of your problem and
imagine what could work and why

Don’t be shy to talk to the theory people!

they will not have the ultimate solution and their mathematical
education makes them very cautious presenting an ultimate solution

but they might be able to prevent you from a wrong path or suggest
alternatives to your current approach

81 Benjamin Doerr: Theory of Evolutionary Computation

Recent Books (Written for Theory People,
But Not Too Hard to Read)

Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization,
Springer

Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

Jansen (2013). Analyzing Evolutionary Algorithms, Springer

Doerr/Neumann (2019?). Theory of Discrete Optimization Heuristics, Springer
Most chapters are already on the arxiv

82

?????????
?????????
?????????

Benjamin Doerr: Theory of Evolutionary Computation

Acknowledgments
This tutorial is also based upon work from COST Action CA15140
`Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO)' supported by COST (European
Cooperation in Science and Technology).

83 Benjamin Doerr: Theory of Evolutionary Computation 84

543

Benjamin Doerr: Theory of Evolutionary Computation

Appendix A
Glossary of Terms Used

in This Tutorial

85

Big-Oh notation

Optimization, global and local optima

Discrete, pseudo-Boolean

Runtime of an EA

Benjamin Doerr: Theory of Evolutionary Computation

Big-Oh Notation: Motivation
Big-Oh notation, also called asymptotic notation or Landau symbols, are
a convenient way to roughly describe how a quantity depends on
another, e.g., how the runtime depends on the problem size .

We need this, because often

it is often impossible to precisely compute as function of , and

we sometimes intentionally only aim at a general description of a
phenomenon (e.g., the runtime is linear, quadratic, or exponential)
than a precise, but hard to understand formula (e.g., the following
result from [Wit13]).

86

Benjamin Doerr: Theory of Evolutionary Computation

Big-Oh Notation: Definition
Let us continue to use the example of the expected runtime of
some algorithm on some problem that is defined for all problems sizes
(e.g., the expected runtime of the (1+1) EA on the -dimensional
ONEMAX function.

Big-Oh notation allows to describe the asymptotic behavior of the
runtime, that is, how the runtime depends on when we think of being
large. On the other hand, we do not say anything for a concrete, fixed
value of like .

Definition: We say that is for some function if
there is a constant such for all .

We write or . Note that the first version does not
make much sense, but is more common.

We write when

87 Benjamin Doerr: Theory of Evolutionary Computation

Big-Oh Notation:
Asymptotic upper bound:

if there is a constant such for all .

Asymptotic lower bound:

if there is a constant such for all .

Asymptotically equal:

if and .

Asymptotically smaller, grows slower than :

if

Asymptotically larger, grows faster than :

if

88

544

Benjamin Doerr: Theory of Evolutionary Computation

Optimization
Optimization means that we try to find an optimum (maximum or
minimum, depending on context) of a given function .

is a maximum of if for all

is a minimum of if for all

In practice, we often resort to finding a solution with .

A local optimum is a solution that is an optimum of restricted to a
small neighborhood around (where “neighborhood” depends on the
context).

89

local optima

Global optimum

Benjamin Doerr: Theory of Evolutionary Computation

Discrete and Pseudo-Boolean Optimization
Discrete optimization: The search space is a finite set.

Note: In principle, this allows to find an optimum by computing for
all . Naturally, we aim at more efficient algorithms. Still, the
theoretical possibility to find a global optimum is a crucial difference to
continuous optimization, where (generally) only approximations to
global optima can be found.

When and , we call a pseudo-Boolean function.

These are very common in evolutionary computation, since there are
natural variation operators (mutation, crossover) for this representation.

90

Benjamin Doerr: Theory of Evolutionary Computation

Runtimes of Evolutionary Algorithms
To make statements on the performance of an evolutionary algorithm
(EA) in an implementation-independent manner, we regard as runtime (or
optimization time) the number of fitness evaluations that the EA used
until it queries for the first time an optimal solution.

This models that fact that in many EAs, the fitness evaluations are the
most costly part.

All EAs are randomized algorithms, i.e., they take random decisions
during the optimization process. Consequently, the runtime (and almost
everything) are random variables.

91 Benjamin Doerr: Theory of Evolutionary Computation

Definition: Runtime of an EA
Let be an EA, let be a function to be maximized, and let be
the series of search points evaluated by in a run when optimizing (the

are also random variables). Then the runtime of on the problem
is defined by

Several features of this random variable are interesting. We mostly care
about the expected runtime of an EA. This number is the average
number of function evaluations that are needed until an optimal solution
is evaluated for the first time.

Caution: sometimes runtime is stated in terms of generations, not
function evaluations. Hence this runtime is smaller than ours by a factor
equal to the number of search points evaluated per iteration.

92

545

Benjamin Doerr: Theory of Evolutionary Computation

Expected Runtimes – Caution!
Caution: Regarding the expectation only can be misleading. For this
reason, it is desirable to obtain more information about the runtime, e.g.,
its concentration behavior around the expectation.

Misleading expectation: The expected runtime is large, when

occasionally the EA takes very very long,

but usually the EA is very efficient.

In this case, the expectation does not tell you the full truth. For example,
the EA with a restart strategy or with parallel runs is very efficient for this
problem

Example: The DISTANCE function regarded in [DJW02], see next slide

93 Benjamin Doerr: Theory of Evolutionary Computation

Expected Runtimes – Caution!

94

Formally,

We regard a simple hill climber
(Randomized Local Search, RLS)
which is

initialized uniformly at random,

flips one bit at a time,

always accepts search points of
best-so-far fitness

With probability (almost) 1/2, the
algorithm has optimized DISTANCE

after steps

With probability ~1/2 it does not find
the optimum at all, thus having an
infinite expected optimization time

Benjamin Doerr: Theory of Evolutionary Computation

Appendix B
List of References

95

References

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics. World Scientific Publishing, 2011.

[AL14] Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection hyper-heuristics with classical learning mechanisms.
In Congress on Evolutionary Computation, CEC 2104, pages 2515–2523. IEEE, 2014.

[AMT15] Youhei Akimoto, Sandra Astete Morales, and Olivier Teytaud. Analysis of runtime of optimization algorithms for noisy
functions over discrete codomains. Theoretical Computer Science, 605:42–50, 2015.

[Bäc93] Thomas Bäck. Optimal mutation rates in genetic search. In International Conference on Genetic Algorithms, ICGA 1993,
pages 2–8. Morgan Kaufmann, 1993.

[BBD+09] Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, and Frank Neumann. Computing
single source shortest paths using single-objective fitness. In Foundations of Genetic Algorithms, FOGA 2009, pages 59–
66. ACM, 2009.

[BD17] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF
formulas. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 1343–1350. ACM, 2017. Full
version available at http://arxiv.org/abs/1704.04366.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adaptive mutation rates for the LeadingOnes
problem. In Parallel Problem Solving from Nature, PPSN 2010, pages 1–10. Springer, 2010.

[DD15a] Benjamin Doerr and Carola Doerr. Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete
settings. In Genetic and Evolutionary Computation Conference, GECCO 2015, pages 1335–1342. ACM, 2015.

[DD15b] Benjamin Doerr and Carola Doerr. A tight runtime analysis of the (1+(λ, λ)) genetic algorithm on OneMax. In Genetic and
Evolutionary Computation Conference, GECCO 2015, pages 1423–1430. ACM, 2015.

[DD18a] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm.
Algorithmica, 80:1658–1709, 2018.

[DD18b] Benjamin Doerr and Carola Doerr. Theory of parameter control for discrete black-box optimization: Provable performance
gains through dynamic parameter choices. CoRR, abs/1804.05650, 2018.

B. Doerr: Theory of Evolutionary Computation 96

546

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box complexity to designing new genetic algorithms.
Theoretical Computer Science, 567:87–104, 2015.

[DDK14a] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unbiased black-box complexities of jump functions: how to cross large
plateaus. In Genetic and Evolutionary Computation Conference, GECCO 2014, pages 769–776. ACM, 2014.

[DDK14b] Benjamin Doerr, Carola Doerr, and Timo Kötzing. The unbiased black-box complexity of partition is polynomial. Artificial
Intelligence, 216:275–286, 2014.

[DDL19] Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably optimal success rules.
In Genetic and Evolutionary Computation Conference, GECCO 2019. ACM, 2019. To appear.

[DDST16] Benjamin Doerr, Carola Doerr, Reto Spöhel, and Henning Thomas. Playing Mastermind with many colors. Journal of the
ACM, 63:42:1–42:23, 2016.

[DDY16] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise black-box analysis. In Genetic and
Evolutionary Computation Conference, GECCO 2016, pages 1123–1130. ACM, 2016.

[DGWY17] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1+λ) evolutionary algorithm with self-adjusting
mutation rate. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 1351–1358. ACM, 2017. Full
version available at http://arxiv.org/abs/1704.02191.

[DHK07] Benjamin Doerr, Edda Happ, and Christian Klein. A tight bound for the (1 + 1)-EA for the single source shortest path
problem. In Congress on Evolutionary Computation, CEC 2007, pages 1890–1895. IEEE, 2007.

[DHK08] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolutionary computation. In Genetic
and Evolutionary Computation Conference, GECCO 2008, pages 539–546. ACM, 2008.

[DHN07] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. Speeding up evolutionary algorithms through asymmetric muta-
tion operators. Evolutionary Computation, 15:401–410, 2007.

[DJ07] Benjamin Doerr and Daniel Johannsen. Adjacency list matchings: an ideal genotype for cycle covers. In Genetic and
Evolutionary Computation Conference, GECCO 2007, pages 1203–1210. ACM, 2007.

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based representation beats vertex-based representation in shortest path
problems. In Genetic and Evolutionary Computation Conference, GECCO 2010, pages 759–766. ACM, 2010.

B. Doerr: Theory of Evolutionary Computation 97

[DJK+11] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wagner, and Carola Winzen. Faster black-
box algorithms through higher arity operators. In Foundations of Genetic Algorithms, FOGA 2011, pages 163–172. ACM,
2011.

[DJK+13] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, and Madeleine Theile. More effective crossover
operators for the all-pairs shortest path problem. Theoretical Computer Science, 471:12–26, 2013.

[DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even when
optimizing monotone functions. Evolutionary Computation, 21:1–21, 2013.

[DJW98] Stefan Droste, Thomas Jansen, and Ingo Wegener. A rigorous complexity analysis of the (1 + 1) evolutionary algorithm
for separable functions with boolean inputs. Evolutionary Computation, 6:185–196, 1998.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[DJW10] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2010, pages 1449–1456. ACM, 2010.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Algorithmica, 64:673–697, 2012.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with the (1 + λ) evolutionary algorithm—different
asymptotic runtimes for different instances. Theoretical Computer Science, 561:3–23, 2015.

[DK18] Benjamin Doerr and Martin S. Krejca. Significance-based estimation-of-distribution algorithms. In Genetic and Evolution-
ary Computation Conference, GECCO 2018, pages 1483–1490. ACM, 2018.

[DKS07] Benjamin Doerr, Christian Klein, and Tobias Storch. Faster evolutionary algorithms by superior graph representation. In
Foundations of Computational Intelligence, FOCI 2007, pages 245–250. IEEE, 2007.

[DL16] Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of mutation rates in non-elitist populations. In Parallel Problem
Solving from Nature, PPSN 2016, pages 803–813. Springer, 2016.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2017, pages 777–784. ACM, 2017. Full version available at http:
//arxiv.org/abs/1703.03334.

B. Doerr: Theory of Evolutionary Computation 98

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime analysis of selection
hyper-heuristics with adaptive learning periods. In Genetic and Evolutionary Computation Conference, GECCO 2018,
pages 1015–1022. ACM, 2018.

[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and Dorian Nogneng. A new analysis method for
evolutionary optimization of dynamic and noisy objective functions. In Genetic and Evolutionary Computation Conference,
GECCO 2018, pages 1467–1474. ACM, 2018.

[Doe16] Benjamin Doerr. Optimal parameter settings for the (1+(λ, λ)) genetic algorithm. In Genetic and Evolutionary Computation
Conference, GECCO 2016, pages 1107–1114. ACM, 2016. Full version available at http://arxiv.org/abs/1604.01088.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money for nothing: Speeding up evolutionary algorithms
through better initialization. In Genetic and Evolutionary Computation Conference, GECCO 2015, pages 815–822. ACM,
2015.

[Dro02] Stefan Droste. Analysis of the (1+ 1) EA for a dynamically changing OneMax-variant. In Congress on Evolutionary
Computation, CEC 2002, pages 55–60. IEEE, 2002.

[Dro03] Stefan Droste. Analysis of the (1+1) EA for a dynamically bitwise changing OneMax. In Genetic and Evolutionary Compu-
tation Conference, GECCO 2003, pages 909–921. Springer, 2003.

[Dro04] Stefan Droste. Analysis of the (1+1) EA for a noisy OneMax. In Genetic and Evolutionary Computation Conference,
GECCO 2004, pages 1088–1099. Springer, 2004.

[DS19] Benjamin Doerr and Andrew M. Sutton. When resampling to cope with noise, use median, not mean. In Genetic and
Evolutionary Computation Conference, GECCO 2019. ACM, 2019. To appear.

[DSW13] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do evolutionary algorithms optimize separable functions in parallel?
In Foundations of Genetic Algorithms, FOGA 2013, pages 48–59. ACM, 2013.

[DT09] Benjamin Doerr and Madeleine Theile. Improved analysis methods for crossover-based algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2009, pages 247–254. ACM, 2009.

[DW12a] Benjamin Doerr and Carola Winzen. Memory-restricted black-box complexity of OneMax. Information Processing Letters,
112:32–34, 2012.

B. Doerr: Theory of Evolutionary Computation 99

[DW12b] Benjamin Doerr and Carola Winzen. Reducing the arity in unbiased black-box complexity. In Genetic and Evolutionary
Computation Conference, GECCO 2012, pages 1309–1316. ACM, 2012.

[DW14] Benjamin Doerr and Carola Winzen. Ranking-based black-box complexity. Algorithmica, 68:571–609, 2014.

[DWY18] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-adaptive mutation rates. In Genetic and Evolution-
ary Computation Conference, GECCO 2018, pages 1475–1482. ACM, 2018.

[EHM99] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 3:124–141, 1999.

[ELG+18] Hafsteinn Einarsson, Johannes Lengler, Marcelo Matheus Gauy, Florian Meier, Asier Mujika, Angelika Steger, and Felix
Weissenberger. The linear hidden subset problem for the (1 + 1) EA with scheduled and adaptive mutation rates. In
Genetic and Evolutionary Computation Conference, GECCO 2018, pages 1491–1498. ACM, 2018.

[FHH+09] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Analyses of simple hybrid algorithms for
the vertex cover problem. Evolutionary Computation, 17:3–19, 2009.

[FKK16] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. EDAs cannot be balanced and stable. In Genetic and Evolutionary
Computation Conference, GECCO 2016, pages 1139–1146. ACM, 2016.

[FKKS17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton. The compact genetic algorithm is efficient under
extreme Gaussian noise. IEEE Transactions on Evolutionary Computation, 21:477–490, 2017.

[FM92] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building block hypothesis. In Foundations
of Genetic Algorithms, FOGA 1992, pages 109–126. Morgan Kaufmann, 1992.

[FW04] Simon Fischer and Ingo Wegener. The ising model on the ring: Mutation versus recombination. In Genetic and Evolution-
ary Computation, GECCO 2004, pages 1113–1124. Springer, 2004.

[GK16] Christian Gießen and Timo Kötzing. Robustness of populations in stochastic environments. Algorithmica, 75:462–489,
2016.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary mutations. Evolutionary Computa-
tion, 7:173–203, 1999.

B. Doerr: Theory of Evolutionary Computation 100

547

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Pub-
lishing Co., Inc., 1989.

[GP14] Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Genetic and Evolutionary Computation
Conference, GECCO 2014, pages 785–792. ACM, 2014.

[GW17] Christian Gießen and Carsten Witt. The interplay of population size and mutation probability in the (1 + λ) EA on OneMax.
Algorithmica, 78:587–609, 2017.

[HGAK06] Nikolaus Hansen, Fabian Gemperle, Anne Auger, and Petros Koumoutsakos. When do heavy-tail distributions help? In
Parallel Problem Solving from Nature, PPSN 2006, pages 62–71. Springer, 2006.

[HGD94] Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Long path problems. In Parallel Problem Solving from Nature,
PPSN 1994, pages 149–158. Springer, 1994.

[HJKN08] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of fitness-proportional selection
for optimizing linear functions. In Genetic and Evolutionary Computation Conference, GECCO 2008, pages 953–960.
ACM, 2008.

[HLG99] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. The compact genetic algorithm. IEEE Transactions on
Evolutionary Computation, 3:287–297, 1999.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127:51–
81, 2001.

[Jäg08] Jens Jägersküpper. A blend of Markov-chain and drift analysis. In Parallel Problem Solving From Nature, PPSN 2008,
pages 41–51. Springer, 2008.

[Jan07] Thomas Jansen. On the brittleness of evolutionary algorithms. In Foundations of Genetic Algorithms, FOGA 2007, pages
54–69. Springer, 2007.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms - The Computer Science Perspective. Natural Computing Series.
Springer, 2013.

B. Doerr: Theory of Evolutionary Computation 101

[JOZ13] Thomas Jansen, Pietro Simone Oliveto, and Christine Zarges. Approximating vertex cover using edge-based representa-
tions. In Foundations of Genetic Algorithms, FOGA 2013, pages 87–96. ACM, 2013.

[JW99] Thomas Jansen and Ingo Wegener. On the analysis of evolutionary algorithms - a proof that crossover really can help. In
European Symposium on Algorithms, ESA 1999, pages 184–193. Springer, 1999.

[JW00] Thomas Jansen and Ingo Wegener. On the choice of the mutation probability for the (1+1) EA. In Parallel Problem Solving
from Nature, PPSN 2000, pages 89–98. Springer, 2000.

[JW05] Thomas Jansen and Ingo Wegener. Real royal road functions–where crossover provably is essential. Discrete Applied
Mathematics, 149:111–125, 2005.

[JW06] Thomas Jansen and Ingo Wegener. On the analysis of a dynamic evolutionary algorithm. Journal of Discrete Algorithms,
4:181–199, 2006.

[KHE15] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben. Parameter control in evolutionary algorithms: Trends and
challenges. IEEE Transactions on Evolutionary Computation, 19:167–187, 2015.

[KLW15] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. (1+1) EA on generalized dynamic OneMax. In Foundations of Genetic
Algorithms, FOGA 2015, pages 40–51. ACM, 2015.

[Len18] Johannes Lengler. A general dichotomy of evolutionary algorithms on monotone functions. In Parallel Problem Solving
from Nature, PPSN 2018, pages 3–15. Springer, 2018.

[LOW17] Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair Warwicker. On the runtime analysis of generalised selection
hyper-heuristics for pseudo-boolean optimisation. In Genetic and Evolutionary Computation Conference, GECCO 2017,
pages 849–856. ACM, 2017.

[LS11] Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring populations and parallel evolutionary algorithms.
In Foundations of Genetic Algorithms, FOGA 2011, pages 181–192. ACM, 2011.

[LS18] Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms revisited. Combinatorics, Probability &
Computing, 27:643–666, 2018.

[LSW18] Johannes Lengler, Dirk Sudholt, and Carsten Witt. Medium step sizes are harmful for the compact genetic algorithm. In
Genetic and Evolutionary Computation Conference, GECCO 2018, pages 1499–1506. ACM, 2018.

B. Doerr: Theory of Evolutionary Computation 102

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algorithmica, 64:623–642, 2012.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing. In Parallel Problem Solving from Nature,
PPSN 1992, pages 15–26. Elsevier, 1992.

[Neu04] Frank Neumann. Expected runtimes of evolutionary algorithms for the eulerian cycle problem. In Congress on Evolutionary
Computation, CEC 2004, pages 904–910. IEEE, 2004.

[NOW09] Frank Neumann, Pietro Simone Oliveto, and Carsten Witt. Theoretical analysis of fitness-proportional selection: land-
scapes and efficiency. In Genetic and Evolutionary Computation Conference, GECCO 2009, pages 835–842. ACM, 2009.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree
problem. Theoretical Computer Science, 378:32–40, 2007.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Com-
putational Complexity. Springer, 2010.

[OHY09] Pietro Simone Oliveto, Jun He, and Xin Yao. Analysis of the (1+1)-EA for finding approximate solutions to vertex cover
problems. IEEE Transactions on Evolutionary Computation, 13:1006–1029, 2009.

[OW15] Pietro Simone Oliveto and Carsten Witt. Improved time complexity analysis of the simple genetic algorithm. Theoretical
Computer Science, 605:21–41, 2015.

[Pos09] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Genetic and
Evolutionary Computation Conference, GECCO 2009, Companion Material, pages 2309–2314. ACM, 2009.

[Pos10] Petr Posı́k. Comparison of Cauchy EDA and BIPOP-CMA-ES algorithms on the BBOB noiseless testbed. In Genetic and
Evolutionary Computation Conference, GECCO 2010, Companion Material, pages 1697–1702. ACM, 2010.

[QBJT17] Chao Qian, Chao Bian, Wu Jiang, and Ke Tang. Running time analysis of the (1+1)-EA for Onemax and Leadingones
under bit-wise noise. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 1399–1406. ACM,
2017.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovǎc, 1997.

[SGS11] Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy tails for natural evolution strate-
gies. In Genetic and Evolutionary Computation Conference, GECCO 2011, pages 845–852. ACM, 2011.

B. Doerr: Theory of Evolutionary Computation 103

[SH87] Harold H. Szu and Ralph L. Hartley. Fast simulated annealing. Physics Letters A, 122:157–162, 1987.

[ST12] Dirk Sudholt and Christian Thyssen. A simple ant colony optimizer for stochastic shortest path problems. Algorithmica,
64:643–672, 2012.

[Sto06] Tobias Storch. How randomized search heuristics find maximum cliques in planar graphs. In Genetic and Evolutionary
Computation Conference, GECCO 2006, pages 567–574. ACM, 2006.

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The analysis of evolutionary algorithms on sorting and shortest
paths problems. Journal of Mathematical Modelling and Algorithms, 3:349–366, 2004.

[Sud05] Dirk Sudholt. Crossover is provably essential for the Ising model on trees. In Genetic and Evolutionary Computation
Conference, GECCO 2005, pages 1161–1167. ACM, 2005.

[Sud18] Dirk Sudholt. On the robustness of evolutionary algorithms to noise: refined results and an example where noise helps. In
Genetic and Evolutionary Computation Conference, GECCO 2018, pages 1523–1530. ACM, 2018.

[SW04] Tobias Storch and Ingo Wegener. Real royal road functions for constant population size. Theoretical Computer Science,
320:123–134, 2004.

[Wit05] Carsten Witt. Worst-case and average-case approximations by simple randomized search heuristics. In Symposium on
Theoretical Aspects of Computer Science, STACS 2005, pages 44–56. Springer, 2005.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combinatorics,
Probability & Computing, 22:294–318, 2013.

[Wit14] Carsten Witt. Fitness levels with tail bounds for the analysis of randomized search heuristics. Information Processing
Letters, 114:38–41, 2014.

[Wit17] Carsten Witt. Upper bounds on the runtime of the univariate marginal distribution algorithm on onemax. In Genetic and
Evolutionary Computation Conference, GECCO 2017, pages 1415–1422. ACM, 2017.

[YL97] Xin Yao and Yong Liu. Fast evolution strategies. In Evolutionary Programming, volume 1213 of Lecture Notes in Computer
Science, pages 151–162. Springer, 1997.

[YLL99] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary
Computation, 3:82–102, 1999.

B. Doerr: Theory of Evolutionary Computation 104

548

[ZYD18] Weijie Zheng, Guangwen Yang, and Benjamin Doerr. Working principles of binary differential evolution. In Genetic and
Evolutionary Computation Conference, GECCO 2018, pages 1103–1110. ACM, 2018.

B. Doerr: Theory of Evolutionary Computation 105

549

