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Why Evolve Neural Networks?

| Original role (since 1990s): Sequential Decision Tasks

> Both the structure and the weights evolved (no training)
> Power from recurrency: POMDP tasks; behavior

II' A new role (since 2016): Optimization of Deep Learning Nets

» Components, topology, hyperparameters evolved; weights trained
> Power from complexity

111 A possible future role: Emergence of intelligence

> Body/brain co-evolution; Competitive co-evolution
> Evolution of memory, language, learning
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Why Use Neural Networks?
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» Neural nets powerful in many statistical domains

» E.g. control, pattern recognition, prediction, decision making
» Where no good theory of the domain exists

» Good supervised training algorithms exist

» Learn a nonlinear function that matches the examples
» Utilize big datasets

|. Sequential Decision Tasks

» A sequence of decisions creates a sequence of states

» States are only partially known
» Optimal outputs are not known
» We can only tell how well we are doing

» Exist in many important real-world domains

» Robot/vehicle/traffic control
» Computer/manufacturing/process optimization
» Game playing; Artificial Life; Biological Behavior
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Standard Reinforcement Learning

Win!

Sensors

Function L val
Approximator alue

Decision

v

AHC, Q-learning, Temporal Differences

» Generate targets through prediction errors
» Learn when successive predictions differ

Predictions represented as a value function
» Values of alternatives at each state

Difficult with large/continuous state and action spaces
Difficult with hidden states
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How Well Does It Work?

Poles | Method Evals  Succ.
One VAPS [ (500,000) 0%
SARSA 13,562 59%
Q-MLP 11,331

NE 127

[Two ] NE | 3,416 ]

» Difficult RL benchmark: POMDP Pole Balancing
» NE 2-3 orders of magnitude faster than standard RL?’
» NE can solve harder problems
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Neuroevolution (NE) Reinforcement Learning

Sensors %{ Neural Net ]% Decision

v

v

Direct nonlinear mapping from sensors to actions
Large/continuous states and actions easy

» Generalization in neural networks
Hidden states (in POMDP) disambiguated through
memory

» Recurrency in neural networks ’®
» Deep Reinforcement Learning 5463
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Neuroevolution for POMDP

LeftRight Forward/Back  Fire

Enemy Radars On  Object Rangefiners ~ Enemy
Target LOF
Sensors

» Input variables describe the state observed through sensors
» Output variables describe actions

» Network between input and output:

» Recurrent connections implement memory
» Memory helps with POMDP

NE = constructing neural networks with evolutionary algorithms
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Basic Neuroevolution (1)

Genetic
Algorithm \
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observation “Hte

Neural Network

» Evolving connection weights in a population of networks 47:62:89.90

» Chromosomes are strings of connection weights (bits or real)

» E.g. 10010110101100101111001

» Usually fully connected, fixed topology
> Initially random

Problems with Basic Neuroevolution

Genetic\_..."m==
2 Algotithm
D

- e
action I

observation

Neural Network

Evolution converges the population (as usual with EAs)
» Diversity is lost; progress stagnates
» Competing conventions
» Different, incompatible encodings for the same solution
» Too many parameters to be optimized simultaneously
» Thousands of weight values at once
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Basic Neuroevolution (2)

action

observation

Neural Network

» Parallel search for a solution network
» Each NN evaluated in the task
» Good NN reproduce through crossover, mutation
» Bad thrown away

» Natural mapping between genotype and phenotype
» GA and NN are a good match!

Advanced NE 1: Evolving Partial Networks

action
observation

Recurrent
Neural Network

» Evolving individual neurons to cooperate in networks 4853
» E.g. Enforced Sub-Populations (ESP '8)

» Each (hidden) neuron in a separate subpopulation
» Fully connected; weights of each neuron evolved
» Populations learn compatible subtasks

» Can be applied at the level of weights, and modules



Evolving Neurons with ESP

Generation 1 o ‘ Generation 20

#

Generation 50 'Gen)erat‘ion HOO C

» Evolution encourages diversity automatically
» Good networks require different kinds of neurons

» Evolution discourages competing conventions
» Neurons optimized for compatible roles

» Large search space divided into subtasks
» Optimize compatible neurons

Advanced NE 3: Evolving Network Structure
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» Optimizing connection weights and network topology 141692
» E.g. Neuroevolution of Augmenting Topologies (NEAT 70-73)

» Based on Complexification

v

Of networks:

» Mutations to add nodes and connections
Of behavior:

» Elaborates on earlier behaviors

v
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Advanced NE 2: Evolutionary Strategies

fitness

2 Algorithm

observation

Neural Network

v

Evolving complete networks with ES (CMA-ES26)

v

Small populations, no crossover

\4

Instead, intelligent mutations

» Adapt covariance matrix of mutation distribution
» Take into account correlations between weights

v

Smaller space, less convergence, fewer conventions

Why Complexification?

Minimal Starting Networks

/\N\f\*fW\f\;

ion of Diverse Top
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» Challenge with NE: Search space is very large
» Complexification keeps the search tractable
» Start simple, add more sophistication

» Incremental construction of intelligent agents




Advanced NE 4: Indirect Encodings (1)

Indirect Encodings (2)

! r—input X1 Y1 2 Y2
S I pointer l i I i
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» Instructions for constructing the network evolved » Encode the networks as spatial patterns

» Instead of specifying each unit and connection?14:46.68.92 » E.g. Hypercube-based NEAT (HyperNEAT®) |
A /
» E.g. Cellular Encoding (CE?3) » Evolve a neural network (CPPN) ;@
» Grammar tree describes construction to generate spatial patterns ’ :
» Sequential and parallel cell division » 2D CPPN: (x,y) input — grayscale output ED D
» Changing thresholds, weights » 4D CPPN: (x1,y1, X2, y2) input — w output N

» A “developmental” process that results in a network » Connectivity and weights can be evolved indirectly
» Works with very large networks (millions of connections)

Properties of Indirect Encodings (1) Properties of Indirect Encodings (2)

» Not fully explored (yet)
» See e.g. CS track at GECCO

» Promising current work

\4

Smaller search space

v

Avoids competing conventions

v

Describes classes of networks

efficiently » More general L-systems;

developmental codings;
embryogeny 74
» Scaling up spatial coding®'”
» Genetic Regulatory Networks %8
» Evolution of symmetries®

v

Modularity, reuse of structures

» Recurrency symbol in CE: XOR — parity
» Repetition with variation in CPPNs
» Useful for evolving morphology
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Further NE Techniques

» Incremental and multiobjective evolution?0:65.81.90
» Utilizing population culture #4278

» Utilizing evaluation history3°

» Evolving NN ensembles and modules?7-38,52.59.86

» Evolving transfer functions and learning rules%8%75
» Bilevel optimization of NE3’

» Evolving LSTMs for strategic behavior3#

» Combining learning and evolution®15:42,51,71,78,87

» Evolving for novelty

Novelty Search

c§=/ejo/0

23f, 57c 20f, 24c  20f,29c  19f,24c  22f, 28c
74 gen failed failed failed failed

- BBT

gen 12 gen 20 gen 36 gen 49 gen 74

» Evolutionary algorithms maximize a performance objective
» But sometimes hard to achieve it step-by-step

» Novelty search rewards candidates that are simply different3'72
» Stepping stones for constructing complexity

Evolving for Novelty

» Motivated by humans as fitness functions
» E.g. picbreeder.com, endlessforms.com®8

» CPPNs evolved; Human users select parents
» No specific goal

» Interesting solutions preferred
» Similar to biological evolution?

N
[
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Novelty Search Demo (1)

» 1D function to optimize; Fitness-based search would converge
» Novelty search finds stepping stones
» DEMO

N
o
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Novelty Search Demo (2)

Method: BDMA-2a 11.0
Iteration: 6444
w: 0.00344 5.5

0 2 B 4 6 8 10 12 14

» lllustration of stepping stones 344

» Nonzero fitness on “feet” only; stepwise increase
» Top and right “toes” are stepping stones to next “foot”
» Difficult for fithess based search; novelty can do it

» DEMO
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Neuroevolution Applications

Control

Pole-Balancing

Rocket

e

Multilegged

Robotics -

Soccer

Games

Othello

Alife

Hyenas/Zebras

Predators

Virtual Creatures

28/71
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Novelty Search Demo (3)

Fitness Best Novelty Best

» Fitness-based evolution is rigid
» Requires gradual progress
» Novelty-based evolution is more innovative, natural3'-72

» Allows building on stepping stones
» As a secondary objective—or even the only one!

» DEMO

Games: Evolving Humanlike Behavior

» Botprize competition, 2007-2012
» Turing Test for game bots ($10,000 prize)
» Three players in Unreal Tournament 2004:

» Human confederate: tries to win
» Software bot: pretends to be human
» Human judge: tries to tell them apart!

27/71
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Evolving an Unreal Bot

\4

Evolve effective fighting behavior
» Human-like with resource limitations (speed, accuracy...)

v

Also scripts & learning from humans (unstuck, wandering...)
2007-2011: bots 25-30% vs. humans 35-80% human
6/2012 best bot better than 50% of the humans

9/2012...7

v

v

v
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Il. Optimization of DL Architectures

14
IR

A gl MG 5y na
SRR Hi

Szegedy et al. 5014
» Big Data and Big Compute available since 2000s
» Machine learning systems have scaled up
» E.g. Deep Learning ideas existed since the 1990s
» With million times more data & compute, they now work!
» A new problem: How to configure such systems?
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Success!!!

IT}_.;Q_K B_gtPr‘Iza : Home

» In 2012, two teams reach the 50% mark!
» Fascinating challenges remain:

» Judges can still differentiate in seconds
» Judges lay cognitive, high-level traps
» Team competition: collaboration as well

» DEMO

31/71

Configuring Complex Systems

» A new general approach to engineering
» Humans design just the framework
» Machines optimize the details

» Programming by optimization?*
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E.g. Optimizing NE in Helicopter Hovering

» A challenging benchmark
» RL, NE solutions exist
» Eight parameters optimized by hand?®
» Hard for a human designer to do more
» With EA, increased to 15
» —Significantly better performance®’

Motivation for Evolutionary NAS
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Evolutionary Neural Architecture Search is a natural fit:
® Population-based search covers the space

® Crossover between structures discovers principles

® Novelty search maximizes exploration

Building on Neuroevolution work since the 1990s

Hyperparameters; nodes; modules; topologies; multiple tasks

Motivation for Neural Architecture Search

] i
Szegedy et al. 2014

Agrawal et al. 2016

Employ neural architecture search (NAS)
Offer as a service in cloud computing?

(Vinyals et al. 2016)
Different Deep Learning tasks require different architectures
® Architecture matters
® Too complex to optimize by hand

Cognizant 2

Lehman et al. 2017

» Understanding ES and GAs in RL (Uber)30:76:93

» ES provides more exploration than gradients

» GA provides more exploration than ES
» Image processing (Google Brain)
» CIFAR-10, CIFAR-100, and ImageNet®®

» Language modeling and multitasking (Sentient)

Cognizant 1
State of the Art Results in 2018
0.92, Eyolution
RL
<
£
RS
0.895 m 20k
Real et al. 2018



Node-level Evolution: Sequences

g <
[ / N »
[/ RN
\ Layerz
A = PN
®e

A~ 2 &
\ :/ RNN \\ — =
\uy'"/ ®
* Evolving gated memory units (i.e. LSTMs) for a fixed architecture
® LSTM structure essentially the same for 25 years

* Tree representation of the nodes
* Optimized through genetic programming

h(t)
I
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Improve Human Design

« E.g. image captioning: s e (e
¢ Start with a state-of-the art design: Show&Tell 3 -
¢ Search in the space of similar elements
* 5% improvement
* A prototype service on the web

Best-performing Al defies human notions of symmetry an
patterns of organization

Al designing Al: could we automate it?

+ ACOUPLE OF
CIRCULAR BEARS IN THE
STRUCTURE WATER

Cognizant
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h(t)
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Node Evolution Benchmarks

oft)

* Discovered multiple memory cells, nonlinear paths L
* Complexity matters! eSS
. LY X))
* Broader search than other NAS methods
d(t) » - LSTM -
* Language Modeling benchmark “ e *
- ee®e® - @
* Improve perplexity by 15% ® @ ® @ ® o -
* State of the art in 1/2018 T R Seem ® R (ere
O OO =@ o®e © - cvee
* Music Generation benchmark ®e -® oo o-0 -ocoe
i i ® - o - ®® - 00O -
* Adifferent solution necessary PS ®oo® ovs e
* Demo: ai.cognizant.com/evoai/lstm-music =~ ® = L ®® ®®

® [Eyolved - Language Evolved - Music
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2019: Evolutionary AutoML

Current AutoML: Hyperparameter optimization
Evolutionary AutoML: Architectures and modules a:

1. Improve over naive baseline
20% or more with little effort

2. Improve state of the art

With more expertise & compute
3. Extend small datasets

Multitasking with related datasets
4. Minimize network resources

Train and run networks faster

s Cognizant



1 and 2: Improve Performance

Network-level Evolution: Multitasking

Toxicity Error by Generation o
Domain: Wikipedia Toxic Comment — e
Identification \ Mo ra . Sigon
*  Why: Toxicity is bad for business ~ *** | ooy |°
* Data: 160K labeled comments ! ——
* Challenge: highly diverse 0038 ‘\ oo
vocabulary, style, and length E
Layer Types: Conv1D, LSTM, GRU %mm \1 § (a) (b) (c)
LEAF Results: (o
*  With minimal compute: Improves ., . . .
over naive Keras baseline \ » Learning in multiple tasks at once
T ulin more compute: improves over — > More generalizable embeddings
*  With more compute: Improves over °*** - - ) : - » Each task can learn better
SOTA hand-designed model. o ® ® ueaton ° * ©
* LEAF Hyperparameter Searchon & & » Network structure can have a large effect
final architecture gives a final boost _F——= T B » A good domain to test neuroevolution of structure
s Cognizant s s Cognizant
3. Extend Small Datasets
Network = Topology and Modules
Greek w Japanese
Parallel Order Soft Order Optimal? Latin
x 8 ,
LI o« o w Kk E
’ o d W TR 3 F
< g Sanskrit
Q— la} Tengwar
Hebrew .q a m -5 Cq
o) PR + < NKo mh 9
@ st @ oz @ vowies @ wedios (@) Sharedose Bundary n
}{ SJ Korean hd F ’Y, P’
» Co-evolve the topology and modules 7 HH O @2 I N s P
(Liang et al. 2018; Meyerson et al. 2018) )‘ - _A'_ H
» Different topology for each task, using same modules <) IN o . 50 total alphabets
» Modules trained across all tasks . .
» Recoanize characters in 50 alohabets
Cognizant s Cognizant
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Evolution of Multitask Networks: Topology+Modules

7% e 9-9 d
’ * A
3 ° e ve : e )
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U k3 Y v N :
’ * - 3
Some tasks do not grow their graphs at all over evolution. e 2 ,
Other tasks grow much larger graphs. . R -
For a given task, this quality is consistent across runs. ¢ e
Hard to discover by hand - o
7 Cognizant
4. Minimize Network Resources
Accuracy vs.Traiing Time Tradeot
Evolution adds complexity only if needed st e
» Favors minimal solutions
» Over evolution a range of sizes explored
» Approximation of the Pareto front
094 #
Small networks found that perform well .
* Minimization with little cost E
» E.g. 0.38% drop with 1/12t of the size
Adding a size objective will explore more »
¢
0 Cognizant

705

Multitasking Benchmarks

State-of-the-art in two ML benchmarks:

» Omniglot multialphabet character recognition
* Improved state-of-the-art 31%
+ Demo: ai.cognizant.com/evoai/omni-draw

» CelebA multiattribute face classification
» Improved state-of-the-art 0.75%
» Demo: ai.cognizant.com/evoai/celeb-match

Improves learning in each task
» Even when little data available

. ® e—
fFy * o Qs Y v E
: cd v TR T F
q St
3 - HqT Tengwar
o a e
B ovNn + N [ .
X v orean T F 3 P
2 I WO 2 3 AP
& X 81 e

Multiobjective Minimization

Cognizant

* Animation: Pareto front by
generation for single-objective
(green) vs. multi-objective (blue)

* Single-objective focuses on
improving largest networks

* Multi-objective focuses on
improving the entire curve

* Result: Multi-objective finds much
smaller models for the majority of
performance values.

Coghnizant 10



Example Performance/Size Tradeoffs

input_task_00_term_00: InputLayer

Max Network

l I Generation 67
. flattendec_task_00_term_00: Flatten - [w
Min Network:
Generation 0
densedec_task_00_term_00: Dense

Tradeoff Network: Generation 28

« Sequential, GRUs after 2 pooling layers
" Cognizant
Encapsulation
» Once evolved, a trigger node is added
» DEMO
36/71

[ll. Emergence of Intelligence
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proprio-
ceptor

proprio-
ceptor

target: 1:0/ \target: 0:1

sinusoidal

amplitude: 1

muscle
target: 0:0

Brain

muscle
target: 1:0

» Origins of intelligence: Embodied optimization

Body

» Body-Brain Coevolution'-23
» Body: Blocks, muscles, joints, sensors
» Brain: A neural network (with general nodes)

» Evolved together in a physical simulation
» Encapsulation, Pandemodium, Syllabus

Pandemonium

frequency: 1.97337
phase: 0.835238

proprio-
ceptor

target: 0:0

muscle
target: 0:1

» Conflicting behaviors: Highest trigger wins
» DEMO

2/71
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Syllabus Turn to Light

TURN TO

RIGHT _LEFT FORWARD

requires —
learning order (@
pandemonium ====

» First level of complexity
» Selecting between alternative primitives

» Step-by-step construction of complex behavior
» Primitives and three levels of complexity

» Constructed by hand; body and brain evolved together . .

Move to light Strike

"~ MOVE TO

[ MOVETO |

’ TURN TO [FORWARD)

RIGHT |

STRIKE |

» First level of complexity (Sims 1994)
» Selecting between alternative primitives

» Alternative behavior primitive

40/71 41/71
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Attack

MOVE TO
FORWARD|
LEFT

» Second level of complexity (beyond Sims and others)

Retreat
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Turn from Light

MOVE TO

{ TURN TO, ’TURN FROM|FORWARD)

T STRIKE | RIGHT |

» Alternative second-level behavior
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MOVE TO
STRIKE TURN TO r URN'FROTORWARD
Rl _RIGHTJ

» Alternative first-level behavior

Fight or Flight
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- mrrysnynzyrearzrvsra
FIGHTOR|
FLIGHT |

LSl

MOVETO |

)‘ITURN FRDMI TURN TO

| LEFT |

(e

» Third level of complexity
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Insight: Body/Brain Coevolution Constructing Intelligent Systems

STRIKE

FIGHTOR|
FLIGHT |
| M=,

L

MOVETO |
v, DI:URNFRDM ‘TURN TO

LEFT |

;— = | [ s ‘“;

» Believable, complex behavior in embedded
environments

» Open-ended “arms race”

» Similar to self-play e.g. in AlphaGo Zero
» Complexity beyond human ability to design it

» |f we can build open ended environments,
should be able to build more complex solutions

» Evolving body and brain together poses strong constraints
» Behavior appears believable
» Worked well also in BotPrize (Turing test for game bots) %

» Possible to construct innovative, situated behavior
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Conclusion Further Material

» www.cs.utexas.edu/users/risto/talks/enn-tutorial

» Slides and references

» Demos

» A step-by-step neuroevolution exercise (evolving behavior
in the NERO game)

» www.scholarpedia.org/article/Neuroevolution

» Al extending from prediction to creativity » A short summary of neuroevolution

> i.e. from modeling to optimization » www.nature.com/articles/s42256-018-0006-z
> i.e. from Deep Learning to Evolution/RL

» Evolutionary optimization of neural networks can _
» Discover novel and strategic behavior > arxiv.org/abs/1902.09635

> Discover useful complexity for Deep Learning » Proposal for NAS benchmark
» Gain insight into origins of intelligence

» Nature Machine Intelligence survey on Neuroevolution
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