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Why Use Neural Networks?
OUTPUTS

INPUTS

I Neural nets powerful in many statistical domains
I E.g. control, pattern recognition, prediction, decision making
I Where no good theory of the domain exists

I Good supervised training algorithms exist
I Learn a nonlinear function that matches the examples
I Utilize big datasets
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Why Evolve Neural Networks?

III

II

I

I. Sequential Decision Tasks

I A sequence of decisions creates a sequence of states

I States are only partially known

I Optimal outputs are not known

I We can only tell how well we are doing

I Exist in many important real-world domains

I Robot/vehicle/traffic control

I Computer/manufacturing/process optimization

I Game playing; Artificial Life; Biological Behavior
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Standard Reinforcement Learning

Win!

Function
Approximator

Sensors

Value

Decision

I AHC, Q-learning, Temporal Differences
I Generate targets through prediction errors
I Learn when successive predictions differ

I Predictions represented as a value function
I Values of alternatives at each state

I Difficult with large/continuous state and action spaces
I Difficult with hidden states
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Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

I NE = constructing neural networks with evolutionary algorithms
I Direct nonlinear mapping from sensors to actions
I Large/continuous states and actions easy

I Generalization in neural networks
I Hidden states (in POMDP) disambiguated through

memory
I Recurrency in neural networks79

I Deep Reinforcement Learning54,63
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How Well Does It Work?

Poles Method Evals Succ.
One VAPS (500,000) 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127
Two NE 3,416

I Difficult RL benchmark: POMDP Pole Balancing
I NE 2-3 orders of magnitude faster than standard RL21

I NE can solve harder problems
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Neuroevolution for POMDP

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Input variables describe the state observed through sensors
I Output variables describe actions
I Network between input and output:

I Recurrent connections implement memory
I Memory helps with POMDP
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Basic Neuroevolution (1)

I Evolving connection weights in a population of networks 47,62,89,90

I Chromosomes are strings of connection weights (bits or real)
I E.g. 10010110101100101111001
I Usually fully connected, fixed topology
I Initially random
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Basic Neuroevolution (2)

I Parallel search for a solution network
I Each NN evaluated in the task
I Good NN reproduce through crossover, mutation
I Bad thrown away

I Natural mapping between genotype and phenotype
I GA and NN are a good match!

11/71

Problems with Basic Neuroevolution

I Evolution converges the population (as usual with EAs)
I Diversity is lost; progress stagnates

I Competing conventions
I Different, incompatible encodings for the same solution

I Too many parameters to be optimized simultaneously
I Thousands of weight values at once
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Advanced NE 1: Evolving Partial Networks

I Evolving individual neurons to cooperate in networks1,48,53

I E.g. Enforced Sub-Populations (ESP18)
I Each (hidden) neuron in a separate subpopulation
I Fully connected; weights of each neuron evolved
I Populations learn compatible subtasks

I Can be applied at the level of weights, and modules

13/71
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Evolving Neurons with ESP
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I Evolution encourages diversity automatically
I Good networks require different kinds of neurons

I Evolution discourages competing conventions
I Neurons optimized for compatible roles

I Large search space divided into subtasks
I Optimize compatible neurons
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Advanced NE 2: Evolutionary Strategies

I Evolving complete networks with ES (CMA-ES26)

I Small populations, no crossover

I Instead, intelligent mutations
I Adapt covariance matrix of mutation distribution
I Take into account correlations between weights

I Smaller space, less convergence, fewer conventions
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Advanced NE 3: Evolving Network Structure

I Optimizing connection weights and network topology2,14,16,92

I E.g. Neuroevolution of Augmenting Topologies (NEAT70,73)

I Based on Complexification

I Of networks:
I Mutations to add nodes and connections

I Of behavior:
I Elaborates on earlier behaviors
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Why Complexification?

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

I Challenge with NE: Search space is very large
I Complexification keeps the search tractable

I Start simple, add more sophistication
I Incremental construction of intelligent agents

17/71
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Advanced NE 4: Indirect Encodings (1)

I Instructions for constructing the network evolved
I Instead of specifying each unit and connection2,14,46,68,92

I E.g. Cellular Encoding (CE23)
I Grammar tree describes construction

I Sequential and parallel cell division
I Changing thresholds, weights
I A “developmental” process that results in a network
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Indirect Encodings (2)

I Encode the networks as spatial patterns
I E.g. Hypercube-based NEAT (HyperNEAT8)
I Evolve a neural network (CPPN)

to generate spatial patterns
I 2D CPPN: (x, y) input! grayscale output
I 4D CPPN: (x1, y1, x2, y2) input! w output
I Connectivity and weights can be evolved indirectly
I Works with very large networks (millions of connections)
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Properties of Indirect Encodings (1)

I Smaller search space

I Avoids competing conventions

I Describes classes of networks
efficiently

I Modularity, reuse of structures
I Recurrency symbol in CE: XOR! parity
I Repetition with variation in CPPNs
I Useful for evolving morphology
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Properties of Indirect Encodings (2)

I Not fully explored (yet)
I See e.g. CS track at GECCO

I Promising current work
I More general L-systems;

developmental codings;
embryogeny74

I Scaling up spatial coding9,17

I Genetic Regulatory Networks58

I Evolution of symmetries82

21/71
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Further NE Techniques

I Incremental and multiobjective evolution20,65,81,90

I Utilizing population culture4,42,78

I Utilizing evaluation history39

I Evolving NN ensembles and modules27,38,52,59,86

I Evolving transfer functions and learning rules6,60,75

I Bilevel optimization of NE37

I Evolving LSTMs for strategic behavior34

I Combining learning and evolution5,15,42,51,71,78,87

I Evolving for novelty
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Evolving for Novelty

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

CPPN = Compositional 
Pattern  
Producing Network 

Mapping 

45 

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 
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CPPN Patterns (Also for brains?) 
From http://picbreeder.org 52,53 

(All are 100% evolved: no retouching) 

47 

CPPN-based Indirect Encoding:  
Hypercube-based NEAT (HyperNEAT)19,60 
• Main insight: 2-D connections isomorphic to 4-D points 

– Nodes situated in 2 spatial dimensions (x,y) 
– Connections expressed with 4 spatial dim. (x1,y1,x2,y2) 

• HyperNEAT extends 2-D CPPNs to 4-D 
– CPPN encodes 4-D patterns (i.e. inside a hypercube) 

• 4-D patterns can express the same regularities as 2d patterns 
• 4-D patterns interpreted as connectvitity patterns 

               CPPN                                      Output                                              CPPN                                          Output 

48 

I Motivated by humans as fitness functions
I E.g. picbreeder.com, endlessforms.com66

I CPPNs evolved; Human users select parents
I No specific goal

I Interesting solutions preferred
I Similar to biological evolution?
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Novelty Search

I Evolutionary algorithms maximize a performance objective
I But sometimes hard to achieve it step-by-step

I Novelty search rewards candidates that are simply different31,72

I Stepping stones for constructing complexity
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Novelty Search Demo (1)

I 1D function to optimize; Fitness-based search would converge

I Novelty search finds stepping stones

I DEMO

25/71

699



Novelty Search Demo (2)

I Illustration of stepping stones43,44

I Nonzero fitness on “feet” only; stepwise increase
I Top and right “toes” are stepping stones to next “foot”
I Difficult for fitness based search; novelty can do it

I DEMO
26/71

Novelty Search Demo (3)

I Fitness-based evolution is rigid
I Requires gradual progress

I Novelty-based evolution is more innovative, natural31,72

I Allows building on stepping stones
I As a secondary objective—or even the only one!

I DEMO
27/71

Neuroevolution Applications

Control
Pole-Balancing

Satellite Asst. Helicopter
Rocket

Robotics
Soccer

Driving Bipedal Multilegged

Games

a b

1

2

3

4

5

6

7

8

c d e f g h

Othello NERO Pac-Man Unreal

Alife
Duel

Predators Hyenas/Zebras Virtual Creatures
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Games: Evolving Humanlike Behavior

I Botprize competition, 2007-2012
I Turing Test for game bots ($10,000 prize)

I Three players in Unreal Tournament 2004:
I Human confederate: tries to win
I Software bot: pretends to be human
I Human judge: tries to tell them apart!

29/71
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Evolving an Unreal Bot

I Evolve effective fighting behavior
I Human-like with resource limitations (speed, accuracy...)

I Also scripts & learning from humans (unstuck, wandering...)

I 2007-2011: bots 25-30% vs. humans 35-80% human

I 6/2012 best bot better than 50% of the humans

I 9/2012...?
30/71

Success!!!

I In 2012, two teams reach the 50% mark!
I Fascinating challenges remain:

I Judges can still differentiate in seconds
I Judges lay cognitive, high-level traps
I Team competition: collaboration as well

I DEMO
31/71

II. Optimization of DL Architectures

Szegedy et al. 2014

I Big Data and Big Compute available since 2000s
I Machine learning systems have scaled up

I E.g. Deep Learning ideas existed since the 1990s
I With million times more data & compute, they now work!

I A new problem: How to configure such systems?

48/71

Configuring Complex Systems

I A new general approach to engineering
I Humans design just the framework
I Machines optimize the details

I Programming by optimization24

49/71
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E.g. Optimizing NE in Helicopter Hovering

I A challenging benchmark
I RL, NE solutions exist

I Eight parameters optimized by hand29

I Hard for a human designer to do more
I With EA, increased to 15

I !Significantly better performance37

50/71

1

Motivation for Neural Architecture Search

1

Different Deep Learning tasks require different architectures
• Architecture matters
• Too complex to optimize by hand

Employ neural architecture search (NAS)
Offer as a service in cloud computing? 

2

Motivation for Evolutionary NAS

2

Evolutionary Neural Architecture Search is a natural fit:
• Population-based search covers the space
• Crossover between structures discovers principles
• Novelty search maximizes exploration

Building on Neuroevolution work since the 1990s
Hyperparameters; nodes; modules; topologies; multiple tasks

State of the Art Results in 2018

Lehman et al. 2017 Real et al. 2018

I Understanding ES and GAs in RL (Uber)30,76,93

I ES provides more exploration than gradients
I GA provides more exploration than ES

I Image processing (Google Brain)
I CIFAR-10, CIFAR-100, and ImageNet56

I Language modeling and multitasking (Sentient)
54/71
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Node-level Evolution: Sequences

• Evolving gated memory units (i.e. LSTMs) for a fixed architecture
• LSTM structure essentially the same for 25 years

• Tree representation of the nodes
• Optimized through genetic programming

4

• Discovered multiple memory cells, nonlinear paths
• Complexity matters!

• Broader search than other NAS methods

• Language Modeling benchmark
• Improve perplexity by 15%

• State of the art in 1/2018

• Music Generation benchmark
• A different solution necessary

• Demo: ai.cognizant.com/evoai/lstm-music

Node Evolution Benchmarks

LSTM

Evolved - Language Evolved - Music

3

• E.g. image captioning: 
• Start with a state-of-the art design: Show&Tell
• Search in the space of similar elements
• 5% improvement
• A prototype service on the web

• Best-performing AI defies human notions of symmetry and 
patterns of organization

• AI designing AI: could we automate it?

ENN:
Improve Human Design

5

1. Improve over naïve baseline
20% or more with little effort

2. Improve state of the art
With more expertise & compute

3. Extend small datasets
Multitasking with related datasets

4. Minimize network resources
Train and run networks faster

ENN:2019: Evolutionary AutoML

Current AutoML: Hyperparameter optimization
Evolutionary AutoML: Architectures and modules as well
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1 and 2: Improve Performance

5

• Domain: Wikipedia Toxic Comment 
Identification
• Why: Toxicity is bad for business
• Data: 160K labeled comments
• Challenge: highly diverse 

vocabulary, style, and length

• Layer Types: Conv1D, LSTM, GRU

• LEAF Results:
• With minimal compute: Improves 

over naïve Keras baseline
• With more compute: Improves over 

other AutoML methods
• With more compute: Improves over 

SOTA hand-designed model.
• LEAF Hyperparameter Search on 

final architecture gives a final boost

6

Network-level Evolution: Multitasking

7

Network = Topology and Modules

6

3. Extend Small Datasets
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Evolution of Multitask Networks: Topology+Modules

8

Multitasking Benchmarks

State-of-the-art in two ML benchmarks:

• Omniglot multialphabet character recognition
• Improved state-of-the-art 31%
• Demo: ai.cognizant.com/evoai/omni-draw

• CelebA multiattribute face classification
• Improved state-of-the-art 0.75%
• Demo: ai.cognizant.com/evoai/celeb-match

Improves learning in each task
• Even when little data available

9

Evolution adds complexity only if needed
• Favors minimal solutions
• Over evolution a range of sizes explored
• Approximation of the Pareto front

Small networks found that perform well
• Minimization with little cost
• E.g. 0.38% drop with 1/12th of the size

Adding a size objective will explore more

ENN:4. Minimize Network Resources

10

Multiobjective Minimization

10

• Animation: Pareto front by 
generation for single-objective 
(green) vs. multi-objective (blue) 

• Single-objective focuses on 
improving largest networks

• Multi-objective focuses on 
improving the entire curve

• Result: Multi-objective finds much 
smaller models for the majority of 
performance values.
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• Sequential, GRUs after 2 pooling layers
Tradeoff Network: Generation 28

Min Network: 
Generation 0

Max

Example Performance/Size Tradeoffs

III. Emergence of Intelligence

Body

Brain

I Origins of intelligence: Embodied optimization

I Body-Brain Coevolution1,2,3

I Body: Blocks, muscles, joints, sensors

I Brain: A neural network (with general nodes)

I Evolved together in a physical simulation

I Encapsulation, Pandemodium, Syllabus
2/71

Encapsulation

I Once evolved, a trigger node is added
I DEMO

36/71

Pandemonium

I Conflicting behaviors: Highest trigger wins
I DEMO

37/71
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Syllabus

I Step-by-step construction of complex behavior
I Primitives and three levels of complexity
I Constructed by hand; body and brain evolved together
I DEMOS

38/71

Turn to Light

I First level of complexity
I Selecting between alternative primitives

39/71

Move to light

I First level of complexity (Sims 1994)
I Selecting between alternative primitives

40/71

Strike

I Alternative behavior primitive

41/71
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Attack

I Second level of complexity (beyond Sims and others)

42/71

Turn from Light

I Alternative first-level behavior

43/71

Retreat

I Alternative second-level behavior

44/71

Fight or Flight

I Third level of complexity

45/71
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Insight: Body/Brain Coevolution

I Evolving body and brain together poses strong constraints
I Behavior appears believable
I Worked well also in BotPrize (Turing test for game bots)64

I Possible to construct innovative, situated behavior
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Constructing Intelligent Systems

I Believable, complex behavior in embedded
environments

I Open-ended “arms race”

I Similar to self-play e.g. in AlphaGo Zero
I Complexity beyond human ability to design it

I If we can build open ended environments,
should be able to build more complex solutions

Conclusion

I AI extending from prediction to creativity
I i.e. from modeling to optimization
I i.e. from Deep Learning to Evolution/RL

I Evolutionary optimization of neural networks can
I Discover novel and strategic behavior
I Discover useful complexity for Deep Learning
I Gain insight into origins of intelligence

Further Material

I www.cs.utexas.edu/users/risto/talks/enn-tutorial

I Slides and references

I Demos

I A step-by-step neuroevolution exercise (evolving behavior

in the NERO game)

I www.scholarpedia.org/article/Neuroevolution

I A short summary of neuroevolution

I www.nature.com/articles/s42256-018-0006-z

I Nature Machine Intelligence survey on Neuroevolution

I arxiv.org/abs/1902.09635

I Proposal for NAS benchmark
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