
Hyper-heuristics Tutorial
Daniel R. Tauritz (dtauritz@acm.org)

Natural Computation Laboratory, Missouri University of Science and
Technology (http://web.mst.edu/~tauritzd/nc-lab/)

John Woodward (J.Woodward@qmul.ac.uk)
Operations Research Group, Queen Mary

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the Owner/Author.

GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3323382

23 A p ril, 2019

Instructors
Daniel R. Tauritz is an Associate Professor and Associate Chair for
Undergraduate Studies in the Departm ent of Com puter Science at
the M issouri University of Science and Technology (S&T), a Contract
Scientist for Los Alam os National Laboratory (LANL) and Sandia National
Laboratories, the founding director of S&T's Natural Com putation
Laboratory, and founding academ ic director of the LANL/S&T Cyber Security
Sciences Institute. He received his Ph.D. in 2002 from Leiden University. His
research interests include the design of hyper-heuristics and self-
configuring evolutionary algorithm s and the application of com putational
intelligence techniques in cyber security, critical infrastructure protection,
and program understanding.

John R. Woodward is a Lecturer at Queen M ary University of London, and is
Head of the Operational Research Group, and for the previous four years
was a lecturer with the University of Nottingham and also Stirling. He holds
a BSc in Theoretical Physics, an M Sc in Cognitive Science and a PhD in
Com puter Science, all from the University of Birm ingham . His research
interests include Autom ated Software Engineering, particularly Search
Based Software Engineering, Artificial Intelligence/M achine Learning and in
particular Genetic Program m ing. He has worked in industrial, m ilitary,
educational and academ ic settings, and been em ployed by EDS, CERN and
RAF and three UK Universities.

23 A p ril, 2019 Jo h n R . W o o d w ard , D an ie l R . Tau ritz 2

John’s perspective of hyper-
heuristics

3Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Domain Barrier

770

Conceptual Overview
Combinatorial problem e.g. Travelling Salesman
Exhaustive search ->heuristic?

Single tour NOT EXECUTABLE!!!

Genetic Algorithm
heuristic – permutations

Travelling Salesman

Tour

Genetic Programming
code fragments in for-loops.

Travelling Salesman Instances

TSP algorithm
EXECUTABLE on MANY INSTANCES!!!

Give a man a fish and he
will eat for a day.
Teach a man to fish and he
will eat for a lifetime.

5

Scalable? General?
New domains for GP

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

One Man – One/Many Algorithm

Heuristic1

Heuristic2

Heuristic3

6

Heuristic2

Heuristic1

Heuristic10,000

Automatic
Design

Jo h n R . W o o d w ard , D an ie l R . Tau ritz

23 A p ril, 2019

Automatically
designed heuristics
(this tutorial)

First year university course
On Java, as part of a computer
Science degree

Increasing “complexity”

LARGE
Software
Engineering
Projects

Genetic Programming
{+, -, *, /}
{AND, OR, NOT}

Janus
Manager

● Management system
for rehabilitation

● Stores client info
● A tool for

○ Administration
○ Communication
○ Producing reports
○ Predicting

outcomes

7

● ~40 Users
○ Specialists
○ Admin staff

● 1000+ clients
○ ~150 active

● The code
○ Python
○ 25,000+ LOC
○ 600+ functions
○ 300 Classes
○ Run as web service on Apache

Janus
Manager

8

771

Daily activity
● Users

○ Request data
○ Save data

● Janus Manager
○ Processes

requests
○ Interacts with the

database
○ Responds with

output

9

Daily activity
● Procedures in place to

catch exceptions and
log:
○ Request
○ Input data
○ Type of exception
○ Location of

exception
● Logs saved in file on

server
10

Input: {‘name’:’John
Dóe’,
’unemployed’:’34’,
’phone’:’555-123’,
‘home’:’Do not know’}
Type:
UnicodeDecodeError
Location:
(JanusManager.datapa
rse.connect, 351)

Nightly activity
When last user logs out

1. Procedure 2.0 started
○ Sorts and filters the day’s

exceptions
2. Procedure 3.0

○ Emulates input data,

type, size and structure.
○ Produces test cases

3. Procedure 4.0
○ Genetic Improvement

○ Parallel process on the
server

○ Outputs report for

developer
11

Nightly activity

12

Procedure 3.0

772

Improvement log

13

The story so far
● Janus Manager was developed in March 2016
● Since October 2016 has had GI running as a permanent service
● 22 Bugs reported

○ Variable name mixup - current_date vs. current_time
○ Range constants - For i in range(len(Var)+1):
○ And more ….

● 22 Bugs fixed
○ Whole process takes 20 minutes (on average)
○ Fix found within 10 generations

14

Current count is
~40

Daniel’s perspective of hyper-
heuristics

15Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Real-World Challenges

• Researchers strive to make algorithms increasingly
general-purpose

• But practitioners have very specific needs
• Designing custom algorithms tuned to particular

problem instance distributions and/or
computational architectures can be very time
consuming

16Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

773

Automated Design of Algorithms

• Addresses the need for custom algorithms
• But due to high computational complexity, only feasible

for repeated problem solving
• Hyper-heuristics accomplish automated design of

algorithms by searching program space

17Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Hyper-heuristics

• Hyper-heuristics are a special type of meta-heuristic
– Step 1: Extract algorithmic primitives from existing

algorithms
– Step 2: Search the space of programs defined by the

extracted primitives
• While Genetic Programming (GP) is particularly well

suited for executing Step 2, other meta-heuristics
can be, and have been, employed

• The type of GP employed matters [24]

18Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Type of GP Matters:
Experiment Description

• Implement five types of GP (tree GP, linear GP,
canonical Cartesian GP, Stack GP, and Grammatical
Evolution) in hyper-heuristics for evolving black-box
search algorithms for solving 3-SAT

• Base hyper-heuristic fitness on the fitness of the
best search algorithm generated at solving the 3-
SAT problem

• Compare relative effectiveness of each GP type as a
hyper-heuristic

GP Individual Description

• Search algorithms are represented as an iterative
algorithm that passes one or more set of variable
assignments to the next iteration

• Genetic program represents a single program iteration
• Algorithm runs starting with a random initial population of

solutions for 30 seconds

774

3-SAT Problem

• A subset of the Boolean Satisfiability Problem (SAT)

• The goal is to select values for Boolean variables such that

a given Boolean equation evaluates as true (is satisfied)

• Boolean equations are in 3-conjunctive normal form

• Example:

– (A ∨ B ∨ C) ∧ (¬A ∨ ¬C ∨ D) ∧ (¬B ∨ C V ¬D)

– Satisfied by ¬A, B, C, ¬D

• Fitness is the number of clauses satisfied by the best

solution in the final population

Genetic Programming Nodes Used

• Last population, Random population
• Tournament selection, Fitness proportional selection,

Truncation selection, Random selection
• Bitwise mutation, Greedy flip, Quick greedy flip, Stepwise

adaption of weights, Novelty
• Union

Results

1800
1820
1840
1860
1880
1900
1920
1940
1960
1980
2000

Tre
e

Lin
ea
r

Ca
r te
s ia
n

Gr
am
m
ati
ca
l

Sta
ck

Nu
m

be
r o

f C
la

us
es

 S
at

isf
ie

d

Results [24]

24

775

Results

• Generated algorithms mostly performed comparably well
on training and test problems

• Tree and stack GP perform similarly well on this problem,
as do linear and Cartesian GP

• Tree and stack GP perform significantly better on this
problem than linear and Cartesian GP, which perform
significantly better than grammatical evolution

Conclusions

• The choice of GP type makes a significant difference in the
performance of the hyper-heuristic

• The size of the search space appears to be a major factor
in the performance of the hyper-heuristic

Case Study 1: The Automated Design
of Crossover Operators [20]

27Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Performance Sensitive to Crossover Selection

• Identifying & Configuring Best Traditional Crossover is
Time Consuming

• Existing Operators May Be Suboptimal

• Optimal Operator May Change During Evolution

Motivation

28Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

776

• Meta-EA
– Exceptionally time consuming

• Self-Adaptive Algorithm Selection
– Limited by algorithms it can choose from

Some Possible Solutions

29Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Each Individual Encodes a
Crossover Operator

• Crossovers Encoded as a List of
Primitives
– Swap
– Merge

• Each Primitive has three
parameters
– Number, Random, or Inline

Self-Configuring Crossover (SCX)

Swap(3, 5, 2)

Swap(r, i, r)

Merge(1, r, 0.7)

Offspring Crossover

30Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Applying an SCX

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Parent 1 Genes Parent 2 Genes

Concatenate Genes

31Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Each Primitive has a type
– Swap represents crossovers that move

genetic material

• First Two Parameters
– Start 1 Position
– Start 2 Position

• Third Parameter Primitive Dependent
– Swaps use “Width”

The Swap Primitive

Swap(3, 5, 2)

32Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

777

Applying an SCX

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Concatenate Genes

Swap(3, 5, 2)

Swap(r, i, r)

Merge(1, r, 0.7)

Offspring Crossover
3.0 4.0 5.0 6.0

33Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Third Parameter Primitive Dependent
– Merges use “Weight”

• Random Construct
– All past primitive parameters used the

Number construct
– “r” marks a primitive using the Random

Construct
– Allows primitives to act stochastically

The Merge Primitive

Merge(1, r, 0.7)

34Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Applying an SCX

1.0 2.0 5.0 6.0 3.0 4.0 7.0 8.0

Concatenate Genes

Merge(1, r, 0.7)

Swap(3, 5, 2)

Swap(r, i, r)

Offspring Crossover

0.7

g(1) = 1.0*(0.7) + 6.0*(1-0.7)

g(i) = α*g(i) + (1-α)*g(j)

2.5g(2) = 6.0*(0.7) + 1.0*(1-0.7)4.5

35Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Only Usable by First Two Parameters

• Denoted as “i”

• Forces Primitive to Act on the Same
Loci in Both Parents

The Inline Construct

Swap(r, i, r)

36Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

778

Applying an SCX

2.5 2.0 5.0 4.5 3.0 4.0 7.0 8.0

Concatenate Genes

Swap(r, i, r)

Merge(1, r, 0.7)

Swap(3, 5, 2)

Offspring Crossover
2.0 4.0

37Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Applying an SCX

2.5 4.0 5.0 4.5 3.0 2.0 7.0 8.0

Concatenate GenesRemove Exess Genes

Offspring Genes

38Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Evolving Crossovers

Merge(1, r, 0.7)

Merge(i, 8, r)

Swap(r, i, r)

Parent 1 Crossover

Swap(4, 2, r)

Swap(r, 7, 3)

Parent 2 Crossover

Merge(r, r, r)

Offspring Crossover

Swap(3, 5, 2)

39Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Compared Against
– Arithmetic Crossover
– N-Point Crossover
– Uniform Crossover

• On Problems
– Rosenbrock
– Rastrigin
– Offset Rastrigin
– NK-Landscapes
– DTrap

Empirical Quality Assessment

Problem Comparison SCX
Rosenbrock -86.94 (54.54) -26.47 (23.33)
Rastrigin -59.2 (6.998) -0.0088 (0.021)
Offset Rastrigin -0.1175 (0.116) -0.03 (0.028)
NK 0.771 (0.011) 0.8016 (0.013)
DTrap 0.9782 (0.005) 0.9925 (0.021)

40Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

779

Adaptations: Rastrigin

41Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Adaptations: DTrap

42Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Requires No Additional Evaluation

• Adds No Significant Increase in Run Time
– All linear operations

• Adds Initial Crossover Length Parameter
– Testing showed results fairly insensitive to this parameter
– Even worst settings tested achieved better results than

comparison operators

SCX Overhead

43Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Remove Need to Select Crossover Algorithm

• Better Fitness Without Significant Overhead

• Benefits From Dynamically Changing Operator

• Promising Approach for Evolving Crossover Operators for
Additional Representations (e.g., Permutations)

Conclusions

44Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

780

Case Study 2: The Automated Design
of Mutation Operators for Evolutionary

Programming

45Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Designing Mutation Operators for
Evolutionary Programming [18]

1. Evolutionary programing optimizes
functions by evolving a population of
real-valued vectors (genotype).

2. Variation has been provided
(manually) by probability distributions
(Gaussian, Cauchy, Levy).

3. We are automatically generating
probability distributions (using genetic
programming).

4. Not from scratch, but from already
well known distributions (Gaussian,
Cauchy, Levy). We are “genetically
improving probability distributions”.

5. We are evolving mutation operators
for a problem class (probability
distributions over functions).

6. NO CROSSOVER

Genotype is
(1.3,...,4.5,…,8.7)
Before mutation

Genotype is
(1.2,...,4.4,…,8.6)
After mutation

46Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

(Fast) Evolutionary Programming

1. EP mutates with a Gaussian
2. FEP mutates with a Cauchy
3. A generalization is mutate

with a distribution D
(generated with genetic
programming)

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN

47Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used
in the literature. Minimization
We use them as problem classes.

48Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

781

Function Class 1
1. Machine learning needs to generalize.
2. We generalize to function classes.
3. y = !" (a function)
4. y = #!"(parameterised function)
5. y = #!", # ~[1,2] (function class)
6. We do this for all benchmark functions.
7. The mutation operators is evolved to fit the

probability distribution of functions.

49Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Function Classes 2

50Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Meta and Base Learning

• At the base level we are
learning about a specific
function.

• At the meta level we are
learning about the
problem class.

• We are just doing
“generate and test” at a
higher level

• What is being passed with
each blue arrow?

• Conventional EP

EPFunction to
optimize

Probability
Distribution
Generator

Function
class

base level

Meta level

51Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Compare Signatures (Input-Output)
Evolutionary Programming
(!"à!) à!"
Input is a function
mapping real-valued
vectors of length n to a
real-value.
Output is a (near optimal)
real-valued vector
(i.e. the solution to the
problem instance)

Evolutionary Programming
Designer
[(!"à!)] à ((!"à!) à !")

Input is a list of functions mapping
real-valued vectors of length n to a
real-value (i.e. sample problem
instances from the problem class).
Output is a (near optimal)
(mutation operator for)
Evolutionary Programming
(i.e. the solution method to the
problem class)

52

We are raising the level of generality at which we operate.

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

782

Genetic Programming to Generate
Probability Distributions

1. GP Function Set {+, -, *, %}

2. GP Terminal Set {N(0, random)}
N(0,1) is a normal distribution.

For example a Cauchy distribution is
generated by N(0,1)%N(0,1).
Hence the search space of
probability distributions contains
the two existing probability
distributions used in EP but also
novel probability distributions.

CAUCHYGAUSSIAN

NOVEL
PROBABILITY
DISTRIBUTIONS

SPACE OF
PROBABILITY
DISTRIBUTIONS

53Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Means and Standard Deviations

These results are good for two reasons.
1. starting with a manually designed distributions (Gaussian).
2. evolving distributions for each function class.

54Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

T-tests

55Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Performance on Other Problem Classes

56Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

783

Case Study 3: The Automated Design
of On-Line Bin Packing Algorithms

57Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019 58

On-line Bin Packing Problem [9,11]

Items packed so far Sequence of pieces to be packed

• A sequence of items packed into as few a bins as possible.
• Bin size is 150 units, items uniformly distributed between 20-100.
• Different to the off-line bin packing problem where the set of items.
• The “best fit” heuristic, places the current item in the space it fits best

(leaving least slack).
• It has the property that this heuristic does not open a new bin unless it

is forced to.

150 =
Bin
capacity

Range of
Item size
20-100

Array of bins

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

59

Genetic Programming
applied to on-line bin packing

S size
S size

C capacity

F fullness

E emptiness
Fullness is
irrelevant
The space is
important

Not obvious how to link
Genetic Programming to
combinatorial problems.
The GP tree is applied to each
bin with the current item and
placed in the bin with
The maximum score

Terminals supplied to Genetic Programming
Initial representation {C, F, S}
Replaced with {E, S}, E=C-F

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

How the heuristics are applied (skip)

90 12070
30 45

70
85

30 60

-

+

FS

C

%

C

-15 -3.75 3 4.29 1.88

60Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

784

61

The Best Fit Heuristic

0 10 20 30 40 50 60 70

216304458728610
0

11
4

12
8

14
2

-150

-100

-50

0

50

100

150

100-150
50-100
0-50
-50-0
-100--50
-150--100

Best fit = 1/(E-S). Point out features.
Pieces of size S, which fit well into the space remaining E,
score well.
Best fit applied produces a set of points on the surface,
The bin corresponding to the maximum score is picked.

Piece sizeemptiness

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019 62

Our Best Heuristic

0
10
20
30
40

50

60

70

80

90

100

110

120

130

140

15020 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68

-15000

-10000

-5000

0

5000

10000

15000

emptiness

piece size

pieces 20 to 70

Similar shape to best fit – but curls up in one corner.
Note that this is rotated, relative to previous slide.

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Robustness of Heuristics

= all legal results
= some illegal results

63Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019
64

Testing Heuristics on problems of much larger
size than in training

Table I H trained100 H trained 250 H trained 500
100 0.427768358 0.298749035 0.140986023

1000 0.406790534 0.010006408 0.000350265
10000 0.454063071 2.58E-07 9.65E-12

100000 0.271828318 1.38E-25 2.78E-32

Table shows p-values using the best fit heuristic, for heuristics trained on
different size problems, when applied to different sized problems
1. As number of items trained on increases, the probability decreases (see

next slide).
2. As the number of items packed increases, the probability decreases (see

next slide).

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

785

65

Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances
• Performance does not deteriorate

• The larger the training problem size, the better the bins are packed.

Amount the heuristics beat best fit by

-100

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

evolved on 100
evolved on 250
evolved on 500

Amount
evolved
heuristics
beat
best fit by.

Number of pieces
packed so far.

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019 66

Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem
• Analogy with sprinters running a race – accelerate towards end of race.
• The “break even point” is approximately half of the size of the training problem

size
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a

better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

evolved on 100
evolved on 250
evolved on 500

Amount
evolved
heuristics
beat
best fit by.

Zoom in
of previous
slide

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Step by Step Guide to Automatic Design of
Algorithms [8, 12]

1. Study the literature for existing heuristics for your
chosen domain (manually designed heuristics).

2. Build an algorithmic framework or template which
expresses the known heuristics.

3. Let metaheuristics (e.g. Genetic Programming)
search for variations on the theme.

4. Train and test on problem instances drawn from
the same probability distribution (like machine
learning). Constructing an optimizer is machine
learning (this approach prevents “cheating”).

67Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

A Brief History (Example Applications) [5]

1. Image Recognition – Roberts Mark
2. Travelling Salesman Problem – Keller Robert
3. Boolean Satisfiability – Holger Hoos, Fukunaga, Bader-El-Den, Alex

Bertels & Daniel Tauritz
4. Data Mining – Gisele L. Pappa, Alex A. Freitas
5. Decision Tree - Gisele L. Pappa et al
6. Crossover Operators – Oltean et al, Brian Goldman and Daniel

Tauritz
7. Selection Heuristics – Woodward & Swan, Matthew Martin & Daniel

Tauritz
8. Bin Packing 1,2,3 dimension (on and off line) Edmund Burke et. al.

& Riccardo Poli et al
9. Bug Location – Shin Yoo
10. Job Shop Scheduling – Mengjie Zhang
11. Black Box Search Algorithms – Daniel Tauritz et al

68Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

786

A Paradigm Shift?

conventional approach new approach

Algorithm
s investigated/unit tim

e

One person
proposes one
algorithm
and tests it
in isolation.

One person proposes a
family of algorithms
and tests them
in the context of
a problem class.

• Previously one person proposes one algorithm
• Now one person proposes a set of algorithms
• Analogous to “industrial revolution” from hand

made to machine made. Automatic Design.

69

Human cost (INFLATION) machine cost MOORE’S LAW

Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Conclusions
1. Heuristic are trained to fit a problem class, so are

designed in context (like evolution). Let’s close
the feedback loop! Problem instances live in
classes.

2. We can design algorithms on small problem
instances and scale them apply them to large
problem instances (TSP, child multiplication).

70Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

SUMMARY

1. We can automatically design algorithms that
consistently outperform human designed algorithms
(on various domains).

2. The “best” heuristics depends on the set of problem
instances. (feedback)

3. Resulting algorithm is part man-made part machine-
made (synergy)

4. not evolving from scratch like Genetic Programming,
5. improve existing algorithms and adapt them to the new

problem instances.
6. Algorithms are reusable, “solutions” aren’t. (e.g. tsp

algorithm vs route)

71Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Case Study 4: The Automated Design
of Black Box Search Algorithms [21, 23,

25]

72Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

787

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

Approach

73Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Our
Solution

Initialization

Check for
Termination

Terminate

Iterated
Function

74Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

• High-level primitives

Our Solution

75Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Iterated function

• Sets of solutions

• Function returns
a set of solutions
accessible to the
next iteration

Parse Tree

76Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

788

Primitive Types

• Variation Primitives

• Selection Primitives

• Set Primitives

• Evaluation Primitive

• Terminal Primitives

77Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Variation Primitives

• Bit-flip Mutation
– rate

• Uniform Recombination
– count

• Diagonal Recombination
– n

78Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Selection Primitives

• Truncation Selection
– count

• K-Tournament Selection
– k
– count

• Random Sub-set Selection
– count

79Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Set-Operation Primitives

• Make Set
– name

• Persistent
Sets
– name

• Union

80Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

789

• Evaluates the nodes passed in

• Allows multiple operations and accurate selections within
an iteration

– Allows for deception

Evaluation Primitive

81Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Terminal Primitives

• Random Individuals
– count

• `Last’ Set

• Persistent Sets
– name

82Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Meta-Genetic Program

Create Valid
Population

Generate
Children

Evaluate
Children

Select
Survivors

Check
Termination

83Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

BBSA Evaluation

84Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

790

• Evaluations

• Iterations

• Operations

• Convergence

Termination Conditions

85Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Deceptive Trap Problem

Proof of Concept Testing

0

0. 5

1

1. 5

2

2. 5

3

3. 5

4

4. 5

5

0 1 2 3 4 5

Fi
tn

es
s

of 1s

0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0

86Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Evolved Problem Configuration
– Bit-length = 100
– Trap Size = 5

• Verification Problem Configurations
– Bit-length = 100, Trap Size = 5
– Bit-length = 200, Trap Size = 5
– Bit-length = 105, Trap Size = 7
– Bit-length = 210, Trap Size = 7

Proof of Concept Testing (cont.)

87Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results

60% Success
Rate

88Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

791

Results:
Bit-Length = 100

Trap Size = 5

89Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results:
Bit-Length = 200

Trap Size = 5

90Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results:
Bit-Length = 105

Trap Size = 7

91Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results:
Bit-Length = 210

Trap Size = 7

92Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

792

BBSA1

BBSA2

BBSA3

93Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

BBSA1

94Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

BBSA2

95Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

BBSA3

96Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

793

BBSA2

97Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Over-Specialization

Trained Problem
Configuration

Alternate
Problem

Configuration

98Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Robustness

• Measures of Robustness
– Applicability
– Fallibility

• Applicability
–What area of the problem configuration space do I perform well

on?

• Fallibility
– If a given BBSA doesn’t perform well, how much worse will I

perform?

99Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Robustness

100Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

794

• Train on multiple problem configurations

• Results in more robust BBSAs

• Provides the benefit of selecting the region of interest on
the problem configuration landscape

Multi-Sampling

101Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Deceptive Trap Problem

Multi-Sample Testing

0
0. 5

1
1. 5

2
2. 5

3
3. 5

4
4. 5

5

0 1 2 3 4 5

Fi
tn

es
s

of 1s

0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0

102Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Multi-Sampling Evolution
– Levels 1-5

• Training Problem Configurations
1. Bit-length = 100, Trap Size = 5

2. Bit-length = 200, Trap Size = 5
3. Bit-length = 105, Trap Size = 7
4. Bit-length = 210, Trap Size = 7

5. Bit-length = 300, Trap Size = 5

Multi-Sample Testing (cont.)

103Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

1. Bit-length = 100, Trap Size = 5
2. Bit-length = 200, Trap Size = 5
3. Bit-length = 105, Trap Size = 7
4. Bit-length = 210, Trap Size = 7
5. Bit-length = 300, Trap Size = 5
6. Bit-length = 99, Trap Size = 9
7. Bit-length = 198, Trap Size = 9
8. Bit-length = 150, Trap Size = 5
9. Bit-length = 250, Trap Size = 5
10. Bit-length = 147, Trap Size = 7
11. Bit-length = 252, Trap Size = 7

Initial Test Problem Configurations

104Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

795

Initial Results

105Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Run evolved BBSAs on wider set of problem configurations

• Bit-length: ~75-~500

• Trap Size: 4-20

Problem Configuration Landscape Analysis

106Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results: Multi-Sampling Level 1

107Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results: Multi-Sampling Level 2

108Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

796

Results: Multi-Sampling Level 3

109Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results: Multi-Sampling Level 4

110Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results: Multi-Sampling Level 5

111Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Results: EA Comparison

112Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

797

Robustness: Fallibility

Multi-Sample Level 5

Standard EA

113Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Robustness: Fallibility

Multi-Sample Level 1

Standard EA

114Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Robustness: Applicability

Multi-Sample Level 1

Multi-Sample Level 5

115Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Robustness: Fallibility

116Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

798

• Increased computational time
–More runs per evaluation (increased wall time)
–More problem configurations to optimize for (increased

evaluations)

Drawbacks

117Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

• Improved Hyper-Heuristic to evolve more robust BBSAs

• Evolved custom BBSA which outperformed standard EA
and were robust to changes in problem configuration

Summary of Multi-Sample Improvements

118Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Case Study 5: Evolving Random Graph
Generators: A Case for Increased

Algorithmic Primitive Granularity [27]

119Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Random Graphs

• Graphs are a powerful modeling tool
– Computer and social networks
– Transportation and power grids

• Algorithms designed for graphs
– Community detection and graph partitioning
– Network routing and intrusion detection

• Random graphs provide test data
• Prediction using random graphs
– Spread of disease
– Deployment of wireless sensors

799

Traditional Random Graph Models

• Erdös-Rényi

• Barabási-Albert

Automated Random Graph Model Design

• Random graph model needs to accurately reflect
intended concept

• Model selection can be automated, but relies on
having a good solution available

• Developing an accurate model for a new
application can be difficult

Can the model design process be automated to
produce an accurate graph model given examples?

Hyper-heuristic Approach

• Extract functionality from existing graph generation
techniques

• Use Genetic Programming (GP) to construct new random
graph algorithms

Previous Attempts at Evolving Random
Graph Generators

• Assumes “growth” model, adding one node at a time
• Does well at reproducing traditional models
• Not demonstrated to do well at generating real complex

networks
• Limits the search space of possible solutions

800

Increased Algorithmic Primitive Granularity
• Remove the assumed “growth” structure
• More flexible lower-level primitive set
• Benefit: Can represent a larger variety of algorithms
• Drawback: Larger search space, increasing complexity

Methodology

• NSGA-II evolves population of random graph models
• Strongly typed parse tree representation
• Centrality distributions used to evaluate solution
• quality (degree, betweenness, PageRank)

Primitive Operations
Terminals
• Graph elements: nodes, edges
• Graph properties: average degree, size, order
• Constants: integers, probabilities, Booleans, user inputs
• No-op terminators

Functions
• Basic programming constructs: for, while, if-else
• Data structures: lists of values, nodes, or edges, list
• combining/selection/sorting
• Math and logic operators: add, multiply, <, ==, AND, OR
• Graph operators: add edges, add subgraph, rewire edges

Example Evolved Random Graph Generator

801

Reproducing Erdös-Rényi

Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.101 0.048 = 0.108 0.047

Betweennes
s

0.104 0.031 = 0.105 0.033

PageRank 0.110 0.032 = 0.112 0.029

Reproducing Random Community Graphs
Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055

Betweennes
s

0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036

Actual Graph Low-GP High-
GP

Evolved Random Collaboration Network
Generator Conclusion

• Traditional random graph models do not always
produce appropriate representations of certain
concepts

• Accurate random graph model design can be
automated using genetic programming

• More flexible set of low-level primitive
operations increases resulting model accuracy

• Increase in a priori evolution time is amortized
over repeated use of the evolved solutions

802

Some Final Thoughts

133Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

Challenges in Hyper-heuristics

• Hyper-heuristics are very computationally expensive
(use Asynchronous Parallel GP [26,30])

• What is the best primitive granularity? (see next
slide)

• How to automate decomposition and
recomposition of primitives?

• How to automate primitive extraction?
• How does hyper-heuristic performance scale for

increasing primitive space size? (see [25,27])

Primitive Granularity
PrimitivesAlgorithm

Full BBSAs
i.e., EA, SA, SAHC,
etc.

Selective Hyper-
heuristics

Our Hyper-heuristic

Turing Complete
Set of Primitives

Generative Hyper-
heuristics

High-level BBSA
operations
i.e., Truncation
Selection, Bit-Flip
Mutation, etc.

Low-level BBSA
operations
i.e., If Converged
Statements, For loops,
etc.

Genetic Programming

End of File J

• Thank you for listening !!!

• We are glad to take any
– comments (+,-)

– suggestions/criticisms
Please email us any missing references!

John Woodward (http://www.cs.stir.ac.uk/~jrw/)
Daniel Tauritz (http://web.mst.edu/~tauritzd/)

136Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

803

References 1

1. John Woodward. Computable and Incomputable Search Algorithms and Functions. IEEE International
Conference on Intelligent Computing and Intelligent Systems (IEEE ICIS 2009), pages 871-875,
Shanghai, China, November 20-22, 2009.

2. John Woodward. The Necessity of Meta Bias in Search Algorithms. International Conference on
Computational Intelligence and Software Engineering (CiSE), pages 1-4, Wuhan, China, December 10-
12, 2010.

3. John Woodward & Ruibin Bai. Why Evolution is not a Good Paradigm for Program Induction: A
Critique of Genetic Programming. In Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, pages 593-600, Shanghai, China, June 12-14, 2009.

4. Jerry Swan, John Woodward, Ender Ozcan, Graham Kendall, Edmund Burke. Searching the Hyper-
heuristic Design Space. Cognitive Computation, 6:66-73, 2014.

5. Gisele L. Pappa, Gabriela Ochoa, Matthew R. Hyde, Alex A. Freitas, John Woodward, Jerry Swan.
Contrasting meta-learning and hyper-heuristic research. Genetic Programming and Evolvable
Machines, 15:3-35, 2014.

6. Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automating the Packing
Heuristic Design Process with Genetic Programming. Evolutionary Computation, 20(1):63-89, 2012.

7. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John Woodward. A Genetic Programming
Hyper-Heuristic Approach for Evolving Two Dimensional Strip Packing Heuristics. IEEE Transactions on
Evolutionary Computation, 14(6):942-958, December 2010.

137Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

References 2

8. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan and John R.
Woodward. Exploring Hyper-heuristic Methodologies with Genetic Programming, Computational
Intelligence: Collaboration, Fusion and Emergence, In C. Mumford and L. Jain (eds.), Intelligent Systems
Reference Library, Springer, pp. 177-201, 2009.

9. Edmund K. Burke, Matthew Hyde, Graham Kendall and John R. Woodward. The Scalability of Evolved On
Line Bin Packing Heuristics. In Proceedings of the IEEE Congress on Evolutionary Computation, pages
2530-2537, September 25-28, 2007.

10. R. Poli, John R. Woodward, and Edmund K. Burke. A Histogram-matching Approach to the Evolution of
Bin-packing Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 3500-
3507, September 25-28, 2007.

11. Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automatic Heuristic
Generation with Genetic Programming: Evolving a Jack-of-all-Trades or a Master of One, In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1559-1565, London, UK, July 2007.

12. John R. Woodward and Jerry Swan. Template Method Hyper-heuristics, Metaheuristic Design Patterns
(MetaDeeP) workshop, GECCO Comp’14, pages 1437-1438, Vancouver, Canada, July 12-16, 2014.

13. Saemundur O. Haraldsson and John R. Woodward, Automated Design of Algorithms and Genetic
Improvement: Contrast and Commonalities, 4th Workshop on Automatic Design of Algorithms (ECADA),
GECCO Comp ‘14, pages 1373-1380, Vancouver, Canada, July 12-16, 2014.

138Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

References 3
14. John R. Woodward, Simon P. Martin and Jerry Swan. Benchmarks That Matter For Genetic

Programming, 4th Workshop on Evolutionary Computation for the Automated Design of Algorithms
(ECADA), GECCO Comp ‘14, pages 1397-1404, Vancouver, Canada, July 12-16, 2014.

15. John R. Woodward and Jerry Swan. The Automatic Generation of Mutation Operators for Genetic
Algorithms, 2nd Workshop on Evolutionary Computation for the Automated Design of Algorithms
(ECADA), GECCO Comp’ 12, pages 67-74, Philadelphia, U.S.A., July 7-11, 2012.

16. John R. Woodward and Jerry Swan. Automatically Designing Selection Heuristics. 1st Workshop on
Evolutionary Computation for Designing Generic Algorithms, pages 583-590, Dublin, Ireland, 2011.

17. Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John Woodward.
A Classification of Hyper-heuristics Approaches, Handbook of Metaheuristics, pages 449-468,
International Series in Operations Research & Management Science, M. Gendreau and J-Y Potvin (Eds.),
Springer, 2010.

18. Libin Hong and John Woodward and Jingpeng Li and Ender Ozcan. Automated Design of Probability
Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming.
Proceedings of the 16th European Conference on Genetic Programming (EuroGP 2013), volume 7831,
pages 85-96, Vienna, Austria, April 3-5, 2013.

19. Ekaterina A. Smorodkina and Daniel R. Tauritz. Toward Automating EA Configuration: the Parent
Selection Stage. In Proceedings of CEC 2007 - IEEE Congress on Evolutionary Computation, pages 63-70,
Singapore, September 25-28, 2007.

139Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

References 4
20. Brian W. Goldman and Daniel R. Tauritz. Self-Configuring Crossover. In Proceedings of the 13th Annual

Conference Companion on Genetic and Evolutionary Computation (GECCO '11), pages 575-582, Dublin,
Ireland, July 12-16, 2011.

21. Matthew A. Martin and Daniel R. Tauritz. Evolving Black-Box Search Algorithms Employing Genetic
Programming. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO '13), pages 1497-1504, Amsterdam, The Netherlands, July 6-10, 2013.

22. Nathaniel R. Kamrath, Brian W. Goldman and Daniel R. Tauritz. Using Supportive Coevolution to Evolve
Self-Configuring Crossover. In Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO '13), pages 1489-1496, Amsterdam, The Netherlands, July 6-10,
2013.

23. Matthew A. Martin and Daniel R. Tauritz. A Problem Configuration Study of the Robustness of a Black-
Box Search Algorithm Hyper-Heuristic. In Proceedings of the 16th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO '14), pages 1389-1396, Vancouver, BC, Canada, July 12-
16, 2014.

24. Sean Harris, Travis Bueter, and Daniel R. Tauritz. A Comparison of Genetic Programming Variants for
Hyper-Heuristics. In Proceedings of the 17th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO '15), pages 1043-1050, Madrid, Spain, July 11-15, 2015.

25. Matthew A. Martin and Daniel R. Tauritz. Hyper-Heuristics: A Study On Increasing Primitive-Space. In
Proceedings of the 17th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO '15), pages 1051-1058, Madrid, Spain, July 11-15, 2015.

140Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

804

References 5
26. Alex R. Bertels and Daniel R. Tauritz. Why Asynchronous Parallel Evolution is the Future of Hyper-

heuristics: A CDCL SAT Solver Case Study. In Proceedings of the 18th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO `16), pages 1359-1365, Denver, Colorado, USA, July 20-
24, 2016.

27. Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent. Evolving Random Graph Generators: A Case for
Increased Algorithmic Primitive Granularity. In Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (IEEE SSCI 2016), Athens, Greece, December 6-9, 2016.

28. Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent. Evolving Multi-level Graph Partitioning
Algorithms. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (IEEE SSCI
2016), Athens, Greece, December 6-9, 2016.

29. Islam Elnabarawy, Daniel R. Tauritz, Donald C. Wunsch. Evolutionary Computation for the Automated
Design of Category Functions for Fuzzy ART: An Initial Exploration. In Proceedings of the 19th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO’17), pages 1133-1140, Berlin,
Germany, July 15-19, 2017.

30. Adam Harter, Daniel R. Tauritz, William M. Siever. Asynchronous Parallel Cartesian Genetic
Programming. In Proceedings of the 19th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO’17), pages 1820-1824, Berlin, Germany, July 15-19, 2017.

31. Marketa Illetskova, Alex R. Bertels, Joshua M. Tuggle, Adam Harter, Samuel Richter, Daniel R. Tauritz,
Samuel Mulder, Denis Bueno, Michelle Leger and William M. Siever. Improving Performance of CDCL SAT
Solvers by Automated Design of Variable Selection Heuristics. In Proceedings of the 2017 IEEE
Symposium Series on Computational Intelligence (SSCI 2017), Honolulu, Hawaii, U.S.A., November 27 -
December 1, 2017.

141Jo h n R . W o o d w ard , D an ie l R . Tau ritz23 A p ril, 2019

References 6

32. John R. Woodward, Jerry Swan, "Why classifying search algorithms is essential", Progress in Informatics and
Computing (PIC) 2010 IEEE International Conference on, vol. 1, pp. 285-289, 2010.

33. Samuel N. Richter and Daniel R. Tauritz. The Automated Design of Probabilistic Selection Methods for Evolutionary
Algorithms. In Proceedings of the 20th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO 2018), pages 1545-1552, Kyoto, Japan, July 15-19, 2018.

34. Aaron Scott Pope, Robert Morning, Daniel R. Tauritz, and Alexander D. Kent. Automated Design of Network Security
Metrics. In Proceedings of the 20th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO 2018), pages 1680-1687, Kyoto, Japan, July 15-19, 2018.

38. John R. Woodward and Ruibin Bai. Canonical representation genetic programming. In Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pages 585-592, 2009.

39. Saemundur O. Haraldsson, John R. Woodward, Alexander EI Brownlee, and Kristin Siggeirsdottir. Fixing bugs in your
sleep: How genetic improvement became an overnight success. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 1513-1520, 2017.

805

