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John’s perspective of hyper-
heuristics
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Domain Barrier
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Conceptual Overview
Combinatorial problem e.g.  Travelling Salesman
Exhaustive search ->heuristic?

Single tour NOT EXECUTABLE!!!

Genetic Algorithm
heuristic – permutations

Travelling Salesman

Tour

Genetic Programming
code fragments in for-loops. 

Travelling Salesman Instances

TSP algorithm
EXECUTABLE on MANY INSTANCES!!!

Give a man a fish and he 
will eat for a day. 
Teach a man to fish and he
will eat for a lifetime.

5

Scalable? General?
New domains for GP
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One Man – One/Many Algorithm

Heuristic1

Heuristic2

Heuristic3

6

Heuristic2

Heuristic1

Heuristic10,000

Automatic
Design
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Automatically 
designed heuristics
(this tutorial)

First year university course 
On Java, as part of a computer
Science degree

Increasing “complexity”

LARGE 
Software 
Engineering 
Projects

Genetic Programming
{+, -, *, /}
{AND, OR, NOT}

Janus 
Manager

● Management system 
for rehabilitation

● Stores client info
● A tool for 

○ Administration
○ Communication
○ Producing reports
○ Predicting 

outcomes

7

● ~40 Users
○ Specialists
○ Admin staff

● 1000+ clients
○ ~150 active

● The code
○ Python
○ 25,000+ LOC
○ 600+ functions
○ 300 Classes
○ Run as web service on Apache

Janus 
Manager

8
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Daily activity
● Users

○ Request data
○ Save data

● Janus Manager
○ Processes 

requests
○ Interacts with the 

database
○ Responds with 

output

9

Daily activity
● Procedures in place to 

catch exceptions and 
log:
○ Request
○ Input data
○ Type of exception
○ Location of 

exception
● Logs saved in file on 

server
10

Input: {‘name’:’John 
Dóe’,
’unemployed’:’34’,
’phone’:’555-123’,
‘home’:’Do not know’}
Type:
UnicodeDecodeError
Location:
(JanusManager.datapa
rse.connect, 351)

Nightly activity
When last user logs out

1. Procedure 2.0 started
○ Sorts and filters the day’s 

exceptions
2. Procedure 3.0

○ Emulates input data, 

type, size and structure.
○ Produces test cases

3. Procedure 4.0
○ Genetic Improvement

○ Parallel process on the 
server

○ Outputs report for 

developer
11

Nightly activity

12

Procedure 3.0
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Improvement log

13

The story so far
● Janus Manager was developed in March 2016
● Since October 2016 has had GI running as a permanent service
● 22 Bugs reported

○ Variable name mixup - current_date vs. current_time
○ Range constants - For i in range(len(Var)+1):
○ And more ….

● 22 Bugs fixed
○ Whole process takes 20 minutes (on average)
○ Fix found within 10 generations

14

Current count is 
~40

Daniel’s perspective of hyper-
heuristics
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Real-World Challenges

• Researchers strive to make algorithms increasingly 
general-purpose

• But practitioners have very specific needs
• Designing custom algorithms tuned to particular 

problem instance distributions and/or 
computational architectures can be very time 
consuming

16Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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Automated Design of Algorithms

• Addresses the need for custom algorithms
• But due to high computational complexity, only feasible 

for repeated problem solving
• Hyper-heuristics accomplish automated design of 

algorithms by searching program space
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Hyper-heuristics

• Hyper-heuristics are a special type of meta-heuristic
– Step 1: Extract algorithmic primitives from existing 

algorithms
– Step 2: Search the space of programs defined by the 

extracted primitives
• While Genetic Programming (GP) is particularly well 

suited for executing Step 2, other meta-heuristics 
can be, and have been, employed

• The type of GP employed matters [24]
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Type of GP Matters:
Experiment Description

• Implement five types of GP (tree GP, linear GP, 
canonical Cartesian GP, Stack GP, and Grammatical 
Evolution) in hyper-heuristics for evolving black-box 
search algorithms for solving 3-SAT

• Base hyper-heuristic fitness on the fitness of the 
best search algorithm generated at solving the 3-
SAT problem

• Compare relative effectiveness of each GP type as a 
hyper-heuristic

GP Individual Description

• Search algorithms are represented as an iterative 
algorithm that passes one or more set of variable 
assignments to the next iteration

• Genetic program represents a single program iteration
• Algorithm runs starting with a random initial population of 

solutions for 30 seconds
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3-SAT Problem

• A subset of the Boolean Satisfiability Problem (SAT)

• The goal is to select values for Boolean variables such that 

a given Boolean equation evaluates as true (is satisfied)

• Boolean equations are in 3-conjunctive normal form

• Example:

– (A ∨ B ∨ C) ∧ (¬A ∨ ¬C ∨ D) ∧ (¬B ∨ C V ¬D)

– Satisfied by ¬A, B, C, ¬D

• Fitness is the number of clauses satisfied by the best 

solution in the final population

Genetic Programming Nodes Used

• Last population, Random population
• Tournament selection, Fitness proportional selection, 

Truncation selection, Random selection
• Bitwise mutation, Greedy flip, Quick greedy flip, Stepwise 

adaption of weights, Novelty
• Union

Results
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Results

• Generated algorithms mostly performed comparably well 
on training and test problems

• Tree and stack GP perform similarly well on this problem, 
as do linear and Cartesian GP

• Tree and stack GP perform significantly better on this 
problem than linear and Cartesian GP, which perform 
significantly better than grammatical evolution

Conclusions

• The choice of GP type makes a significant difference in the 
performance of the hyper-heuristic

• The size of the search space appears to be a major factor 
in the performance of the hyper-heuristic

Case Study 1: The Automated Design 
of Crossover Operators [20]
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• Performance Sensitive to Crossover Selection

• Identifying & Configuring Best Traditional Crossover is 
Time Consuming

• Existing Operators May Be Suboptimal

• Optimal Operator May Change During Evolution

Motivation

28Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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• Meta-EA
– Exceptionally time consuming

• Self-Adaptive Algorithm Selection
– Limited by algorithms it can choose from

Some Possible Solutions
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• Each Individual Encodes a 
Crossover Operator

• Crossovers Encoded as a List of 
Primitives
– Swap
– Merge

• Each Primitive has three 
parameters
– Number, Random, or Inline

Self-Configuring Crossover (SCX)

Swap(3, 5, 2)

Swap(r, i, r)

Merge(1, r, 0.7)

Offspring Crossover
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Applying an SCX

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Parent 1 Genes Parent 2 Genes

Concatenate Genes
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• Each Primitive has a type
– Swap represents crossovers that move 

genetic material 

• First Two Parameters
– Start 1 Position
– Start 2 Position

• Third Parameter Primitive Dependent
– Swaps use “Width”

The Swap Primitive

Swap(3, 5, 2)
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Applying an SCX

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Concatenate Genes

Swap(3, 5, 2)

Swap(r, i, r)

Merge(1, r, 0.7)

Offspring Crossover
3.0 4.0 5.0 6.0
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• Third Parameter Primitive Dependent
– Merges use “Weight”

• Random Construct
– All past primitive parameters used the 

Number construct
– “r” marks a primitive using the Random 

Construct
– Allows primitives to act stochastically

The Merge Primitive

Merge(1, r, 0.7)
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Applying an SCX

1.0 2.0 5.0 6.0 3.0 4.0 7.0 8.0

Concatenate Genes

Merge(1, r, 0.7)

Swap(3, 5, 2)

Swap(r, i, r)

Offspring Crossover

0.7

g(1) = 1.0*(0.7) + 6.0*(1-0.7)

g(i) = α*g(i) + (1-α)*g(j)

2.5g(2) = 6.0*(0.7) + 1.0*(1-0.7)4.5

35Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

• Only Usable by First Two Parameters

• Denoted as “i”

• Forces Primitive to Act on the Same 
Loci in Both Parents

The Inline Construct

Swap(r, i, r)
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778



Applying an SCX

2.5 2.0 5.0 4.5 3.0 4.0 7.0 8.0

Concatenate Genes

Swap(r, i, r)

Merge(1, r, 0.7)

Swap(3, 5, 2)

Offspring Crossover
2.0 4.0

37Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

Applying an SCX

2.5 4.0 5.0 4.5 3.0 2.0 7.0 8.0

Concatenate GenesRemove Exess Genes

Offspring Genes

38Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

Evolving Crossovers

Merge(1, r, 0.7)

Merge(i, 8, r)

Swap(r, i, r)

Parent 1 Crossover

Swap(4, 2, r)

Swap(r, 7, 3)

Parent 2 Crossover

Merge(r, r, r)

Offspring Crossover

Swap(3, 5, 2)
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• Compared Against
– Arithmetic Crossover
– N-Point Crossover
– Uniform Crossover

• On Problems
– Rosenbrock
– Rastrigin
– Offset Rastrigin
– NK-Landscapes
– DTrap

Empirical Quality Assessment

Problem Comparison SCX
Rosenbrock -86.94 (54.54) -26.47 (23.33)
Rastrigin -59.2 (6.998) -0.0088 (0.021)
Offset Rastrigin -0.1175 (0.116) -0.03 (0.028)
NK 0.771 (0.011) 0.8016 (0.013)
DTrap 0.9782 (0.005) 0.9925 (0.021)
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Adaptations: Rastrigin
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Adaptations: DTrap
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• Requires No Additional Evaluation

• Adds No Significant Increase in Run Time
– All linear operations

• Adds Initial Crossover Length Parameter
– Testing showed results fairly insensitive to this parameter
– Even worst settings tested achieved better results than 

comparison operators

SCX Overhead
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• Remove Need to Select Crossover Algorithm 

• Better Fitness Without Significant Overhead

• Benefits From Dynamically Changing Operator

• Promising Approach for Evolving Crossover Operators for 
Additional Representations (e.g., Permutations)

Conclusions

44Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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Case Study 2: The Automated Design 
of Mutation Operators for Evolutionary 

Programming
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Designing Mutation Operators for 
Evolutionary Programming [18]

1. Evolutionary programing optimizes 
functions by evolving a population of 
real-valued vectors (genotype).

2. Variation has been provided 
(manually) by probability distributions
(Gaussian, Cauchy, Levy).

3. We are automatically generating 
probability distributions (using genetic 
programming).

4. Not from scratch, but from already 
well known distributions (Gaussian, 
Cauchy, Levy). We are “genetically 
improving probability distributions”. 

5. We are evolving mutation operators 
for a problem class (probability 
distributions over functions). 

6. NO CROSSOVER

Genotype is
(1.3,...,4.5,…,8.7) 
Before mutation 

Genotype is
(1.2,...,4.4,…,8.6) 
After mutation
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(Fast) Evolutionary Programming

1. EP mutates with a Gaussian 
2. FEP mutates with a Cauchy
3. A generalization is mutate 

with a distribution D 
(generated with genetic 
programming)

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN
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Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used 
in the literature.  Minimization
We use them as problem classes. 

48Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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Function Class 1
1. Machine learning needs to generalize. 
2. We generalize to function classes.
3. y = !" (a function)
4. y = #!"(parameterised function)
5. y = #!", # ~[1,2] (function class)
6. We do this for all benchmark functions. 
7. The mutation operators is evolved to fit the  

probability distribution of functions. 

49Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

Function Classes 2
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Meta and Base Learning

• At the base level we are 
learning about a specific
function. 

• At the meta level we are 
learning about the 
problem class. 

• We are just doing 
“generate and test” at a 
higher level

• What is being passed with 
each blue arrow?

• Conventional EP 

EPFunction to 
optimize

Probability
Distribution
Generator

Function 
class

base level

Meta level
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Compare Signatures (Input-Output)
Evolutionary Programming
(!"à!) à!"
Input is a function 
mapping real-valued 
vectors of length n to a 
real-value. 
Output is a (near optimal) 
real-valued vector
(i.e. the solution to the 
problem instance)

Evolutionary Programming
Designer
[(!"à!)] à ((!"à!) à !")

Input is a list of functions mapping 
real-valued vectors of length n to a 
real-value (i.e. sample problem 
instances from the problem class). 
Output is a (near optimal) 
(mutation operator for) 
Evolutionary Programming  
(i.e. the solution method to the 
problem class)

52

We are raising the level of generality at which we operate. 
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Genetic Programming to Generate 
Probability Distributions

1. GP Function Set {+, -, *, %}

2. GP Terminal Set {N(0, random)}
N(0,1) is a normal distribution. 

For example a Cauchy distribution is 
generated by N(0,1)%N(0,1).
Hence the search space of 
probability distributions contains 
the two existing probability 
distributions used in EP but also 
novel probability distributions. 

CAUCHYGAUSSIAN

NOVEL 
PROBABILITY
DISTRIBUTIONS

SPACE OF 
PROBABILITY
DISTRIBUTIONS
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Means and Standard Deviations

These results are good for two reasons. 
1. starting with a manually designed distributions (Gaussian). 
2. evolving distributions for each function class. 
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T-tests
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Performance on Other Problem Classes
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Case Study 3: The Automated Design 
of On-Line Bin Packing Algorithms
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On-line Bin Packing Problem [9,11]

Items packed so far Sequence of pieces to be packed

• A sequence of items packed into as few a bins as possible.
• Bin size is 150 units, items uniformly distributed between 20-100.
• Different to the off-line bin packing problem where the set of items.
• The “best fit” heuristic, places the current item in the space it fits best 

(leaving least slack). 
• It has the property that this heuristic does not open a new bin unless it 

is forced to. 

150 = 
Bin
capacity

Range of 
Item size
20-100

Array of bins 

Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

59

Genetic Programming 
applied to on-line bin packing

S size
S size

C capacity

F fullness

E emptiness
Fullness is 
irrelevant 
The space is 
important

Not obvious how to link 
Genetic Programming to 
combinatorial problems.
The GP tree is applied to each
bin with the current item and 
placed in the bin with
The maximum score

Terminals supplied to Genetic Programming
Initial representation {C, F, S}
Replaced with {E, S}, E=C-F
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How the heuristics are applied (skip)

90 12070
30 45

70
85

30 60

-

+

FS

C

%

C

-15 -3.75 3 4.29 1.88
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The Best Fit Heuristic

0 10 20 30 40 50 60 70

216304458728610
0

11
4

12
8

14
2

-150

-100

-50

0

50

100

150

100-150
50-100
0-50
-50-0
-100--50
-150--100

Best fit = 1/(E-S). Point out features.
Pieces of size S, which fit well into the space remaining E, 
score well.
Best fit applied produces a set of points on the surface, 
The bin corresponding to the maximum score is picked.

Piece sizeemptiness
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Our Best Heuristic

0
10
20
30
40

50

60

70

80

90

100

110

120

130

140

15020 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68

-15000

-10000

-5000

0

5000

10000

15000

emptiness

piece size

pieces 20 to 70

Similar shape to best fit – but curls up in one corner.
Note that this is rotated, relative to previous slide. 
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Robustness of Heuristics

= all legal results
= some illegal results

63Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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Testing Heuristics on problems of much larger 
size than in training

Table I H trained100 H trained 250 H trained 500 
100 0.427768358 0.298749035 0.140986023 

1000 0.406790534 0.010006408 0.000350265 
10000 0.454063071 2.58E-07 9.65E-12 

100000 0.271828318 1.38E-25 2.78E-32 

Table shows p-values using the best fit heuristic, for heuristics trained on 
different size problems, when applied to different sized problems
1. As number of items trained on increases,  the probability decreases (see 

next slide). 
2. As the number of items packed increases,  the probability decreases (see 

next slide). 

Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances
• Performance does not deteriorate

• The larger the training problem size, the better the bins are packed.

Amount the heuristics beat best fit by

-100

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

evolved on 100
evolved on 250
evolved on 500

Amount 
evolved 
heuristics 
beat 
best fit by. 

Number of pieces
packed so far.
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Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem
• Analogy with sprinters running a race – accelerate towards end of race.
• The “break even point” is approximately half of the size of the training problem 

size
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a 

better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

evolved on 100
evolved on 250
evolved on 500

Amount 
evolved 
heuristics 
beat 
best fit by. 

Zoom in
of previous 
slide
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Step by Step Guide to Automatic Design of 
Algorithms [8, 12]

1. Study the literature for existing heuristics for your 
chosen domain (manually designed heuristics). 

2. Build an algorithmic framework or template which 
expresses the known heuristics. 

3. Let metaheuristics (e.g. Genetic Programming) 
search for variations on the theme.

4. Train and test on problem instances drawn from 
the same probability distribution (like machine 
learning). Constructing an optimizer is machine 
learning (this approach prevents “cheating”).
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A Brief History (Example Applications) [5]

1. Image Recognition – Roberts Mark
2. Travelling Salesman Problem – Keller Robert
3. Boolean Satisfiability – Holger Hoos, Fukunaga, Bader-El-Den, Alex 

Bertels & Daniel Tauritz
4. Data Mining – Gisele L. Pappa, Alex A. Freitas
5. Decision Tree - Gisele L. Pappa et al
6. Crossover Operators – Oltean et al,  Brian Goldman and Daniel 

Tauritz
7. Selection Heuristics – Woodward & Swan, Matthew Martin & Daniel 

Tauritz
8. Bin Packing 1,2,3 dimension (on and off line)  Edmund Burke et. al. 

& Riccardo Poli et al 
9. Bug Location – Shin Yoo
10. Job Shop Scheduling – Mengjie Zhang
11. Black Box Search Algorithms – Daniel Tauritz et al

68Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019
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A Paradigm Shift?

conventional approach  new approach

Algorithm
s investigated/unit tim

e

One person
proposes one 
algorithm
and tests it
in isolation.

One person proposes a
family of  algorithms
and tests them
in the context of 
a problem class. 

• Previously one person proposes one algorithm
• Now one person proposes a set of algorithms
• Analogous to “industrial revolution” from hand 

made to machine made. Automatic Design. 

69

Human cost (INFLATION) machine cost MOORE’S LAW
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Conclusions
1. Heuristic are trained to fit a problem class, so are 

designed in context (like evolution). Let’s close 
the feedback loop! Problem instances live in 
classes. 

2. We can design algorithms on small problem 
instances and scale them apply them to large
problem instances (TSP, child multiplication). 

70Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

SUMMARY

1. We can automatically design algorithms that 
consistently outperform human designed algorithms 
(on various domains). 

2. The “best” heuristics depends on the set of problem 
instances. (feedback)

3. Resulting algorithm is part man-made part machine-
made (synergy) 

4. not evolving from scratch like Genetic Programming, 
5. improve existing algorithms and adapt them to the new 

problem instances. 
6. Algorithms are reusable, “solutions” aren’t. (e.g. tsp 

algorithm vs route)
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Case Study 4: The Automated Design 
of Black Box Search Algorithms [21, 23, 

25]
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• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

Approach
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Our 
Solution

Initialization

Check for 
Termination

Terminate

Iterated 
Function
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• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

• High-level primitives

Our Solution
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• Iterated function

• Sets of solutions

• Function returns 
a set of solutions 
accessible to the 
next iteration

Parse Tree
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Primitive Types

• Variation Primitives

• Selection Primitives

• Set Primitives

• Evaluation Primitive

• Terminal Primitives
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Variation Primitives

• Bit-flip Mutation
– rate

• Uniform Recombination
– count

• Diagonal Recombination
– n
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Selection Primitives

• Truncation Selection
– count

• K-Tournament Selection
– k
– count

• Random Sub-set Selection
– count
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Set-Operation Primitives

• Make Set
– name

• Persistent 
Sets
– name

• Union
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• Evaluates the nodes passed in

• Allows multiple operations and accurate selections within 
an iteration

– Allows for deception

Evaluation Primitive
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Terminal Primitives

• Random Individuals
– count

• `Last’ Set

• Persistent Sets
– name
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Meta-Genetic Program

Create Valid 
Population

Generate 
Children

Evaluate 
Children

Select 
Survivors

Check
Termination
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BBSA Evaluation
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• Evaluations

• Iterations

• Operations

• Convergence

Termination Conditions
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• Deceptive Trap Problem

Proof of Concept Testing

0
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• Evolved Problem Configuration
– Bit-length = 100
– Trap Size = 5

• Verification Problem Configurations
– Bit-length = 100, Trap Size = 5
– Bit-length = 200, Trap Size = 5
– Bit-length = 105, Trap Size = 7
– Bit-length = 210, Trap Size = 7

Proof of Concept Testing (cont.)
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Results

60% Success 
Rate
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Results: 
Bit-Length = 100

Trap Size = 5
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Results: 
Bit-Length = 200

Trap Size = 5
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Results: 
Bit-Length = 105

Trap Size = 7
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Results: 
Bit-Length = 210

Trap Size = 7
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BBSA1

BBSA2

BBSA3
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BBSA1
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BBSA2
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BBSA3
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BBSA2
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Over-Specialization

Trained Problem 
Configuration

Alternate 
Problem 

Configuration
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Robustness

• Measures of Robustness
– Applicability
– Fallibility

• Applicability
–What area of the problem configuration space do I perform well 

on?

• Fallibility 
– If a given BBSA doesn’t perform well, how much worse will I 

perform?
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Robustness

100Jo h n  R . W o o d w ard , D an ie l R . Tau ritz23  A p ril, 2019

794



• Train on multiple problem configurations

• Results in more robust BBSAs

• Provides the benefit of selecting the region of interest on 
the problem configuration landscape

Multi-Sampling
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• Deceptive Trap Problem

Multi-Sample Testing
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• Multi-Sampling Evolution
– Levels 1-5

• Training Problem Configurations
1. Bit-length = 100, Trap Size = 5

2. Bit-length = 200, Trap Size = 5
3. Bit-length = 105, Trap Size = 7
4. Bit-length = 210, Trap Size = 7

5. Bit-length = 300, Trap Size = 5

Multi-Sample Testing (cont.)
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1. Bit-length = 100, Trap Size = 5
2. Bit-length = 200, Trap Size = 5
3. Bit-length = 105, Trap Size = 7
4. Bit-length = 210, Trap Size = 7
5. Bit-length = 300, Trap Size = 5
6. Bit-length = 99, Trap Size = 9
7. Bit-length = 198, Trap Size = 9
8. Bit-length = 150, Trap Size = 5
9. Bit-length = 250, Trap Size = 5
10. Bit-length = 147, Trap Size = 7
11. Bit-length = 252, Trap Size = 7

Initial Test Problem Configurations
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Initial Results
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• Run evolved BBSAs on wider set of problem configurations

• Bit-length: ~75-~500

• Trap Size: 4-20 

Problem Configuration Landscape Analysis
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Results: Multi-Sampling Level 1
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Results: Multi-Sampling Level 2
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Results: Multi-Sampling Level 3
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Results: Multi-Sampling Level 4
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Results: Multi-Sampling Level 5
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Results: EA Comparison
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Robustness: Fallibility

Multi-Sample Level 5

Standard EA
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Robustness: Fallibility

Multi-Sample Level 1

Standard EA
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Robustness: Applicability

Multi-Sample Level 1

Multi-Sample Level 5
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Robustness: Fallibility
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• Increased computational time
–More runs per evaluation (increased wall time)
–More problem configurations to optimize for (increased 

evaluations)

Drawbacks
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• Improved Hyper-Heuristic to evolve more robust BBSAs

• Evolved custom BBSA which outperformed standard EA 
and were robust to changes in problem configuration

Summary of Multi-Sample Improvements
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Case Study 5: Evolving Random Graph 
Generators: A Case for Increased 

Algorithmic Primitive Granularity [27]
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Random Graphs

• Graphs are a powerful modeling tool
– Computer and social networks
– Transportation and power grids

• Algorithms designed for graphs
– Community detection and graph partitioning
– Network routing and intrusion detection

• Random graphs provide test data
• Prediction using random graphs
– Spread of disease
– Deployment of wireless sensors
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Traditional Random Graph Models

• Erdös-Rényi

• Barabási-Albert

Automated Random Graph Model Design

• Random graph model needs to accurately reflect 
intended concept

• Model selection can be automated, but relies on 
having a good solution available

• Developing an accurate model for a new 
application can be difficult

Can the model design process be automated to 
produce an accurate graph model given examples?

Hyper-heuristic Approach

• Extract functionality from existing graph generation 
techniques

• Use Genetic Programming (GP) to construct new random 
graph algorithms

Previous Attempts at Evolving Random 
Graph Generators

• Assumes “growth” model, adding one node at a time
• Does well at reproducing traditional models
• Not demonstrated to do well at generating real complex 

networks
• Limits the search space of possible solutions

800



Increased Algorithmic Primitive Granularity
• Remove the assumed “growth” structure
• More flexible lower-level primitive set
• Benefit: Can represent a larger variety of algorithms
• Drawback: Larger search space, increasing complexity

Methodology

• NSGA-II evolves population of random graph models
• Strongly typed parse tree representation
• Centrality distributions used to evaluate solution
• quality (degree, betweenness, PageRank)

Primitive Operations
Terminals
• Graph elements: nodes, edges
• Graph properties: average degree, size, order
• Constants: integers, probabilities, Booleans, user inputs
• No-op terminators

Functions
• Basic programming constructs: for, while, if-else
• Data structures: lists of values, nodes, or edges, list
• combining/selection/sorting
• Math and logic operators: add, multiply, <, ==, AND, OR
• Graph operators: add edges, add subgraph, rewire edges

Example Evolved Random Graph Generator
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Reproducing Erdös-Rényi

Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.101 0.048 = 0.108 0.047

Betweennes
s

0.104 0.031 = 0.105 0.033

PageRank 0.110 0.032 = 0.112 0.029

Reproducing Random Community Graphs
Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055

Betweennes
s

0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036

Actual Graph Low-GP High-
GP

Evolved Random Collaboration Network 
Generator Conclusion

• Traditional random graph models do not always 
produce appropriate representations of certain 
concepts

• Accurate random graph model design can be 
automated using genetic programming

• More flexible set of low-level primitive 
operations increases resulting model accuracy

• Increase in a priori evolution time is amortized 
over repeated use of the evolved solutions
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Some Final Thoughts
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Challenges in Hyper-heuristics

• Hyper-heuristics are very computationally expensive 
(use Asynchronous Parallel GP [26,30])

• What is the best primitive granularity? (see next 
slide)

• How to automate decomposition and 
recomposition of primitives?

• How to automate primitive extraction?
• How does hyper-heuristic performance scale for 

increasing primitive space size? (see [25,27])

Primitive Granularity
PrimitivesAlgorithm

Full BBSAs
i.e., EA, SA, SAHC, 
etc.

Selective Hyper-
heuristics

Our Hyper-heuristic

Turing Complete 
Set of Primitives

Generative Hyper-
heuristics

High-level BBSA 
operations
i.e., Truncation 
Selection, Bit-Flip 
Mutation, etc.

Low-level BBSA 
operations
i.e., If Converged 
Statements, For loops, 
etc.

Genetic Programming

End of File J

• Thank you for listening !!!

• We are glad to take any 
– comments (+,-)

– suggestions/criticisms
Please email us any missing references!

John Woodward (http://www.cs.stir.ac.uk/~jrw/)
Daniel Tauritz (http://web.mst.edu/~tauritzd/)
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