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Introduction

Introduction

Context:

• Black-Box Optimization: find the optimum of a given problem

without actually knowing its entire landscape
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Introduction

• lack of real-world problems

; use benchmark problems and handle them as black-box

Introduction

Idea of ELA

• extract information from (black-box) optimization problems in an

automated fashion

Introduction

How is ELA helpful when optimizing a given problem?

• Algorithm Selection Problem: find the individually best suited

algorithm for an unseen optimization problem

[36] Rice, J. R. (1976). The Algorithm Selection Problem. In Advances in Computers (pp. 65-118).

[17] Kerschke, P., Hoos, H. H., Neumann, F. & Trautmann, H. (2019). Automated Algorithm

Selection: Survey and Perspectives. In Evolutionary Computation, Vol. 27, Number 1 (pp. 3-45).

Introduction

Exploratory Landscape Analysis (ELA):

• we aim at finding the “best” algorithm

• also improve understanding of problems, as well as

algorithm/problem dependency

• basic idea (exploratory!): we start with

very simple features without clear purpose

• match existing high-level features (expert knowledge) with our ELA

features

• currently: mostly continuous (black-box) (global) optimization, but

also in other domains (e.g., TSP)
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Introduction

[29] Mersmann, O., Preuss, M. & Trautmann, H. (2010). Benchmarking Evolutionary Algorithms:

Towards Exploratory Landscape Analysis. In Proceedings of PPSN XI (pp. 71 - 80).

[28] Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C. & Rudolph, G. (2011).

Exploratory Landscape Analysis. In Proceedings of GECCO 2011 (pp. 829 - 836).

Introduction

• we do not know functional relationships when designing features

• but we can match them to high-level characteristics (multimodality,

funnel structure, etc.) of optimization problems

• this enables recognizing important problem properties quickly

• based on initial design of samples xi1, . . . , xid and their

corresponding fitness value yi , i = 1, . . . , n

• given an evaluated initial design (initial population?), most ELA

features are for free

• there are already several different feature sets

Introduction

History of Landscape Analysis – Before ELA:

Further details are given in [13, 12, 33, 37, 40, 25, 26, 28]

Introduction

History of Landscape Analysis – Since ELA:

Further details are given in [28, 34, 27, 19, 31, 32, 30, 20, 2, 21, 22, 15, 18, 10, 23, 3]
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Introduction

History of Landscape Analysis – Most Recent Developments:

Further details are given in [23, 17, 7, 39]

Single-Objective ELA Features

Single-Objective ELA Features

Classical ELA Features
[29] Mersmann, O., Preuss, M. & Trautmann, H. (2010). Benchmarking Evolutionary Algorithms:

Towards Exploratory Landscape Analysis. In Proceedings of PPSN XI (pp. 71 - 80).

Single-Objective ELA Features

General Cell Mapping Features
[19] Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,

Bischl, B. & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape Analysis.

In Proceedings of EVOLVE 2014 (pp. 115 - 131).
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Single-Objective ELA Features

Barrier Tree Features
[11] Hernández, C., Schütze, O., Emmerich, M. T. M., & Xiong, F. R. (2014). Barrier Tree for

Continuous Landscapes by Means of Generalized Cell Mapping. In Proceedings of EVOLVE 2014.

[8] Flamm, C., Hofacker, I. L., Stadler, P. F. & Wolfinger, M. T. (2002). Barrier Trees of

Degenerate Landscapes. In International Journal of Research in Physical Chemistry and Chemical

Physics (pp. 155 - 173).
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Single-Objective ELA Features

Cell Mapping Features
[19] Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,

Bischl, B. & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape Analysis.

In Proceedings of EVOLVE 2014 (pp. 115 - 131).

better points worse points

Single-Objective ELA Features

Information Content Features
[31] Muñoz, M. A., Kirley, M., Halgamuge, S. K. (2015). Exploratory Landscape Analysis of

Continuous Space Optimization Problems using Information Content. In IEEE Transactions on

Evolutionary Computation (pp. 74 - 87).

[40] Vassilev, V. K., Fogarty, T. C. & Miller, J. F. (2000). Information Characteristics and the

Structure of Landscapes. In Evolutionary Computation, Vol. 8, Number 1 (pp. 31 - 60).
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Dispersion Features
[25] Lunacek, M. & Whitley, D. (2006). The Dispersion Metric and the CMA Evolution Strategy.
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Single-Objective ELA Features

Hill Climbing Features
[1] Abell, T., Malitsky, Y. & Tierney, K. (2013). Features for Exploiting Black-Box Optimization

Problem Structure. In Proceedings of LION 2013 (pp. 30 - 36).

Ruggedness Features
[27] Malan, K. M. & Engelbrecht, A. P. (2013). Ruggedness, Funnels and Gradients in Fitness

Landscapes and the Effect on PSO Performance. In Proceedings of CEC 2013 (pp. 963 - 970).

Nearest Better Clustering Features
[20] Kerschke, P., Preuss, M., Wessing, S. & Trautmann H. (2015). Detecting Funnel Structures

by Means of Exploratory Landscape Analysis. In Proceedings of GECCO 2015 (pp. 265 - 272).

Length Scale Features
[30] Morgan, R. & Gallagher M. (2015). Analyzing and Characterising Optimization Problems

Using Length Scale. In Soft Computing (pp. 1 - 18).

Bag of Local Landscape Features
[38] Shirakawa, S. & Nagao, T. (2016). Bag of Local Landscape Features for Fitness Landscape

Analysis. In Soft Computing, 20(10) (pp. 3787 – 3802).

(ELA for Single-Objective)

Multimodal Optimization

Multimodal Optimization Multimodal Optimization

• algorithmic ancestry goes back to the 1980s

• yearly competitions and publications steadily produce new methods

• two main algorithmic approaches:

• parallel, large populations

• sequential, coordinated restarts

• several components that may be used: archives, clustering methods,

methods for obtaining well distributed samples

• ELA could be helpful for selecting components/methods
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Multimodal Optimization

• different aims possible

• currently most important (competitions): multiglobal

= find all search space points that are globally optimal

• other options: all optima, well distributed good optima, multiglobal

over time, etc.

• interesting: feature values do not change because they do not

depend on actual measure, we can reuse feature data

• but we need different algorithms for different goals

• algorithm performances and one sample on the problems enable

algorithm selection per criterion

Exemplary Use Cases of ELA

Exemplary Use Cases of ELA: Funnel Detection

Example 1: Funnel Detection

Exemplary Use Cases of ELA: Funnel Detection

• funnel: local optima are located near to each other and pile up to an

“upside-down mountain”

• knowledge about underlying global structure, i.e. funnels, helps

selecting the right algorithm

(a) funnel (b) non-funnel (“random”)
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Exemplary Use Cases of ELA: Funnel Detection

• different algorithm candidates for either category

• but there is a wide variety within classes funnel and non-funnel

(a) funnel (b) non-funnel (“random”)

Exemplary Use Cases of ELA: Funnel Detection

• detailed results in our GECCO paper1

• used MPM22 to generate a set of 4,000 training instances

• initial designs of size 50× d observations (small!)

• trained four classifiers (random forest, rpart, kknn and ksvm)

• experimentally driven reduction of the full feature set (300+

features) to 8 features

• validated results on BBOB and subset of problems from CEC-2013

niching competition

1. [21] Kerschke, P., Preuss, M., Wessing, S. & Trautmann H. (2016). Low-Budget Exploratory

Landscape Analysis on Multiple Peaks Models. In Proceedings of GECCO 2016 (pp. 229-236)

2. [43, 4] multiple peaks model 2 generator, available in python (optproblems0.9, Wessing, S.) and

R (smoof, Bossek, J.)

Exemplary Use Cases of ELA: Funnel Detection
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Exemplary Use Cases of ELA: Benchmark Comparison

Example 2: Benchmark Comparison (BBOB vs. Mario GAN)
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Exemplary Use Cases of ELA: Benchmark Comparison

• using GANs (Generative Adversarial Networks) for generating Super

Mario levels

• comparison of underlying optimization problems against BBOB

3

3. [42] Volz, V., Schrum, J., Liu, J., Lucas, S. M., Smith, A., & Risi, S. (2018). Evolving Mario Levels

in the Latent Space of a Deep Convolutional Generative Adversarial Network. In Proceedings of

GECCO 2018 (pp. 221 - 228).

Exemplary Use Cases of ELA: Benchmark Comparison

ELA_META (9 Features)
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Exemplary Use Cases of ELA: Benchmark Comparison

IC (5 Features)
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Exemplary Use Cases of ELA: ELA for Algorithm Selection

Example 3: Using ELA for Algorithm Selection

Exemplary Use Cases of ELA: ELA for Algorithm Selection

• Algorithm Selection Problem: find the individually best suited

algorithm for an unseen optimization problem

[36] Rice, J. R. (1976). The Algorithm Selection Problem. In Advances in Computers (pp. 65-118).

[17] Kerschke, P., Hoos, H. H., Neumann, F. & Trautmann, H. (2019). Automated Algorithm

Selection: Survey and Perspectives. In Evolutionary Computation, Vol. 27, Number 1 (pp. 3-45).

Exemplary Use Cases of ELA: ELA for Algorithm Selection

Experimental setup - Part 1:

• COCO4: platform storing the performances of (129) optimization

algorithms

; considered 12 solvers from COCO

• 2x deterministic: BSrr, BSqi

• 5x multi-level approaches: MLSL, fmincon, fminunc, HMLSL, MCS

• 4x CMA-ES variants: CMA-CSA, IPOP400D, HCMA, SMAC-BBOB

• 1x commercial solver: OQNLP

4. [9] Hansen, N., Auger, A., Mersmann, O., Tušar, T. & Brockhoff, D. (2016). COCO: A Platform

for Comparing Continuous Optimizers in a Black-Box Setting. ArXiv e-print arXiv:1603.08785.

Link to COCO: http://coco.gforge.inria.fr/

Exemplary Use Cases of ELA: ELA for Algorithm Selection

Experimental setup - Part 2:

• all 24 BBOB problems

• problem dimensionality: d ∈ {2, 3, 5, 10}
• accuracy threshold: τ = 10−2

• performance measure: relative ERT (per problem)

• computed ca. 100 ELA features per problem based on initial designs

of 50× d observations

• performed automated feature selection

• tried different machine learning algorithms
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Exemplary Use Cases of ELA: ELA for Algorithm Selection

Results - Part 1:

• Single-Best Solver from Portfolio: HCMA (relERT ≈ 30.4)

; on average 30x number of function evaluations (in relation to

best possible solver per problem)

• Best Algorithm Selector: classification-based SVM (relERT ≈ 14.2)

; less than half of the number of function evaluations of HCMA

• always predicts either fmincon, HCMA, HMLSL or MLSL

• nine features employed by selector:

• 1 (cell mapping) angle,

• 1 levelset,

• 1 y-distribution,

• 2 meta-model and

• 4 NBC features

Results - Part 2:

• detailed results can be found here:

[23] Kerschke, P. & Trautmann, H. (2018). Automated Algorithm Selection on Continuous

Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning.

In Evolutionary Computation, Vol. 27, Number 1 (pp. 99 - 127)
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FLACCO + GUI

FLACCO + GUI

• flacco: Feature-Based Landscape Analysis of Continuous and

Constraint Optimization Problems

• unified interface for multiple (single-objective) sets of configurable

features

• stable release on CRAN / developers version on GitHub

• multiple vizualisation techniques (partially shown on these slides)

• tracks # of function evaluations and run time - per feature set

• a comprehensive description of FLACCO can be found here5,6

5. [22] Kerschke, P. & Trautmann, H. (2016). The R-Package FLACCO for Exploratory Landscape

Analysis with Applications to Multi-Objective Optimization Problems. In Proceedings of CEC 2016.

6. [14] Kerschke, P. (2017). Comprehensive Feature-Based Landscape Analysis of Continuous and

Constrained Optimization Problems Using the R-Package flacco. In arXiv 1708.05258

URL: https://arxiv.org/abs/1708.05258.
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FLACCO + GUI

7

7. Tutorial: http://kerschke.github.io/flacco-tutorial/site/

FLACCO + GUI

• drawback of flacco:

• it is an R-package ; only people, who are familiar with

(programming in) R benefit of it

• solution:

• user-friendly GUI8 (graphical user interface)

• platform independent (web-)application:

https://flacco.shinyapps.io/flacco/

• the GUI helps people, who

(a) are familiar with R, but don’t want to bother with the coding

(b) are not familiar with R (and just want to perform ELA)

(c) don’t have access to a computer

(d) have access to a computer, but don’t have the rights to install R

8. [10] Hanster, C. & Kerschke, P. (2017). flaccogui: Exploratory Landscape Analysis for Everyone.

In Proceedings of GECCO 2017 Companion (pp. 1215 – 1222).

FLACCO + GUI FLACCO + GUI

1148



(ELA for) Multi-Objective

Optimization

Multi-Objective Optimization

source: lmarti.github.io

Multi-Objective Optimization

• in single-objective optimization, ELA has shown to be useful for

describing the problem landscape based on a small initial design

• currently, there exist almost no landscape features for continuous

multi-objective optimization problems

• first approaches for using ELA in the multi-objective setting

Multi-Objective Optimization

• flacco originally intended to deal with single-objective optimization

problems

• features can also be used to characterize multi-objective problems

• we used DTLZ-9 and ZDT-problems10 (using the R-package

smoof11)

9. [6] Deb, K., Thiele, L., Laumanns, M. & Zitzler, E. (2005). Scalable Test Problems for Evolutionary

Multiobjective Optimization. In Evolutionary Multiobjective Optimization (pp. 105 - 145)

10. [44] Zitzler, E., Deb, K. & Thiele (2000). Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results. In Evolutionary Computation, Vol. 8, Number 2 (pp. 173 - 195)

11. [4] Bossek, J. (2017). smoof: Single- and Multi-Objective Optimization Test Functions. In The R

Journal. https://CRAN.R-project.org/package=smoof
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Multi-Objective Optimization

Experimental Setup:

• DTLZ1 to DTLZ7 and ZDT1 to ZDT6 (without ZDT5)

; 120 instances (12 functions with 10 replicates each)

• initial designs: 100× d samples with d = 3

• considered 131 artificially designed “interaction-features”:

• all 15 feature sets except for GCM and Barrier Trees

; 682 features (341 per objective)

• aggregated by feature-ratio (objective 1 / objective 2)

• removed runtimes, as well as all features that contained infinite or

non-defined values

Multi-Objective Optimization
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Multi-Objective Optimization

• in single-objective optimization:

people visualize interaction effects of decision and objective space

simultaneously ; line plots, heatmaps, 3D plots, etc.

• in multi-objective optimization:

visualizing d ≥ 2 decision variables and p ≥ 2 objective values

(within a single image) is much more complicated

• effect: researchers mainly only focus on the objective space, but

neglect the decision space12

• conflict: optimization algorithms usually “act” in the decision space

(e.g., mutation / recombination within an EA)

12. Exception: Cost landscapes based on Pareto-ranking as defined by Carlos Fonseca.

[5] Fonseca, C. M. M. (1995). Multi Objective Genetic Algorithms with Application to Control En-

gineering Problems. PhD Thesis at the Department of Automatic Control and Systems Engineering,

University of Sheffield, Sheffield, UK.
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Multi-Objective Optimization

• idea introduced within our paper13 from the previous PPSN:

visualize efficient sets, i.e., the set of points from the decision space

whose images are multi-objective local or global optima

13. [24] Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H. & Emmerich, M.

(2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of PPSN

XIV (pp. 962 – 972).

Multi-Objective Optimization

• extended to a visualization of the multi-objective basins of

attraction14

14. [16] Kerschke, P. & Grimme, C. (2017). An Expedition to Multimodal Multi-Objective Optimization

Landscapes. In Proceedings of EMO 2017 (pp. 329 – 343).

Multi-Objective Optimization Multi-Objective Optimization
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Multi-Objective Optimization

Next Steps w.r.t. ELA for Multi-Objective Optimization:

• analyze numerous multi-objective benchmark problems visually and

detect meaningful properties of the landscapes

• develop (simple and) automatically computable features, which

might capture these properties

• conduct experimental studies to test their applicability

• employ the insights gained from the joined visualization of decision

and objective space to either

(a) construct better performing algorithms, or

(b) use the derived features for training a suitable algorithm selector

Open Issues

Open Issues

• how can we characterize multimodal and/or multi-objective

landscapes? ⇒ develop new landscape features

• enhance flacco with more ELA features

• how can we find the smallest most informative feature set?

• by how much can we still reduce the size of the initial designs

without losing (too much) information?

Open Issues

• (how) can we transfer features from / to different domains?

(e.g., funnels also exist in discrete optimization)

• use features to learn more about the algorithms and problems

1. train well-performing algorithm selection or configuration models

based on ELA features

2. interpret the model’s behavior based on the employed features

(black-box to white-box)

1152



Open Issues

• how should we extend the existing / established benchmarks?

• GECCO 2019 offers numerous related workshops:

• Understanding Machine Learning Optimization Problems (UMLOP)

• Black Box Optimization Benchmarking (BBOB)

• Game-Benchmark for Evolutionary Algorithms (GBEA)

• Black Box Discrete Optimization Benchmarking (BB-DOB)

• directions for possible extensions:

• machine learning problems [35]

• landscapes of (hyper-)parameter optimization problems [7]

• problems from domains such as computational games [41]

Thank you!

Comments, Questions and/or Suggestions? References
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vol. 9921 of Lecture Notes in Computer Science (LNCS), Springer, pp. 156 – 166.
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and B. Paechter, Eds., vol. 9921 of Lecture Notes in Computer Science (LNCS), Springer,

pp. 962 – 972.

[25] Lunacek, M., and Whitley, L. D. The Dispersion Metric and the CMA Evolution

Strategy. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary

Computation (GECCO) (2006), ACM, pp. 477 – 484.

[26] Malan, K. M., and Engelbrecht, A. P. Quantifying Ruggedness of Continuous

Landscapes Using Entropy. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC) (2009), IEEE, pp. 1440 – 1447.

[27] Malan, K. M., and Engelbrecht, A. P. A Survey of Techniques for Characterising

Fitness Landscapes and Some Possible Ways Forward. Information Sciences (JIS) 241

(2013), 148 – 163.

[28] Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., and Rudolph,

G. Exploratory Landscape Analysis. In Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation (GECCO) (2011), ACM, pp. 829 – 836.

[29] Mersmann, O., Preuss, M., and Trautmann, H. Benchmarking Evolutionary Algorithms:

Towards Exploratory Landscape Analysis. In PPSN XI: Proceedings of the 11th International

Conference on Parallel Problem Solving from Nature (2010), Springer, pp. 71 – 80.

[30] Morgan, R., and Gallagher, M. Analysing and Characterising Optimization Problems

Using Length Scale. Soft Computing (2015), 1 – 18.
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