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Aims and Goals of this Tutorial

I The scope of this tutorial is restricted to population-based
I generational, non-elitist EAs (first part), and
I steady-state, elitist EAs (second part).

I This tutorial will provide an overview of
I the goals of runtime analysis of EAs
I selected, generally applicable techniques

I You should attend if you wish to
I theoretically understand the behaviour and performance of the EAs you

design
I familiarise yourself with some of the techniques used
I pursue research in the area

I enable you or enhance your ability to
1. understand theoretically population-dynamics of EAs on different problems
2. perform time complexity analysis of population-based EAs on common toy

problems
3. have the basic skills to start independent research in the area

3 / 71

Outline
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Black Box Optimisation Algorithms and Runtime

Function class F

Photo: E. Gerhard (1846).

f(x1), f(x2), f(x3), ... x1, x2, x3, ...f(x1), f(x2), f(x3), ..., f(xt) x1, x2, x3, ..., xt

A

f

I An unknown optimisation problem f is
chosen, possiby adversarily, from a
problem class F known to the algorithm.

I For every t ∈ N, using the obtained
information (x1, f(x1)), . . . , (xt, f(xt)),
the algorithm queries a new search point
xt+1 to obtain f(xt+1) from the oracle.

Definition
The runtime of algorithm A on fitness function2 f : {0, 1}n → R is

TA,f := min
t∈N
{t | ∀y ∈ {0, 1}n, f(xt) ≥ f(y)} .

The worst case expected runtime of algorithm A on problem class F is

TA,F := max
f∈F

E
[
TA,f

]
Droste, Jansen, and Wegener [2006]

2This definition assumes that the objective is to maximise the fitness function.
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Runtime Analysis of Evolutionary Algorithms
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Analysis of Evolutionary Algorithms
I Infinite population size

I Markov chain analysis He and Yao [2003]
I No parent population, or monomorphic populations

I (1+1) EA
I (1+λ) EA Jansen, Jong, and Wegener [2005]
I (1,λ) EA Rowe and Sudholt [2012]

I Fitness-level techniques
I (µ+1) EA Witt [2006]
I (N+N) EAs Chen, He, Sun, Chen, and Yao [2009]
I non-elitist EAs with unary variation operators Lehre [2011b], Dang and

Lehre [2014]
I (µ+1) GA Corus and Oliveto [2017]

I Stochastic dominance Doerr [2018]
I Drift analysis and martingale theory

I Fitness proportionate selection Neumann, Oliveto, and Witt [2009a],
Oliveto and Witt [2014, 2015]

I Family trees
I (µ+1) EA Witt [2006]
I (µ+1) IA Zarges [2009]

I Multi-type branching processes Lehre and Yao [2012]
I Negative drift theorem for populations Lehre [2011a]

I Level-based analysis Corus, Dang, Eremeev, and Lehre [2014]
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Drift Analysis
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What is Drift3 Analysis?

I Prediction of the long term behaviour of a process X
I hitting time, stability, occupancy time etc.

from properties of ∆.

3NB! (Stochastic) drift is a different concept than genetic drift in population genetics.

9 / 71

What is Drift3 Analysis?

I Prediction of the long term behaviour of a process X
I hitting time, stability, occupancy time etc.

from properties of ∆.

3NB! (Stochastic) drift is a different concept than genetic drift in population genetics.

9 / 71
664



Additive Drift Theorem

b0 Yk = d(Xk)

ε

(C1+) ∀k E [Yk+1 − Yk | Yk > 0] ≤ −ε
(C1−) ∀k E [Yk+1 − Yk | Yk > 0] ≥ −ε

Theorem (He and Yao [2001], Jägersküpper [2007], Jägersküpper [2008])

Given a stochastic process Y1, Y2, . . . over an interval [0, b] ⊂ R.
Define T := min{k ≥ 0 | Yk = 0}, and assume E [T ] <∞.

I If (C1+) holds for an ε > 0, then E [T | Y0] ≤ b/ε.

I If (C1−) holds for an ε > 0, then E [T | Y0] ≥ Y0/ε.
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LeadingOnes

LeadingOnes(x) :=
n∑
i=1

i∏
j=1

xj

x =

Leading 1-bits︷ ︸︸ ︷
1111111111111111

Remaining bits︷ ︸︸ ︷
0∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ .

Left-most 0-bit
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Runtime Analysis of (1,λ) EA on LeadingOnes

Theorem
The (1,λ) EA with λ = n optimises LeadingOnes in O(n2) expected time.

Proof

I Distance: let d(x) = n− i where i is the number of leading ones;

I Drift:

E [d(Xt)− d(Xt+1)|d(Xt) = n− i]

≥ 1 ·
(

1−
(

1− 1

n

(
1− 1

n

)n−1)λ)
− n ·

(
1−

(
1− 1

n

)n)λ
= c1 − n · cn2 = Ω(1)

Hence,

E [T ] ≤ λ · max distance

drift
= λ · n

Ω(1)
= O(n2)
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Some Drift Theorems

ba Yk

E [Yk+1 − Yk | Fk]

Drift Condition4 Statement Note

E
[
Yk+1 | Fk

]
≤ Yk − ε0 E [τa] ≤ Additive drift [He and Yao, 2001, Jägersküpper, 2008]

Pr (τa > B) ≤ [Hajek, 1982]
Pr
(
τb < B

)
≤ Negative drift [Hajek, 1982, Oliveto and Witt, 2010]

E
[
Yk+1 | Fk

]
≥ Yk − ε0 ≤ E [τa] Additive drift (lower b.) [He and Yao, 2001, Jägersküpper, 2007]

E
[
Yk+1 | Fk

]
≤ Yk E [τa] ≤ Supermartingale [Neumann, Sudholt, and Witt, 2009b]

E
[
Yk+1 | Fk

]
≤ δYk E [τa] ≤ Multiplicative drift [Doerr, Johannsen, and Winzen, 2010, Fischer, Olbrich,

and Vöcking, 2008]
Pr (τa > B) ≤ [Doerr and Goldberg, 2010]

E
[
Yk+1 | Fk

]
≥ δYk ≤ E [τa] Multiplicative drift (lower b.) [Lehre and Witt, 2012]

E
[
Yk+1 | Fk

]
≤ h(Yk) E [τa] ≤ Variable drift [Johannsen, 2010]

E
[
Yk+1 | Fk

]
≤ h(Yk) Pr (τa > B) ≤ [Lehre and Witt, 2014]

Pr
(
τb < B

)
≤ [Lehre and Witt, 2014]

E

[
e
λYk+1 | Fk

]
≤ eλYk

α0
Pr
(
τb < B

)
≤ Population drift [Lehre, 2011a]

4Some drift theorems need additional conditions.
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Outline of a Non-elitist, Generational Evolutionary Algorithm5

Parents

1

01 11 0

0

1

0

0

0

0

0

1

1

1

Population

New IndividualOffspring

1: initialise a population P0 of λ individuals uniformly at random.
2: for t = 0, 1, 2, . . . until termination condition do
3: evaluate the individuals in population Pt.
4: for i = 1 to λ do
5: select two parents from population Pt.
6: recombine the two parents.
7: mutate the offspring and add it to population Pt+1.

5Pseudo-code adapted from Eiben and Smith [2003].
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A Model of Non-elitist, Generational EAs

Parents

1

01 11 0

0

1

0

0

0

0

0

1

1

1

Population

New IndividualOffspring

Wide range of evolutionary algorithms...

I selection mechanisms (ranking selection, (µ, λ)-selection, tournament selection,
...)

I fitness models (deterministic, stochastic, dynamic, partial, ...)

I variation operators

I search spaces (e.g. bitstrings, permutations, ...)

We will describe many of these with a general mathematical model.
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A Model of Non-elitist, Generational EAs

0

1

0

0

0

0

0

1

1

1

Population

New Individual

Require: Search space X and random operator D : Xλ → X
1: P0 ∼ Unif(Xλ)
2: for t = 0, 1, 2, . . . until termination condition do
3: for i = 1 to λ do
4: Pt+1(i) ∼ D(Pt)
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Level-based Theorem6

6Corus, Dang, Eremeev, and Lehre [2017]
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Level-based Analysis

Problem

I Given any target set B ⊂ X (e.g. global optima), let

TB := min{λt | Pt ∩B 6= ∅}

where P0, P1, . . . are the populations generated by the algorithm.

I How does E [TB] depend on D and λ? Informally, how much time does
the algorithm require to discover the target set.

Level-based Theorem (LBT)

I If D and λ satisfy certain conditions,
then LBT provides an upper bound for E [TB].
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Level Partitioning of Search Space X

Definition
(A1, . . . , Am) is a level-partitioning of search space X if

I
⋃m
j=1Aj = X (together, the levels cover the search space)

I Ai ∩Aj = ∅ whenever i 6= j (the levels are nonoverlapping)

I the last level Am covers the optima for the problem

We write A≥j to denote everything in level j and higher, i.e.,

A≥j :=
m⋃
i=j

Ai.
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Notation

I For any population P = (y1, . . . , yλ) ∈ Xλ and j ∈ [m], let

|P ∩A≥j | := |{i | xi ∈ A≥j}|,

i.e, the number of individuals in P that is in subset A≥j .

Example

|P ∩A≥4| = 5 where A≥4 corresponds to the red region.
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Current level of a population P wrt γ0 ∈ (0, 1)

Definition
The unique integer j ∈ [m− 1] such that

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1|

Example

Current level wrt γ0 = 1
2

is .....
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Current level of a population P wrt γ0 ∈ (0, 1)

Definition
The unique integer j ∈ [m− 1] such that

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1|

Example

Current level wrt γ0 = 1
2

is 4.

20 / 71

Level-based Theorem [Corus, Dang, Eremeev, and Lehre, 2017]

≥ γ(1 + δ)

≥ zj

y ∼ D(P )

AmA≥1 A≥j A≥j+1 · · ·

P

γ0λ

γλ

If for all populations P ∈ Xλ, an individual y ∼ D(P ) has

Pr
(
y ∈ A≥j+1

)
≥ zj, (G1)

Pr
(
y ∈ A≥j+1

)
≥ γ(1 + δ),

(G2)

where j ∈ [m− 1] is the current level of population P , i.e.,

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1|

= γλ,

and the population size λ is bounded from below by

λ ≥
(

4

γ0δ2

)
ln

(
128m

zminδ2

)
, (G3)

then the algorithm reaches the last level Am in expected time

E [TAm ] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.
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Applications of Level-based Theorem

Parents Offspring

1

2

3

M

I EAs with crossover operator

I (Corus, Dang, Eremeev, Lehre, PPSN’14)

I Theory-led design of EAs

I Shortest paths with genetic algorithms
(Corus & Lehre, MIC’15)

I Optimisation under uncertainty

I Stochastic fitness functions
(Dang & Lehre, FOGA’15)

I Partially observable fitness functions
(Dang & Lehre, GECCO’14)

I Dynamic fitness functions
(Dang, Jansen, Lehre, GECCO’15)

I Estimation of Distribution Algorithms (EDAs)

I UMDA (Dang & Lehre, GECCO’15)
(Nguyen & Lehre, GECCO’17)

I PBIL (Lehre & Nguyen, PPSN’18)
I GOMEA (Hoog, 2016)

I Self-adaptive EAs

I Self-adaptation of mutation rates
(Dang & Lehre, PPSN’16)
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Suggested recipe for application of level-based theorem

1. Find a partition (A1, . . . , Am) of X that reflects the state of the
algorithm, and where Am consists of all goal states.

2. Find parameters γ0 and δ and a configuration of the algorithm (e.g.,
mutation rate, selective pressure) such that whenever
|P ∩A≥j+1| = γλ > 0, condition (G2) holds, i.e.,

Pr
(
y ∈ A≥j+1

)
≥ γ(1 + δ)

3. For each level j ∈ [m− 1], estimate a lower bound zj ∈ (0, 1) such
that whenever |P ∩A≥j+1| = 0, condition (G1) holds, i.e.,

Pr
(
y ∈ A≥j+1

)
≥ zj

4. Calculate the sufficient population size λ from condition (G3).

5. Read off the bound on expected runtime.
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The Level-Based Theorem (LBT) is “tight”7

Theorem
For any valid set of parameters Θ = (A, γ0, δ, z) for LBT,
there exists a mapping Dslow satisfying (G1) and (G2) of LBT st.

E [TAm ] ≥
(

2

3δ

)m−2∑
j=1

(
λ ln

(
γ0δλ

1/δ + 2zjδλ

)
+

1

zj

)

E [TAm ] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

7Corus, Dang, Eremeev and Lehre (IEEE TEVC 2018) https://arxiv.org/abs/1407.7663
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More info about D required for more precise bounds

All algorithms

Algorithms satisfying LBT

Logical structure of LBT

For all parameter settings Θ, and all
mappings D ∈ A(Θ)

E [TD] ≤ f(Θ) + ε.

Also, there exists D ∈ A(Θ) st

E [TD] ≥ f(Θ)− ε

Assume you have applied the LBT to your algorithm, how precise is the bound?

I The only LBT knows about your algorithm D is that it satisfies the conditions for
the parameters Θ. (Many other processes satisfy the conditions for the same Θ.)

I The lower bound implies that the LBT gives the best possible (±ε) runtime
bound for your algorithm given the information that is available.

I Some algorithms in A(Θ), including yours, could be faster than f(Θ).
However, more information about the algorithm required to prove so, i.e.,

I a more precise set of parameters Θ′, or
I a different way of characterising algorithms than A(Θ)
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Example application – (µ,λ) GA on Onemax

M
S

C

x1

x2

z
y

OneMax(x) :=
n∑
i=1

xi.

(µ,λ) Genetic Algorithm (GA)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select a parent x from population Pt acc. to (µ, λ)-selection
Select a parent y from population Pt acc. to (µ, λ)-selection
Apply uniform crossover to x and y, i.e. z := crossover(x, y)
Create Pt+1(i) by flipping each bit in z with probability χ/n.

Theorem
If λ > c ln(n) for a sufficiently large constant c > 0, and λ

µ
> 2eχ(1 + δ) for any

constant δ > 0, then the expected runtime of (µ,λ) GA on OneMax is O(nλ).
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(µ, λ)-selection mechanism

1. Sort the current population P = (x1, . . . , xλ) such that

f(x1) ≥ f(x2) ≥ . . . ≥ f(xλ)

2. return Unif(x1, . . . , xµ)
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Partition of Search Space into Levels

Partition into m := n+ 1 levels A0, . . . , An

Aj := {x ∈ {0, 1}n | Onemax(x) = j}
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Analysis of Crossover Operator

Parents Offspring

Proof.
Assume that x ∈ A≥j+1 and y ∈ A≥j ,

2j + 1 ≤ |x|+ |y|

Therefore Pr
(
u ∈ A≥j+1

)
= 1 and

Pr
(

crossover(x, y) ∈ A≥j+1 | x ∈ A≥j+1 and y ∈ A≥j
)
≥

1

2
=: ε.
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Verification of Condition (G2)

Assume that |P ∩ A≥j | ≥ γ0λ > |P ∩ A≥j+1| where 0 < γ < γ0 := µ/λ.

M
S

C

x1

x2

z
y

we have

Pr
(
z ∈ A≥j+1

)
= Pr

(
x1 ∈ A≥j ∧ x2 ∈ A≥j+1

)
Pr

(
z ∈ A≥j+1 | x1 ∈ A≥j ∧ x2 ∈ A≥j+1

)
≥ 1 ·

γλ

µ
· (1/2)

≥ γ(1 + δ)

(
1−

χ

n

)−n

hence, we get

Pr
(
y ∈ A≥j+1

)
= Pr

(
z ∈ A≥j+1

)
Pr

(
y ∈ A≥j+1 | z ∈ A≥j+1

)
≥ Pr

(
z ∈ A≥j+1

) (
1−

χ

n

)n
≥

γ(1 + δ).
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Assume that |P ∩ A≥j | ≥ γ0λ > |P ∩ A≥j+1| where 0 < γ < γ0 := µ/λ.

M
S

C

x1

x2

z
y

If λ ≥ 2µ
(
1− χ

n

)−n
(1 + δ) ≈ 2µeχ , we have

Pr
(
z ∈ A≥j+1

)
= Pr

(
x1 ∈ A≥j ∧ x2 ∈ A≥j+1

)
Pr

(
z ∈ A≥j+1 | x1 ∈ A≥j ∧ x2 ∈ A≥j+1

)
≥ 1 ·

γλ

µ
· (1/2) ≥ γ(1 + δ)

(
1−

χ

n

)−n

hence, we get

Pr
(
y ∈ A≥j+1

)
= Pr

(
z ∈ A≥j+1

)
Pr

(
y ∈ A≥j+1 | z ∈ A≥j+1

)
≥ Pr

(
z ∈ A≥j+1

) (
1−

χ

n

)n
≥ γ(1 + δ).
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Verification of Condition (G1)

Assume that |P ∩ A≥j | ≥ γ0λ > |P ∩ A≥j+1| where 0 ≤ γ < γ0 := µ/λ.

M
S

C

x1

x2

z
y

We have

Pr
(
z ∈ A≥j

)
= Pr

(
x1 ∈ A≥j ∧ x2 ∈ A≥j

)
Pr

(
z ∈ A≥j | x1 ∈ A≥j ∧ x2 ∈ A≥j

)
≥ 1 · 1/2

hence, we get

Pr
(
y ∈ A≥j+1

)
= Pr

(
z ∈ A≥j

)
Pr

(
y ∈ A≥j+1 | z ∈ A≥j+1

)
≥ Pr

(
z ∈ A≥j

)
· (n− j) ·

(χ
n

) (
1−

χ

n

)n−1

≥ (χ/2) · (1− j/n)

(
1−

χ

n

)n−1

≥
(1− δ)χ

2eχ
· (1− j/n) =: zj
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Application of the Level-based Theorem

If for all populations P ∈ Xλ, an individual y ∼ D(P ) has

Pr
(
y ∈ A≥j+1

)
≥ zj, (G1)

Pr
(
y ∈ A≥j+1

)
≥ γ(1 + δ),

(G2)

where j ∈ [m− 1] is the current level of population P , i.e.,

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1|

= γλ,

and the population size λ is bounded from below by

λ ≥
(

4

γ0δ2

)
ln

(
128m

zminδ2

)
, (G3)

then the algorithm reaches the last level Am in expected time

E [TAm ] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.
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Bounding the first term (first attempt, imprecise)

n−1∑
j=0

ln

(
6δλ

4 + zjδλ

)
<

n−1∑
j=0

ln

(
6δλ

4

)
= O(n ln(λ)).

I This upper bound is imprecise because it does not exploit that the upgrade
probabilities zj are large for small j.
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Bounding the first term (second attempt, more precise)

n−1∑
j=0

ln

(
6δλ

4 + zjδλ

)
<

n−1∑
j=0

ln

(
6

zj

)

using ln(a) + ln(b) = ln(ab) and defining c := 12eχ

(1−δ)χ

= ln

n−1∏
j=0

cn

n− j

 = ln

(
(cn)n

n!

)

and using the lower bound n! > (n/e)n

< ln

(
(cn)nen

nn

)
= n ln(ec) = O(n).
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Bounding the second term

Recall the definition of the n-th Harmonic number

Hn :=
n∑
i=1

1

i
= O(ln(n)).

The second term can therefore be bounded as

n−1∑
j=0

1

zj
= O

n−1∑
j=0

n

n− j

 = O(n ln(n))
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Completing the proof

Theorem
If λ > c ln(n) for a sufficiently large constant c > 0, and λ

µ
> 2eχ(1 + δ)

for any constant δ > 0, then the expected runtime of (µ,λ) GA on OneMax
is

(
8

δ2

)λ n−1∑
j=0

ln

(
6δλ

4 + zjδλ

)
+

n−1∑
j=0

1

zj


= O(nλ) +O(n lnn) = O(nλ).
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Uncertainty in Comparison-based PSVAs

1

2

3

M

Sources of uncertainty

1. Droste noise model (Droste, 2004)

2. Partial evaluation

3. Noisy fitness (Prügel-Bennet, Rowe, Shapiro, 2015)

Sufficient with mutation rate δ/(3n) and

Pr (x choosen | f(x) > f(y)) ≥ 1

2
+ δ with 1/δ ∈ poly(n)

Dang and Lehre [2015] and Dang and Lehre [2016a]
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Lower Bounds
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Lower Bounds

Problem
Consider a sequence of populations P1, . . . over a search space X , and a
target region A ⊂ X (e.g., the set of optimal solutions), let

TA := min{ λt | Pt ∩A 6= ∅ }

We would like to prove statements on the form

Pr (TA ≤ t(n)) ≤ e−Ω(n). (1)

I i.e., with overwhelmingly high probability, the target region A has not
been found in t(n) evaluations

I lower bounds often harder to prove than upper bounds

I will present an easy to use method that is applicable in many situations
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Algorithms considered for lower bounds

Definition (Non-elitist EA with selection and mutation)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select parent x from population Pt according to psel

Flip each position in x independently with probability χ/n.
Let the i-th offspring be Pt+1(i) := x.
(i.e., create offspring by mutating the parent)

Assumptions

I population size λ ∈ poly(n), i.e. not exponentially large

I bitwise mutation with probability χ/n, but no crossover.

I results hold for any non-elitist selection scheme psel

that satisfy some mild conditions to be described later.
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Reproductive rate8

Definition
For any population P = (x1, . . . , xλ) let psel(xi) be the probability that
individual xi is selected from the population P

I The reproductive rate of individual xi is λ · psel(xi).

I The reproductive rate of a selection mechanism
is bounded from above by α0 if

∀P ∈ Xλ, ∀x ∈ P λ · psel(x) ≤ α0

(i.e., no individual gets more than α0 offspring in expectation)

8The reproductive rate of an individual as defined here corresponds to the notion of “fitness” as used in the field
of population genetics, i.e., the expected number of offspring.
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(µ, λ)-selection mechanism

Probability of selecting i-th individual is pi ∈ {0, 1
µ
}.

I reproductive rate bounded by α0 = λ/µ
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Negative Drift Theorem for Populations (informal)

If individuals closer than b of target has reproductive rate α0 < eχ,
then it takes exponential time ec(b−a) to reach within a of target.
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Negative Drift Thm. for Populations [Lehre, 2011a]

Consider the non-elitist EA with

I population size λ = poly(n)

I bitwise mutation rate χ/n for 0 < χ < n

let T := min{t | H(Pt, x∗) ≤ a} for any x∗ ∈ {0, 1}n.

If there are constants α0 ≥ 1, δ > 0 and integers
a(n) and b(n) < n

χ
where b(n)− a(n) = ω(lnn), st.

(C1) If a(n) < H(x, x∗) < b(n) then λ · psel(x) ≤ α0.

(C2) ψ := ln(α0)/χ+ δ < 1

(C3) b(n) < min
{
n
5
, n

2

(
1−

√
ψ(2− ψ)

)}
then there exist constants c, c′ > 0 such that

Pr
(
T ≤ ec(b(n)−a(n))

)
≤ e−c

′(b(n)−a(n)).
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The worst individuals have low reproductive rate

Lemma
Consider any selection mechanism which for x, y ∈ P satisfies

(a) If f(x) > f(y), then psel(x) ≥ psel(y).
(selection probabilities are monotone wrt fitness)

(b) If f(x) = f(y), then psel(x) = psel(y).
(ties are drawn randomly)

If f(x) = miny∈P f(y), then psel(x) ≤ 1/λ.
(individuals with lowest fitness have reproductive rate ≤ 1)

Proof.

I By (a) and (b), psel(x) = miny∈P psel(y).

I 1 =
∑
x∈P psel(x) ≥ λ ·miny∈P psel(y) = λ · psel(x).

45 / 71

Example 1: Needle in the haystack

Definition

Needle(x) =

{
1 if x = 1n

0 otherwise.

Theorem
The optimisation time of the non-elitist EA with any selection mechanism
satisfying the properties above9 on Needle is
at least ecn with probability 1− e−Ω(n) for some constant c > 0.

9From black-box complexity theory, it is known that Needle is hard for all search heuristics (Droste et al 2006).
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Example 1: Needle in the haystack (proof10)

I Apply negative drift theorem with a(n) := 1.

I By previous lemma, can choose α0 = 1 for any b(n),
hence ψ = ln(α)/χ+ δ = δ < 1 for all χ and δ < 1.

I Choosing the parameters δ := 1/10 and b(n) := n/6 give

min
{n

5
,
n

2

(
1−

√
ψ(2− ψ)

)}
=
n

5
> b(n).

I It follows that Pr
(
T ≤ ec(b(n)−a(n))

)
≤ e−Ω(n).

10For simplicity, we assume that χ ≤ 6, thus b(n) = n/6 ≤ n/χ holds.
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Exercise: Optimisation time on Jumpk

0 |x| (number of 1-bits) n

Fitness

Opt.
k

Jumpk(x) :=

{
0 if n− k ≤ |x| < n,

|x| otherwise.

Recipe

I a(n) = 1

I b(n) = k

I α0 = 1 as before

I small δ
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When the best individuals have low reproductive rate

Remark

I The negative drift conditions hold trivially
if α0 < eχ holds for all individuals.

Example (Insufficient selective pressure)

Selection mechanism Parameter settings

Linear ranking selection η < eχ

k-tournament selection k < eχ

(µ,λ)-selection λ < µeχ

Any in cellular EAs ∆(G) < eχ
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Mutation-selection balance

χ
n0 2

n

λ
µ

1

7

exp

poly

Runtime

Example

The runtime T of a non-elitist EA with

I (µ, λ)-selection

I bit-wise mutation rate χ/n

I population size λ > c log(n)

on LeadingOnes has expected value

E [T ] =

{
eΩ(n) if λ < µeχ

O(nλ ln(λ) + n2) if λ > µeχ
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The runtime T of a non-elitist EA with
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O(nλ ln(λ) + n2) if λ > µeχ

λ
µ > eχ
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Other Example Applications

Expected runtime of EA with bit-wise mutation rate χ/n

Selection Mechanism High Selective Pressure

Low Selective Pressure

Fitness Proportionate ν > fmax ln(2eχ)

ν < χ/ ln 2 and λ ≥ n3

Linear Ranking η > eχ

η < eχ

k-Tournament k > eχ

k < eχ

(µ, λ) λ > µeχ

λ < µeχ

Cellular EAs

∆(G) < eχ

Onemax O(nλ)

eΩ(n)

LeadingOnes O(nλ ln(λ) + n2)

eΩ(n)

Linear Functions O(nλ ln(λ) + n2)

eΩ(n)

r-Unimodal O(rλ ln(λ) + nr)

eΩ(n)

Jumpr O(nλ+ (n/χ)r)

eΩ(n)
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Self-adaptive Evolutionary Algorithms11

11Dang and Lehre [2016b]
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Parameter settings in optimisation algorithms

Parameter
Settings

Parameter
Tuning

Parameter
Control

Deterministic
Parameters set according
to deterministic schedule
(e.g., simulated annealing)

Adaptive
External tuning of
parameters using
history of run
(e.g., 1/5-rule)

Self-adaptive
Parameters encoded
in genotype

before
run

during
run

Eiben, Hinterding, and Michalewicz [1999]

Can self-adaptive EAs control parameters effectively, i.e., on a problem

I any fixed parameter setting =⇒ exponential runtime

I uniform mixing of parameters =⇒ exponental runtime

I self-adaptation over parameters =⇒ polynomial runtime
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Self-adaptive, non-elitist EA without crossover

I search space is {χ1, χ2} × {0, 1}n, where χ1, χ2 ∈ Θ(n) are two
mutation rates

I parent selection via binary tournament selection

I mutation rate switched with probability p, and obtain
offspring by mutation with new mutation rate
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Peaked Fitness Landscape

Intuition

I Low mutation rate (or elitist selection mechanism) =⇒ exponential time to
escape local optimum

I Mutation rate above error threshold =⇒ exponential runtime via negative
population drift (L., PPSN 2010)
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Fitness function and level structure

PLO(x) :=
(
m if x = 0n
Pn

i=1
Qi

j=1 xj otherwise.

Deceptive region 2
(too high mutation rate)

Deceptive region 1
(local optimum)
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Results imply benefit of non-elitism and self-adaptation12

Mutation control Runtime Proof idea

Fixed rate χlow eΩ(n) Most individuals remain on the peak.
Too low selective pressure among sub-optimal individuals.
(Negative drift in populations).

Fixed rate χhigh eΩ(n) Most individuals fall off the peak, but mutation rate
is too high wrt selective pressure to reach opt.
(Negative drift in populations).

Uniform mixing eΩ(n) Most individuals fall off the peak, but the effective
mutation rate is too high wrt selective pressure.
(Negative drift in populations).

Self-adaptation O(n2) Most individuals fall off the peak. Peak individuals do not
dominate. A sub-population surviving off the peak switches
to low mutation rate. (Level-based analysis).

(µ+λ) EA eΩ(n) Elitism prevents escape from peak.

Dang and Lehre [2016b]

12The results assume appropriate choices of the mutation rates χ1 and χ2, the strategy parameter p, and the
problem parameter m.
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Interactive Simulation of Results

http://www.cs.bham.ac.uk/~lehrepk/selfadapt/
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Fitness proportional selection + crossover Oliveto and Witt [2014,
2015]

Definition (Simple Genetic Algorithm (SGA) (Goldberg 1989))

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select two parents x and y from Pt proportionally to fitness
Obtain z by applying uniform crossover to x and y with p = 1/2
Flip each position in z independently with p = 1/n.
Let the i-th offspring be Pt+1(i) := x.
(i.e., create offspring by crossover followed by mutation)
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Application to OneMax

Expected Behaviour

I Backward drift due to mutation close to the optimum

I no positive drift due to crossover

I selection too weak to keep positive fluctuations

Difficulties When Introducing Crossover:

I Variance of offspring distribution

I # flipping bits due to mutation Poisson-distributed→ variance O(1)

I # of one-bits created by crossover binomially distributed according to Hamming
distance of parents and 1/2→ deviation Ω(

√
n) possible
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Negative Drift Theorem With Scaling

Let Xt, t ≥ 0, random variable describing a stochastic process over finite state space
S ⊆ R;

If there ∃ interval [a, b] and, possibly depending on ` := b− a, bound ε(`) > 0 and
scaling factor r(`) st.

(C1) E(Xt+1 −Xt | X0, . . . , Xt ∧ a < Xt < b) ≥ ε,

(C2) Prob(|Xt+1 −Xt| ≥ jr | X0, . . . , Xt ∧ a < Xt) ≤ e−j for j ∈ N0,

(C3) 1 ≤ r ≤ min{ε2`,
√
ε`/(132 log(ε`)}.

then

Pr
(
T ≤ eε`/(132r2)

)
= O(e−ε`/(132r2)).

target
a b

drift away from target

no large jumps

start
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Negative Drift Theorem With Scaling

Let Xt, t ≥ 0, random variable describing a stochastic process over finite state space
S ⊆ R;

If there ∃ interval [a, b] and, possibly depending on ` := b− a, bound ε(`) > 0 and
scaling factor r(`) st.

(C1) E(Xt+1 −Xt | X0, . . . , Xt ∧ a < Xt < b) ≥ ε,

(C2) Prob(|Xt+1 −Xt| ≥ jr | X0, . . . , Xt ∧ a < Xt) ≤ e−j for j ∈ N0,

(C3) 1 ≤ r ≤ min{ε2`,
√
ε`/(132 log(ε`)}.

then

Pr
(
T ≤ eε`/(132r2)

)
= O(e−ε`/(132r2)).

Potential Function
For drift theorem, capture whole population in one value: For X = {x1, . . . , xµ} let

g(X) :=
∑µ
i=1 e

κOneMax(xi).

61 / 71

Negative Drift Theorem With Scaling

Let Xt, t ≥ 0, random variable describing a stochastic process over finite state space
S ⊆ R;

If there ∃ interval [a, b] and, possibly depending on ` := b− a, bound ε(`) > 0 and
scaling factor r(`) st.

(C1) E(Xt+1 −Xt | X0, . . . , Xt ∧ a < Xt < b) ≥ ε,

(C2) Prob(|Xt+1 −Xt| ≥ jr | X0, . . . , Xt ∧ a < Xt) ≤ e−j for j ∈ N0,

(C3) 1 ≤ r ≤ min{ε2`,
√
ε`/(132 log(ε`)}.

then

Pr
(
T ≤ eε`/(132r2)

)
= O(e−ε`/(132r2)).

Problem: maybe r(`) = Ω(
√
`)

Solution
Find bits that are “converged” within population, i.e., either ones or zeros only.
Crossover is irrelevant for these.
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Diversity

Xt: # individuals with 1 in some fixed position at time t

Assume uniform selection (and no mutation). Then:

I The probability crossover produces an individual with 1 in the fixed
position is (Xt = k):

I k
µ
· k
µ

+ 2 · 1
2
· k(µ−k)

µ2 = k
µ

I {Xt} ≈ B(µ, k/µ) ; E(Xt | Xt−1 = k) = k (martingale)

I But random fluctuations ; absorbing state 0 or µ due to the variance
(E(T0∨µ) = O(µ logµ) [drift analysis]).

I Progress by crossover is at most n1/2+ε w.o.p. (Chernoff Bounds when
ones are n/2).

I If µ ≤ n1/2−ε a bit has converged to 0 before optimum is found w.o.p.
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Assume uniform selection (and no mutation). Then:

I The probability crossover produces an individual with 1 in the fixed
position is (Xt = k):

I k
µ
· k
µ

+ 2 · 1
2
· k(µ−k)

µ2 = k
µ

I {Xt} ≈ B(µ, k/µ) ; E(Xt | Xt−1 = k) = k (martingale)

I But random fluctuations ; absorbing state 0 or µ due to the variance

Compare fitness-prop. and uniform selection:

I Basically no difference for small population bandwidth (difference of best
and worst OneMax-value in pop.)

I E(Xt | Xt−1 = k) = k ± 1/(7µ)
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Result

Let µ ≤ n1/8−ε for an arbitrarily small constant ε > 0. Then with probability

1− 2−Ω(nε/9), the SGA on OneMax does not create individuals with more
than (1 + c)n

2
or less than (1− c)n

2
one-bits, for arbitrarily small constant

c > 0, within the first 2n
ε/10

generations. In particular, it does not reach the
optimum then.

Overall Proof Structure

Small
diversity

Small
bandw.

fitness-
prop.
≈ uni-

form

Drift ;n
2

init.

Not a loop, but in each step only exponentially small failure prob.
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Steady-State GA 

683



Artificial Fitness Levels [DJW 2002] Artificial Fitness Levels 

(1+1) EA (1+1)-EA for OneMax via Artificial Fitness Levels [DJW 2002]
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(1+1)-EA for OneMax via Artificial Fitness Levels [DJW 2002] (1+1)-EA for OneMax via Artificial Fitness Levels [DJW 2002]

Ai : number of 0-bits;

(1+1)-EA for OneMax via Artificial Fitness Levels [DJW 2002]

Ai : number of 0-bits;

(µ+1)-EA for OneMax via Artificial Fitness Levels
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(µ+1)-EA for OneMax via Artificial Fitness Levels (µ+1)-EA for OneMax via Artificial Fitness Levels

Artificial Fitness Levels for Steady state populations [Witt 2006] Artificial Fitness Levels for Steady state populations [Witt 2006]
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(μ+1) GA for OneMax [Corus,Oliveto, TEVC 2017]

(μ+1) GA for OneMax [Corus,Oliveto, TEVC 2017]

[Sudholt, TEVC 2013]

(μ+1) GA for OneMax [Corus,Oliveto, TEVC 2017]

[Sudholt, TEVC 2013]
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(μ+1) GA for OneMax [Corus,Oliveto, TEVC 2017]

[Sudholt, TEVC 2013]

Proof Idea [Corus,Oliveto, TEVC 2017]

Proof Idea [Corus,Oliveto, TEVC 2017] Proof Idea (2) [Corus,Oliveto, TEVC 2017]
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Proof Idea (3) [Corus,Oliveto, TEVC 2017] Proof Idea (4) [Corus,Oliveto, TEVC 2017]

Proof Idea (5) [Corus,Oliveto, TEVC 2017] Proof Idea (5) [Corus,Oliveto, TEVC 2017]
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Experimental Comparisons [Corus,Oliveto, TEVC 2017] Population Size [Corus,Oliveto, TEVC 2017]

Mutation Rate [Corus,Oliveto, TEVC 2017] GAs Can Escape More Quickly[DFKKLoSS, IEEE TEVC 2018]
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Conclusions
Summary

I Runtime analysis of evolutionary algorithms
I mathematically rigorous statements about EA performance
I most previous results on simple EAs, such as (1+1) EA
I special techniques developed for population-based EAs

I Drift Analysis
I Level-based method [Corus et al., 2014]

I EAs analysed from the perspective of EDAs
I Upper bounds on expected optimisation time
I Example applications include crossover, noise, and self-adaptation

I Negative drift theorem [Lehre, 2011a]
I reproductive rate vs selective pressure
I exponential lower bounds
I mutation-selection balance

I Diversity + Bandwidth analysis for fitness proportional selection [Oliveto
and Witt, 2014, 2015]
I analysis of crossover
I low selection pressure
I exponential lower bounds

I Speed-up via crossover for steady state GAs to hillclimb OneMax and
escape local optima [Dang, Friedrich, Kötzing, Krejca, Lehre, Oliveto,
Sudholt, and Sutton, 2017, Corus and Oliveto, 2017]

65 / 71

Other Theory-related Tutorials and Workshops at GECCO 2018

I Theory for Non-Theoreticians (B. Doerr, Today 14:50, Conference Room 2
(3F))

I Theory of Estimation-of- Distribution Algorithms (C. Witt, Tomorrow
9:00, Conference Room 2 (3F))

I BB-DOB - Black Box Discrete Optimization Benchmarking Workshop
(COST Action IMAPPNIO, Tomorrow, 9:00 - 12:40, Training Room 3
(2F))

I Adaptive Parameter Choices in Evolutionary Computation (C. Doerr,
Tomorrow 14:00, Conference Room Medium (2F))
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