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ABSTRACT

The paper describes the irst attempts toward designing and evalu-
ating anticipatory classiier systems working in a real-valued input
domain using interval predicates representation. Promising results
are obtained by testing two environments - real-valued multiplexer
and checkerboard from the classical XCSR problem domain.
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1 INTRODUCTION

Anticipations play an important role in our lives. They enable us
to pursue both short- and long-term goals. By anticipating the
consequences of our actions we are able to choose the best possible
action to achieve them.

Anticipatory Classiier System (ACS) is a variant of Learning
Classiier System (LCS) extending the classical human-interpretable,
rule-based model with the psychological theory of anticipations.
Every situation is accompanied by consequences after performing
each possible behavior. ACS is tested in both single- and multi-step
interaction processes like knowledge discovery [18] or controlling
mobile robot’s arm [15]. By design, all LCS-es are versatile towards
the chosen alphabet. This work describes the irst approach towards
implementing interval predicates representation in ACS models.
Traditionally, ACS use ternary alphabet to encode environmental
state. Proposed modiication enables to widen range of applicable
problems by enabling adaptive interval ranges representation to
model continuous-valued features.

Section 2 presents a general concept of LCS. ACS2 variant with
all relevant components will be described. In section 3 a reminder
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of how real-valued inputs are handled in XCS (the most mature
variant of LCS) is given with some remarks regarding the full work-
low of the process. Diferent approaches towards representing a
continuous value will be presented. Section 4 will discuss which
components need to be tuned in order for the ACS to handle new
input type, naming it tentatively rACS. Later on, in section 5 two
environments (real-valued multiplexer and checkerboard) are used
to evaluate the algorithm performance. Final conclusions and prob-
lems spotted so far are listed in section 6.

2 LEARNING CLASSIFIER SYSTEMS (LCS)

LCS concept was developed by John Holland in the 1970s [9]. The
term has been used to describe the family of machine learning
(ML) algorithms that emerged from a founding concept designed
to model complex adaptive systems [19].

LCS stores information using a vague concept of a classiier. A
classiier is a rule (specifying the environmental conditions and
corresponding action like IF-THEN clause) with some additional
statistics. All knowledge derived from the environment is stored as
a population of classiiers [P] and is reined with each interaction
with the environment. New classiiers might be introduced into
population [P] in two ways - by covering process or by genetic

algorithm.
Covering creates classiiers precisely matching environmental

perception and then randomly generalizing some attributes. From
the other side genetic algorithms try to introduce new ofspring
into a population by mixing genotypes of most promising parents.

All rules existing in a population are being constantly reined
with each interaction with the environment. Metrics describing the
usefulness of the rule are responsible for deciding whether a given
rule should be kept or be discarded.

The biggest advantage of LCS is in the possibility of modeling
the output of the system (diferent domains) by using a set of un-
derstandable IF-THEN rules, that are covering only the portion of
the input space. With this approach, the initially complex problem
is broken into many simpler pieces. Other beneicial features are
the ability to model complex patterns such as non-linear feature
interaction (epistasis) or heterogeneous associations.

The drawbacks of the LCS-es such as (1) the usage of the naive
strength-based itness approach where it’s value depends on the
reward obtained from the environment or (2) the unrestricted pro-
cess of GA application sometimes creating meaningless rules lead
to creation of more robust variants (most popular Michigan-style
are XCS, ZCS, UCS).
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2.1 Anticipatory Learning Classiier Systems
(ACS2)

In 1993 Hofmann proposed a theory of Anticipatory Behavioral

Control [7] that was further reined in [8]. It distinguishes between
the following points (visualized in Figure 1):

(1) Any behavioral act or response (R) is accompanied by antic-
ipation of its efects.

(2) The anticipations of the efects Eant are compared with the
real efects Er eal .

(3) The bond between response and anticipation is strength-
ened when the anticipations were correct and weakened
otherwise.

(4) TheR - Eant relations are further diferentiated by behavioral
relevant stimuli.

Figure 1: The theory of anticipatory behavioral control. Fig-

ure adapted from [3, p. 4].

That insight of presence and importance of anticipations in ani-
mals and man lead to the conclusion that it would be beneicial to
represent and utilize them also in animats.

The irst approach was undertaken by Stolzmann in 1997 [13].
He presented a system called ACS ("Anticipatory Classiier System")
enhancing the classiier structure with an anticipatory or efect part
that anticipates the efects of an action in a given situation. To intro-
duce new classiiers a dedicated component realizing Hofmann’s
theory was introduced - Anticipatory Learning Process.

Later in 2002 Butz presented an extension called ACS2 [3]. Most
importantly, he modiied the original approach by an explicit rep-
resentation of anticipations and by applying learning components
across the whole action set [A]. The complete behavioral is pre-
sented on Figure 2 and the algorithm is described thoroughly in [5]
[14].

In 2005 O’Hara and Bull took another approach designing an-
ticipatory classiier system (X-NCS) by combining XCS system
with ANN for predicting resulting states [11]. They replaced each
traditional condition-action rule by a single, fully connected multi-
layer perceptron. Tests onWoods-1 andMaze-5 environments looks
promising but no comparison to ACS2 system was made. However,
the X-NCS system won’t be discussed herein.

3 REAL-VALUED INTERVAL
REPRESENTATION

In all further descriptions an assumption is made that single percep-
tionσ obtained from the environment is bounded to rangeσ ∈ [0, 1].

Figure 2: A behavioral act in ACS2with reinforcement learn-

ing and anticipatory learning process application. Figure

adapted from [3, p. 27].

If it’s not true an additional pre-processing step should be applied
beforehand.

3.1 Alphabet representation

As mentioned earlier LCS are versatile for various internal data
representations (genotypes). Most popular representation for binary
data uses ternary representation, where possible attributes values
are encoded with three symbols - {0, 1, #}.

For continuous input value still there are many approaches pos-
sible, that will be briely explained.

The most simple case is to binary encode both interval ranges, ex-
pand the rule condition and efect parts twice and reuse the ternary
alphabet without any algorithm modiication. This technique is
most primitive, because of the vast increase in problem complexity.

Unold and Mianowski [17] extended the binary alphabet for
more states (partitions) where each one was mapped to diferent
data range. The algorithm was evaluated on two real-valued multi-
step environments: the 1D linear corridor and the 2D continuous
gridworld environments showing promising results. The drawback
is, however, interval partitions are created upfront and cannot be
changed in the process.

Dedicated alphabets were also created for XCS version of the
algorithm (XCSR). In 1999 Wilson proposed a center-spread repre-
sentation (CSR) [20], where interval was represented by two num-
bers - center of the range and the spread. Later in 2003 Stone and
Bull analyzed two new representations ordered-bounded (OBR) and
unordered-bounded (UBR) [16]. Both of them represent the range by
using left x1 and right x2 bounds, but in OBR x1 < x2. By neglecting
the ordering in UBR the crossover operator has greater chances of
introducing better classiiers. In 2005 Dam and Abbass proposed
also a min-percentage (MP) representation [6] trying to overcome
some of the UBR drawbacks. In order to apply CSR, OBR, UBR and
MP representations in XCS operators like covering, mutation and
GA subsumption needed to be adjusted.

3.2 Binary encoding

Discretization of continuous value is done by binary encoding. Here
the [0, 1] range of available states is divided into 2n states, where n
is the number of bits used. Table 1 demonstrates the process.
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Perception σ 1-bit 2-bit 3-bit . . . 7-bits . . .
0.0 0 0 0 . . . 0 . . .
0.1 0 0 0 . . . 12 . . .
0.2 0 0 1 . . . 25 . . .
0.3 0 1 2 . . . 38 . . .
0.4 0 1 3 . . . 51 . . .
0.5 1 2 4 . . . 64 . . .
0.6 1 2 4 . . . 76 . . .
0.7 1 2 5 . . . 89 . . .
0.8 1 3 6 . . . 102 . . .
0.9 1 3 7 . . . 115 . . .
1.0 1 3 7 . . . 127 . . .

Table 1: Examples of encoded values for diferent percep-

tions σ . Maximum resolution is calculated with 2n , where

n is the number of bits used. E.g. a range [0.3; 0.6] encoded
with 7 bits would be [38; 76] for OBR/UBR or [76, 38] for UBR
encoding (order is irrelevant).

4 REAL-VALUED ACS (RACS)

Extending ACS system with real-valued alphabet facilitates the
possibility of utilizing the algorithm on a more diverse set of prob-
lems, where diferent alphabets can be mixed, for example by using
attribute list knowledge representation (ALKR) [1].

For the case of experiment, UBR was chosen for representing in-
terval predicates. The original ACS2 algorithm cannot work "out-of-
the-box" with that representation, so several changes were required.
Most important are listed below.

• Don’t care symbol. In rACS the feature attributes consists
solely of interval ranges. The "don’t care" and "pass-through"

symbol is represented as a full-ranged interval (e.g. using 4
bit encoding - UBR(0, 15) or UBR(15, 0)).

• CoveringThe covering process introduces randomnesswhen
a new classiiers is added into population. A new parame-
ter - covering noise ϵcover deines the maximum noise that
can alter current perception. The noise ϵ is drawn from
uniform random distributionU [0, ϵcover ]. When creating a
new classiier each condition and efect attribute is spread
UBR(x1 − ϵ,x2 + ϵ) accordingly.

• Mutation Similarly, a new parameter -mutation noise ϵmutation

is used for introducing slight disturbances. For each attribute
of condition and efect perception string a noise ϵ is drawn
from uniform distribution U [−ϵmutation , ϵmutation] and
added to the current value.

• Subsumption The mechanism was extended accordingly
to analyze incorporating ranges.

• Marking Classiier’s mark stores only single encoded ex-
ceptional perceptions (not intervals).

All changes are relected in the source code that is publicly
available.

5 EXPERIMENTS

rACS algorithmwas implemented and evaluated in Python language
[10]1. Testing environments2 were created in full compliance with
the OpenAI Gym [2, 12] interface. Doing so facilitates other re-
searchers with an easier comparison and benchmarking by using
a common standard. Additionally, all experiments are fully repro-
ducible by making use of tools such as Jupyter notebooks, which
are included in the source code repository.

5.1 Environments

Experiments were performed on two single-step environments used
for evaluating XCSR - real-multiplexer (rMPX) [20] and checker-
board [16]. In order observe anticipations a validation bit was ap-
pended to perception string and was activated when the agent
proposed the correct action.

The Boolean n-bit multiplexer problem is conceptually based on
the behavior of an electronic multiplexer (MUX), a device that takes
multiple analog or digital input signals and switches them into a
single output. Every trial a binary perception string of length n is
randomly generated, which is divided into two parts - address bits
and register bits. The target value is determined by the address bits
and the value at the register bit they point to. An exemplary string
generated by 6-bit multiplexer might look like 010110. Here there
are two address bits - 01 and four register bits - 0110. The output
value is located on the irst register bit because (01)2 = (1)10, so
the solution here is 1. For the rMPX the only diference between
boolean multiplexer is that generated perception consists of real-
values drawn from a uniform distribution. To validate the correct
answer the additional variable - secret threshold θ = 0.5 is used to
map each allele into binary form. In order to solve rMPX a hyper-
plane decision boundary is suicient (no interval-representation
is needed). Also, the problem can be easily scaled in terms of com-
plexity by changing the length of the generated perception vector.

The second testing environment is more complex. Checkerboard
problem works by dividing up the n-dimensional solution space
into equal-sized hypercubes. Each hypercube is assigned a white or
black color (alternating in all dimensions), see Figure 3. The problem
diiculty can be controlled by changing both the dimensionality n
and the number of divisions in each dimension nd . Keep in mind
that in order to allow the colors to be alternating nd must be an
odd number. Finally, the environment presents a vector of length
nd , and the agent’s goal is to guess the correct color.

5.2 Results

All experiments were executed in explore-exploit mode alternating
in each trial. In exploring phase the agent was set to choose ac-
tion fully randomly, in exploiting one the action from best-itted
classiier was chosen. Detailed metrics used for creating plots were
collected every 5 trials. All experiments can be reproduced by run-
ning interactive notebooks localized inside the code repository.

5.2.1 Real Multiplexer. Parameters: β = 0.05, γ = 0.95, θr = 0.9,
θi = 0.2, ϵ = 1.0 θGA = 100, mu = 0.1, χ = 1.0, ϵcover = 0,
ϵmutation = 0.25.

1https://github.com/ParrotPrediction/pyalcs
2https://github.com/ParrotPrediction/openai-envs
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Figure 3: 2-dimensional checkerboard problem with nd = 3.

The ability of modeling environment was examined on 3-bit
rMPX. Preliminary tests are promising to show that the agent is
able to capture the feature interaction. When using encoding with 1
or 2 bits (Figures 4, 5) the number of classiiers stabilizes after about
10000 trials. Introducing more accurate encoding is problematic.
Figures 6, 7 (for 3 and 4 bits consecutively) shows that exploit
phase is performing better, but an uncontrolled classiier growth
is observed. All igures present the reward as the moving average
calculated from the last 50 metrics.
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Figure 4: 3-bit rMPX. 1-bit continuous value encoding.
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Figure 5: 3-bit rMPX. 2-bit continuous value encoding.
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Figure 6: 3-bit rMPX. 3-bit continuous value encoding.
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Figure 7: 3-bit rMPX. 4-bit continuous value encoding.

5.2.2 Checkerboard. Parameters: β = 0.05, γ = 0.95, θr = 0.9,
θi = 0.3, ϵ = 0.9, θGA = 100, mu = 0.2, χ = 0.6, ϵcover = 0.1,
ϵmutation = 0.25.

All checkerboard experiments were performed using 2-dim-
ensional checkerboard with 3 splits in each dimension. Input per-
ception was encoded with 4 bits. The reward for providing the
correct answer was ρ = 1.

Figure 8 demonstrates that answers given in explore phase are
near ρ = 0.5. This behavior is expected because in this phase agent
is performing mostly random guessing. For the exploit phase, the
average reward is noticeably better over time, meaning that the
agent is able to learn the environment rules.

In order to visualize the evolution of condition perception strings
Figure 9 presents the proportions of all UBR attributes. Interval
regions were categorized into 4 regions:

• Region 1 [pi ,qi ] - consists of speciic intervals.
• Region 2 [pmin ,qi ) - interval bounded from the right side.
• Region 3 [pi ,qmax ) - interval bounded from the left side.
• Region 4 [pmin ,qmax ) - general interval ("don’t care").

Figure 9 presents that the agent tends to favour creation of spe-
cialized intervals in the irst region (about 80% of all attributes).
However, in an ideal case for the test problems we would expect to
obtain greater impact also of region 2 and region 3 (due to 3 splits
of the checkerboard).
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Finally, Figure 10 conirms the problem observed previously in
rMPX environment regarding uncontrolled growth of classiier
population. In this environment it’s unable to obtain any reliable
classiier (classiier cl is considered "reliable" when it’s quality cl .q >
θr ).
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Figure 8: Average reward obtained in 2-d checkerboard prob-

lem with 4-bit binary encoding. Reward is averaged using

250 past metrics.
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Figure 9: Proportions of UBR attributes in classiier condi-

tion parts.

6 CONCLUSIONS

The possibility of extending anticipatory classiier systems with
the capability of representing intervals looks promising. Prelimi-
nary tests with two environments (from classical XCSR problems)
revealed that the algorithm is able to exploit gathered knowledge
substantially better than by random guessing.

However, there are some issues preventing the rACS from sat-
isfying the assumptions established by Stolzmann - the created
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Figure 10: Classiiers created for 2D checkerboard environ-

ment.

classiiers should be accurate and maximally general. The most
serious problem identiied so far is related to the uncontrolled
growth of the classiiers (see especially the Figure 10). The problem
is caused by the fact that newly created classiiers are not compared
to those already existing in the population [P]. The result is the
creation of duplicated and overlapping of-springs covering the
same niches. It’s not the trivial issue because a new mechanism
needs to be capable of subsuming and merging classiiers with sim-
ilar ranges (condition and efect parts) meanwhile favoring more
general classiiers.

Other aspects requiring further investigation:

(1) impact of binary encoding. Choosing an encoding scheme
and a suicient number of encoding bits. The problem must
be carefully examined beforehand to select the best possible
variant.

(2) other forms of representing intervals. Current experi-
ments were using the most promising UBR representation.
But applications of hyper-alphabets or fuzzy logic might also
turn out to be beneicial.

(3) the operators used to create new classiiers working on in-
terval ranges also need deeper investigation, e.g. - current
implementation added noise in covering mechanism - which
aids the system to better generalize but also introduces a
chance of creating the wrong interval. This violates the orig-
inal ALP principles, therefore the adapted and dedicated
learning component should be devised from scratch,

(4) lack of multi-step real-valued benchmarking environ-

ment - in order to evaluate latent learning capabilities of
rACS a new testing environment is required,

(5) impact of generalized state values for future multi-step
problems [4].
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