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ABSTRACT
Dynamic constrained optimization problems (DCOPs) provide larger
complexity for an optimization algorithm by changing the prob-
lem landscape throughout the optimization process. Introducing
constraints to an already changing dynamic environment increases
the observed complexity of the problem space. Allowing such con-
straints to have irregular shapes which change along with the prob-
lem space itself provides an even greater level of complexity for an
optimization algorithm. This paper proposes a function generator
capable of creating dynamically constrained dynamic environments
by extending the moving peaks benchmark (MPB) function gener-
ator. An analysis of the resulting environments produced by the
generator is performed using �tness landscape analysis (FLA). A
visual inspection of the resulting generated environments is also
included.
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1 INTRODUCTION
Dynamic optimization problems (DOPs) are di�cult problems to
solve due to the search landscape of these problems changing over
time. The number of di�erent kinds of dynamic optimization prob-
lems is potentially limitless, ranging from slight movement of an
optimum to drastic relocation and potential change in the optimum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326798

value. Moreover, the rate at which such changes occur creates even
more DOP types. DOPs are of particular interest because most
real-world problems are not static, unchanging problems but in-
stead may maintain con�icting objectives [26] and/or restrict valid
problem solutions based on prede�ned criteria [20].

Literature provides a number of classi�cation schemes [2, 3, 6, 7,
9, 10, 31, 32] for DOPs, where each scheme considers a limited num-
ber of DOP characteristics. Duhain and Engelbrecht [8] proposed
a combination of the existing classi�cations to create 27 unique
classes of DOPs. With such an extensive set of di�erent DOP types,
researchers are able to extensively evaluate algorithms designed to
solve DOPs. The moving peaks benchmark (MPB) generator [4–6]
provides researchers with a tool to create instances of DOPs, for
each of the 27 di�erent classes of DOP. The MPB generator provides
the researcher with precise knowledge of the generated search land-
scape, and how the landscape changes over time. Such knowledge
facilitates the analysis and understanding of algorithm behavior
with changes in the search landscape.

Current research in the development of DOP benchmark gener-
ators focuses on boundary constrained problems. Little research
can be found in the development of DOP benchmark generators
for constrained problems, whether that be static or dynamic con-
straints. While constrained DOP benchmarks do exist in the litera-
ture [19, 22], none of these provide a systematic approach to model
di�erent changes in dynamic constraints, and to combine the 27
DOP classes with the di�erent ways in which constraints change
over time.

This paper proposes a constrained DOP generator, where con-
straints can be static or changing over time. The constrained DOP
generator uses the MPB to generate the functional constraints.
These functional constraints are then applied to a DOP instance,
which is also generated by theMPB, to produce a constrained search
space. Fitness landscape analysis (FLA) for constrained problems is
used to show how the generated constrained spaces change over
time. A visualization for instances of the generated constrained
DOPs is also provided.

The main contribution of this paper is the proposed constrained
DOP generator, which provides to the researcher an approach to
systematically analyse algorithm performance of a wide range of
constrained DOP types.

The remainder of the paper presents the following structure:
Section 2 discusses DOPs in general, while Section 3 introduces
the MPB generator. Constraints within dynamic environments is
discussed in Section 4. The constrained DOP generator is presented
in Section 5, with the empirical approach followed, discussed in
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Section 6. An analysis of empirical results is presented in Section 7,
with Section 8 presenting the conclusion to the paper.

2 DYNAMIC OPTIMIZATION PROBLEMS
Dynamic optimization problems (DOPs) are search spaces where
the search landscape changes over time. An environment change
modi�es optima within the environment, with the modi�cation
varying in degree from slight to aggressive. When compared to
the previous search landscape, slight modi�cations produce a simi-
lar resultant search landscape. Aggressive modi�cation, however,
generally produces an environment with seemingly random char-
acteristics when compared to the previous environment. Due to the
sheer number of possible dynamic environments, a classi�cation
scheme for environments allows for a grouping of environments,
based on speci�c environment characteristics. Di�erent DOP clas-
si�cation schemes exist, based on the frequency and severity of the
changes observed, the type of movement of the observed change,
and the trajectory of the change itself.

Eberhart and Shi [9] and Hu and Eberhart [10] describe the
changes of an optimum as either:

• Type I, where the value of optima remain the same, but the
location of optima within the environment change;

• Type II, where the value of optima change, but the location
of optima within the search space remain the same; or

• Type III, where both the position of optima and the value of
optima change.

Angeline [2] categorized the movement of an optimum within
an environment to be either linear, circular, or random. Duhain and
Engelbrecht [8] proposed a classi�cation scheme that considers
spatial and temporal severity of changes, resulting in the following
DOP classes:

• Quasi-static environments which have both low spatial and
temporal severity.

• Progressive environments which have a low spatial severity,
but frequent changes. The changes result in a search space
where optima move gradually over time.

• Abrupt environments which have infrequent changes, but
with a large spatial severity. The problem space remains
constant for a period of time before experiencing a large
change.

• Chaotic environments experience large spatial adjustments
that occur at a frequent interval.

Duhain and Engelbrecht [8] proposed that the three classi�ca-
tion schemes above be combined to produce 27 di�erent unique
DOP classes. Duhain and Engelbrecht [8] also proposed parame-
terizations of the moving peaks benchmark (MPB) generator to
produce instances of each of these 27 DOP classes.

Note that the classi�cation of the di�erent DOP classes above
have been proposed for boundary constrained, single-objective
DOPs. Section 5 shows how these DOP classes can be applied to
include static and dynamic constraints.

3 MOVING PEAKS BENCHMARK PROBLEM
Branke [4, 5, 6] introduced the MPB generator to create DOPs. The
MPB generator produces DOPs which contain a prede�ned set

of independent peaks which move through a multi-dimensional
problem space. The generator produces these problem landscapes
based on a set of input peak functions. The �tness evaluation of
the MPB takes the maximum of all the peak functions for a given
search space point. The MPB �tness function is therefor de�ned as:

F (x, t) = max{0,p0(x, e0),p1(x, e1), . . . ,pn (x, en )} (1)

where p0,p1, . . . ,pn are individual peak functions which evaluate
the provided vector, x, and individual peak con�guration param-
eters, ei , for the current time-step, t . If the provided search space
vector x does not have a �tness determined by a peak �tness func-
tion, the function evaluates to a default value of 0.

Individual peaks within the search space de�ne a cone-like shape
which have a width, height and location. The peak parameter ini-
tialization samples a probability distribution to generate the di-
mensions of the peak. The construction of peak pi requires the
following parameters, maintained within a “peak environment”
record structure, ei :

• minHeight and maxHeight are the lower and upper bounds
on the size of the peaks themselves;

• minWidth and maxWidth are the limits on the width of the
peak within the problem space;

• Problem domain to determine the bounds for the peak loca-
tion, v, within the search space with height, h, and width, w.
The domain is a vector of intervals de�ning lower and upper
bounds for each dimension of the problem search space; and

• shift vector, sv , with the same dimension of the problem
domain; used to in�uence the movement of a peak.

Formally, the evaluation of an independent peak function is
(expanding the peak environment record as the second parameter):

pi (x, {v,h,w}) = h −w

√√√
|x |∑
i=0

(x � v)i (2)

where � is a binary operator which determines the component-
wise squared di�erence between the search space position x and
the position of the peak v within the problem search space.

The MPB generator describes a recurrence relation, whereby
subsequent search landscapes may be constructed from the current
peak environment records. Using the current peak environment
parameters as input, a modi�cation function produces a new set
of adjusted peak environments. These updated peak environments
allow for the construction of the changed problem landscape. The
peak environment modi�cation process requires severity thresholds
which scale the magnitude of the adjustments:

• hSeverity and wSeverity determine the scaling factors for
peak height and width adjustments;

• changeSeverity (s) is a constant in�uencing the amount of
change of a peak between two environments;

• σ (t) ∼ N (0, 1); and
• λ is a scaling coe�cient on the amount of random peak
movement.

The modi�cation process to the parameters of each peak creates
a new parameter set for the peak:
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{enew | height = eold {heiдht} + hSeverity ∗ σ (t),

width = eold {width} +wSeverity ∗ σ (t),

sv =
s

‖pr + eold {sv }‖
((1 − λ)pr + λeold {sv })

}

(3)

where pr is a random vector normalized to length s . Based on
the classi�cation of the environment types in Section 2, Van der
Stockt and Engelbrecht [27] described the parameterization to the
MPB generator to construct each of the 27 unique DOP instances.
Although within this formulation of the MPB, peak functions are
cone-like which aid in the smoothing of the resultant landscape.
Other peak shapes are also feasible, including shapes which are
pyramid-like, spherical, and cubic.

4 CONSTRAINED DYNAMIC OPTIMIZATION
PROBLEMS

Constraints applied to an optimization problem render parts of the
problem search space to be infeasible. The goal of an optimization
algorithm operating on an optimization problem is to �nd solu-
tions which are feasible. When constraints are present within an
optimization problem, the constraints allow for two di�erent per-
spectives for the optimization problem search space. The objective
landscape determines the quality of a solution through the use of
the problem �tness function. Replacing the �tness function with a
violation function de�nes the violation landscape [18], which quan-
ti�es the level of constraint violation within the problem search
space and thus the infeasible parts of the problem search space.

A constraint is simply a function which can be dynamic or static.
Constrained optimization problem search spaces are the resultant
composition of the problem function and the constraint functions.
If a constraint function should change, the composed search space
would necessarily also experience change. Constraint changes may
include shifting an infeasible area to an alternative location within
the problem search space; an increase or a decrease of an infea-
sible area itself; the shape of an infeasible area by change; or a
combination of these e�ects.

Nguyen and Yao [21, 22] described a collection of environments
which contain such constraints, collectively terming these envi-
ronments dynamic constrained optimization problems (DCOPs).
DCOP environments may present the following behavior:

• Both the problem search space and the constraints within
the environment are dynamic and change over time.

• The constraints remain static, allowing the problem search
space to change over time.

• The problem search space remains unchanging, but the con-
straints change over time.

Due to the interaction of constraints on the search space over
time, feasible regions of the problem search space may become
infeasible and vice versa. Nguyen and Yao [21, 22] also discussed
the characteristics they deem important to characterize a DCOP
problem:

(1) constraints may result in changes to the shape, percentage,
or structure of feasible and infeasible regions;

(2) the global optima may switch from a disconnected feasible
region to another, in problems with disconnected feasible
regions; and

(3) environments with a static objective function and changing
constraints may expose new, better optima without changing
existing optima.

At the time of publication, [22] stated that no benchmark func-
tions existed which ful�ll the de�ned criteria, even though Liu
[12] and Richter [25] both provided proposals for benchmark func-
tions. Nguyen and Yao [22] proposed the G24 benchmark of DCOPs.
Though the DCOPs in the G24 benchmark suite address the de�ned
criteria, the constrained benchmarks are limited to two-dimensional
search spaces.

A generator may be a valid alternative to a new set of benchmark
problems. Basing a DCOP generator on an already established and
understood DCOP problem generator is advantageous. Allowing
such a generator to additionally de�ne constraints on the produced
problem will also allow for a more focused understanding of algo-
rithm behavior, when adding constraints to a DOP instance. The
generator is also not limited in problem dimensionality, allowing
for more than two dimensions.

5 CONSTRAINED MOVING PEAKS
BENCHMARK GENERATOR

The MPB generator presents a popular mechanism to create opti-
mization problems for both static and dynamic optimization. Using
the classi�cation scheme by Duhain and Engelbrecht [8], a wide
variety of DOPs are possible. It is desirable to generate constraints
in the same way in which the problem search space is generated,
allowing constraints to also vary over time. This section proposes
a benchmark generator which creates a dynamic environment that
can change over time, and constraints which may, also, change over
time. The approach creates a composed problem space from two
generated problem spaces, both created by the MPB generator. Each
problem space represents a di�erent aspect to the DCOP problem:

(1) The dynamic objective function
(2) The dynamic constraints

The composed function is the di�erence between the two prob-
lem spaces (the MPB generator produces maximization problems),
de�ned as:

h(x) = f (x) − д(x) (4)

where f is the generated MPB problem de�ning the base problem
andд is another generatedMPB problemwhich de�nes the violation
space. Each generated problem contains a unique set of peaks, with
the di�erence between the two generated problem spaces de�ning
the constrained DOP problem. The composed, resultant problem
space has a range within the interval [−maxHeightд,maxHeightf ],
but importantly produces a new maximization problem with infea-
sible regions speci�ed where h(x) < 0.

The parameters that con�gure the composed MPB generator for
each of the objective and constraint MPB problem spaces can be
changed at di�erent change frequencies and with di�erent change
severities. It should be noted that the generators use di�erent ran-
dom sequences. Although di�erent random sequences are strictly
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not necessary, it does allow for a cleaner interaction with the gen-
erator modi�cation process.

The composed generator approach has notable advantages:

• The problem and constraint problem spaces are independent
from each other. The problem space may remain constant,
whilst varying the constraint space, or any combination
thereof.

• The dimensionality of the objective problem space and the
constraint problem space need not match. For example, a
more complex constraint problem space and a less complex
objective problem space.

• Plotting the generated composed problem space is trivial
(for 2D and 3D visualizations).

• The composition allows for 27 environment types for both
the objective problem space and the constrained problem
space, yielding 272 total DCOP combinations.

• Inclusion of additional equality and inequality constraints
to further constrain the resultant composed problem space
is still possible.

This problem formulation addresses the previously mentioned
criteria of Nguyen and Yao, in that the structure/percentage/shape
of the feasible and infeasible regions within the resulting problem
space changes over time, optima may appear in di�erent discon-
nected regions, and changing constraints may reveal better optima
in an unchanging problem space. Figure 2 illustrates a composed
problem landscape over 9 environment changes.

6 EXPERIMENTAL APPROACH
The purpose of this paper is to introduce a benchmark function
generator for constrained (static or dynamic) DOPs. This section
describes the implementation of the DCOP benchmark function
generator and discusses �tness landscape analysis (FLA) techniques
that will be used to show that the generator produces DCOPs where
landscape characteristics change over time.

6.1 Software tools
The computational intelligence library (CIlib) [23] is an open-source
computational intelligence (CI) software library that provides a pure
(containing no undesirable side-e�ects), monadic, declarative and
fully deterministic execution environment. The determinism of
the software structures within CIlib encourages implementation
transparency and allows for perfect experiment duplication, which
is a primary requirement for reproducible research.

Building upon the core CIlib structures, an open-source sister
project (also called FLA) implements FLA algorithms. Benchmark
functions are also available within the open-source project “benck-
marks”. All software used for the experimental work are freely
available on the internet [1]. Versions for the individual libraries
used in this study are: CIlib (version 2.0.1), FLA (version 0.0.3) and
benchmarks (version 0.1.1).

6.2 Fitness Landscape Analysis through
landscape walks

Fitness landscape analysis (FLA) [24] through landscape walks [14,
17] de�nes a process whereby potential solutions to a problem

search space are sampled at regular intervals across the problem
domain. The sampling process yields a multi-dimensional candidate
solution for a point within the problem search space. The sampling
process results in a collection of neighboring candidate solutions,
with the collection referred to as a “walk” through the problem
search space. In order to quantify landscape characteristics, �tness
landscape metrics require a su�cient sample of candidate solutions
taken from problem search space together with phenotypic infor-
mation for each sampled point. Ideally, the sampled collection of
candidate solutions should cover as much of the problem search
space as possible.

For the purposes of evaluating the problem search spaces pro-
duced by the constrained MPB generator function, only random
walks through the problem search space are considered. Starting
from a random point on the edge of the problem search space, n
consecutive candidate solutions are sampled, with the sampling
determined by the walk algorithm. A number of random walks are
executed, and the resulting sequence of sample points are used by
�tness landscape measures to quantify di�erent characteristics of
the search landscape.

For the purposes of this paper, the following �tness landscape
measures are used:

• The feasibility ratio (FSR) [16] is an approximation of the
feasible portion of the problem search space, compared to
the total search space. The metric is simply:

FSR =
nf

n
(5)

wherenf is the number of feasible solutions within a random
walk of the search space.

• The ratio feasibility boundary crossings (RFBx) [16] de-
termines how disjoint feasible regions of the problem space
are. The metric traverses the solutions within a random walk
and counts the proportion of solutions that cross between
feasible and infeasible space. Transforming the random walk
into a binary string b, the bit value 0 indicates that the solu-
tion is in feasible space, whereas a bit value of 1 represents
infeasible space. The RFBx is calculated as:

RFBx =
Σn−1i=1 cross(i)

n − 1
(6)

where

cross(i) =

{
0 if bi = bi−1
1 otherwise

(7)

• The dispersion [13] metric estimates the global topology of
a problem search space from the provided solution informa-
tion within the random walk. The dispersion for a random
walk determines how spread out the points are in relation
to each other.

• The �rst entropic measure (FEM) [28–30] determines the
classi�cation of the problem search space as either rugged,
smooth or neutral, using the search space information be-
tween neighbouring solutions. The result of the measure is
a value within the range [0.0, 1.0], which indicates a search
space from smooth to total ruggedness.

• The �tness cloud index (FCI) [15] indicates the evolvabil-
ity of an evolutionary search. The metric makes use of a
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particle swarm optimization (PSO) algorithm to determine
the neighbourhoods of a sample of solutions, and normalizes
all �tness values of the sample considering only solutions
that are within the bounds of the problem search space. The
resulting value is within the range [0, 1], where 0 indicates
the worst searchability and 1 the best searchability.

• The �tness distance correlation (FDC) [15] metric in-
forms whether the information presented by a problem space
could guide an optimization algorithm to an optimum. The
premise is that a problem is simple to search if the �tness of
the solutions increases/decreases as the distance to an opti-
mum increases/decreases. The correlation value may range
from −1.0 (totally uncorrelated) to 1.0 (totally correlated).

• The gradient measures [14] estimate the steepness of the
gradients present within a problem search space. Three dif-
ferent gradient metrics exist. The �rst is the average gradient,
Gavд , which provides an indication of the average gradient
between neighbouring solutions within a random walk. The
second metric determines the standard deviation of the walk
gradients, Gdev . Larger values for the deviation measure in-
dicate the presence of steep gradient changes, such as cli�s,
peaks, or valleys in contrast with the rest of the neighboring
solutions. The last gradient measure is the maximum gra-
dient,Gmax , which provides the largest estimated gradient
within a random walk. If Gmax is larger than Gavд for a
given random walk through the problem search space, then
there are parts of the problem space that stand out from
the remainder of the problem space. Larger values for both
the average gradient and the maximum gradient indicate a
rugged problem space.

A total of 30 random walks were executed for each of the 10
generated constrained search spaces. Each generated search space
maintained 10 peaks within the problem space function and in the
constrained MPB function. Once the main problem landscape is
composed with the constraint problem landscape, the e�ect of com-
position may remove or add peaks in the �nal problem landscape.
It is important to stress that the same random walks were used for
all of the generated problem spaces. The Manhattan progressive
random walk [11] algorithm was used.

7 RESULTS
This section presents and discusses the �tness landscape character-
istics of constrained DOPs generated by the proposed benchmark
generator. Figure 1 illustrates the �tness landscape measurements
over the 10 generated problem landscapes, whilst Figure 2 provides
a visualization of each individual problem landscape. The visualiza-
tion labels the consecutive generator problem landscapes, 0 to 9,
with the initial generated problem landscape instance labeled as 0.

With reference to the FSR metric, illustrated in Figure 1, the
generated problem landscapes display a ratio of feasibility within
the range (0.38, 0.86). The visualized landscapes in Figure 2 con�rm
the changing feasible and infeasible regions of the generated prob-
lem space; the black regions within the �gure indicate infeasible
regions, which change in size and connectedness as the problem

landscape transforms from the initial problem space to the �nal gen-
erated problem space. The random seed of 123456789L generated
the initial problem space.

The RFBx metric displays minimal variation in the obtained
values, which indicates that feasible regions are not disjoint. The
visualized problem landscapes of Figure 2 con�rm that the met-
ric does not re�ect that the generated problem spaces actually do
contain disjoint feasible regions. The domain of the generated prob-
lems is large and the random walks are simply not e�ective, by
excluding the exploration these areas of disjoint feasibility. Using
more random walks with longer sampling lengths will cover more
of the problem search space.

The dispersion metric results in a similar value for all of the
generated problem landscapes. The dispersion value is indicative
of a good spread of solutions within the problem space.

The ruggedness of the generated problem spaces, as provided
by the FEM metric, indicates that the generated problem spaces
vary from marginally to slightly rugged. These values con�rm
the expectations for the generation of MPB problem landscapes,
because the MPB is a �at plane with super-imposed peaks onto the
problem space. Using more peaks as input to the problem generator
will result in a more rugged generated landscape.

Searchability of the generated problem spaces, provided by the
FCI metric, indicates that the generated problem landscapes do not
aid in the searchability of the problem itself. This is an expected
result, as the disjointedness of the feasible regions, both in and
outside of infeasible spaces, do not guide the algorithm to a better
solution.

The FDC metric shows that the generated problem landscapes
display correlations close to 0, indicating marginal correlations
between the observed �tness values and the distance to optima.
These values suggest that the information present in the problem
search space does not aid an algorithm to a single optimum value,
but instead presents unbiased alternate solutions.

The gradient metrics all display a similar trend, that of generally
larger gradients. The results are not surprising based on the de�-
nition of the MPB and that the function generator has a degree of
randomness which may generate large peaks with narrow widths.
The gradient metrics all display large values which is indicative of
large gradient changes in the problem space.

8 CONCLUSION
This paper proposed a benchmark function generator for dynam-
ically constrained DOPs, based on the MPB function generator.
The function generator, which is a composition of two di�erent
dynamic changing functions, can create a variety of dynamically
constrained optimization problems. The resulting environments
address concerns from earlier research with respect to the location
of feasible regions, the movement of constraints, and providing
for dynamism of both the problem and constrained spaces of the
�nal problem space. A �tness landscape analysis of an instance of
the dynamic constrained DOP generator, with 10 environments,
showed that the resulting environments were robust and diverse.
Visualization of the 10 environments con�rmed the results collected
from the �tness landscape measures. As a result, the dynamically
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Figure 1: Fitness landscape characteristics of a dynamically constrained DOP

constrained DOP generator provides a con�gurable, well under-
stood, dynamic, constrained environment generator which will
allow for better understanding of the benchmark problems used to
analyze the performance of optimization algorithms. Future work
will include a detailed investigation on the use of di�erent peak
types for the problem and constraint component functions and the
in�uence thereof. Sets of generator function parameters will be de-
�ned which create problem landscapes that address speci�c aspects

of optimization algorithm e�ectiveness, allowing for fair algorithm
performance comparisons on the same problem instance.
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