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ABSTRACT

Multimodal optimization has shown to be a complex paradigm un-
derneath real-world problems arising inmany practical applications,
with particular prevalence in physics-related domains. Among them,
a plethora of cases within the computational design of aerospace
structures can be modeled as a multimodal optimization problem,
such as aerodynamic optimization or airfoils and wings. This work
aims at presenting a new research direction towards efficiently
tackling this kind of optimization problems, which pursues the
discovery of the multiple (at least locally optimal) solutions of a
given optimization problem. Specifically, we propose to exploit the
concept behind the so-called Novelty Search mechanism and embed
it into the self-adaptive Differential Evolution algorithm so as to
gain an increased level of controlled diversity during the search
process. We assess the performance of the proposed solver over
the well-known CEC’2013 suite of multimodal test functions. The
obtained outcomes of the designed experimentation supports our
claim that Novelty Search is a promising approach for heuristically
addressed multimodal problems.
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1 INTRODUCTION

For years optimization problems have been a paradigm lying at
the core of thousands of industrial processes, such as engineering
design or production planning [34]. In this regard, by an optimiza-
tion problem we refer to the situation where the value of a set of
variables must be tailored so as to maximize or minimize a given
measure of quality or fitness that quantifies how good any solution
is with respect to the problem at hand. In many practical cases, the
lack of an analytical formulation for the fitness function or its com-
plex mathematical tractability makes it difficult to deterministically
compute the optimum solution to a problem (i.e. the fittest combi-
nation of values for the aforementioned variables), to the point of
requiring non-affordable computational times even for the simplest
problem formulations. When this is the case (usually referred to as
NP-hard problems), randomized heuristic search techniques can be
adopted instead [32]. Heuristics attempt at solving NP-hard prob-
lems by resorting to approximative self-learning search strategies,
which allow them to explore the search domain of the problem
in a more efficient fashion than greedy or enumerative methods.
However, this increased computational complexity comes along
with a lack of optimality guarantees, namely, there is no certainty
that the solution produced by a randomized heuristic solver is the
best for a given problem [5].

Many different flavors of optimization problems can be found
in the literature, ranging from the existence of multiple conflicting
objectives to dynamic problem formulations, each spanning its
own flurry of specialized heuristic methods [16]. Among them,
multimodal optimization (MMO) deals with problems where the
fitness function hasmultiple global optima that are of practical value
for the application at hand. Thereby, the goal is to find as many of
these optima as possible by designing a technique capable, not only
of finding these optima, but also of retaining it during the search
process [12]. The need for exploring different yet equally interesting
regions of the solution space leads to different specialized methods
that are usually inserted into the search procedure of evolutionary
and swarm intelligence heuristics. Among them, niching techniques
stand as arguably the most utilized schemes for MMO to date [28].

From a practical perspective, MMO has served as a computa-
tional model for real-world problems in many heterogeneous areas,
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such as physics [46], medicine [3, 21] or graph theory [9]. How-
ever, it is in aerospace and aerodynamics where MMO has been
notably present in manifold problems. A excerpt of exemplary
works in this field is next provided by beginning with [10, 40],
which proposes two algorithms to investigate multimodality in
aerodynamic shape optimization problems: a gradient-based multi-
start algorithm based on Sobol sampling, and a hybrid optimizer
combining a Genetic Algorithm with a gradient-based algorithm.
The same problem is also addressed in [30], again under an MMO
modeling approach based on the Common Research Model (CRM)
wing benchmark, defined by the Aerodynamic Design Optimiza-
tion Discussion Group. Another interesting research is presented
in [37], in which a population-based global MMO framework is pro-
posed to solve a aerodynamic wing optimization problem via three
different optimization approaches. Likewise, the authors in [11]
elaborate on the effect of uncertainty representation on the results
of robust airfoil (cross-sectional shape of a wing) shape optimiza-
tion. After highlighting the importance of a proper airfoil design
to be robust with respect to uncertainties in operating conditions,
authors formulate the shape design problem as a MMO instance.
All experimentations in this study are conducted by using three
different benchmark instances, with varying degrees of complexity
and multimodality. Interested readers are referred to recently pub-
lished works such as [17, 44, 47] and references therein for further
bibliographic depth on this subject.

The capital importance of MMO in the above areas, and the
vibrant research activity noted lately around innovative multi-
modal optimization methods, motivate the new research direction
presented in this work: the application of Novelty Search for ef-
ficiently dealing with MMO problems. Novelty Search (NS) was
proposed in 2008 [26] as a means to enhance the exploratory ability
of population-based search algorithms. Specifically the work posed
a milestone by showing that unprecedentedly good performances
in optimization problems could be achieved by directing the search
in terms of diversity rather than exclusively in terms of fitness
value. Our research hypothesis in this work builds upon recent
work [20], in which we have evinced the promising performance
of NS for single-objective optimization problems, which we aim to
extrapolate to MMO problems. To this end, we have developed an
adaptive version of Differential Evolution (DE, [43]), namely, the
self-adaptive Differential Evolution (jDE, [8]), and endowed it with
a NS-inspired mechanism. Informed insights on the quality of our
proposed approach are obtained from an experimentation bench-
mark over the CEC’2013 MMO test suite [27], which comprises 20
different MMO instances of varying size. The performance of our
methods is compared to that of the basic versions of DE, jDE and
four ad-hoc MMO solvers from the literature. The results obtained
from the performed experiments buttress our hypothesis around
the postulated potential of NS for MMO problems.

The remainder of the paper is organized as follows: Section 2
provides background on DE, jDE and NS, whereas Section 3 is
devoted to the description of the proposed NS-based scheme. Next,
Section 4 outlines and discusses the experimentation and finally,
Section 5 ends the paper with conclusions and further work.

2 BACKGROUND

This section delves into baseline concepts required for properly
grasping the contributions of our research work. First, we introduce
the basic concepts of DE and jDE.We finish this section by sketching
the fundamentals of NS.

2.1 Differential Evolution

DE is a classical evolutionary algorithm which optimizes a problem
with regard to a given fitness function f : RD → R, where D

denotes the dimensionality or number of decision variables of the
problem. First introduced in [43], many DE variants have been
ever since proposed in the literature [13, 33]. The canonical version
of DE targets numerical optimization problems by representing
solutions as a population of real-valued D-length vectors:

x
(t )
i =

(
x
(t )
i,1,x

(t )
i,2, . . . ,x

(t )
i,D

)
for i = 1, . . . ,Np , (1)

where Np denotes the size of the population or set of candidates
P(t ) = {x

(t )
1 ,x

(t )
2 , . . . ,x

(t )
Np
} involved in the optimization process at

generation t . At every one of such generations mutation, crossover
and selection operators are applied to each candidate x(t )i . First, the
mutation operator is applied, with DE/rand/1/bin and DE/best/1/bin
being two of the most frequently used variations [14]. The basic
mutation operates by generating a trial vector, which yields from
the scaled difference between two randomly chosen candidates x(t )r1
and x

(t )
r2 , plus another random candidate x(t )r0 . Mathematically:

u
(t )
i = x

(t )
r0 + F

(t )
i · (x

(t )
r1 − x

(t )
r2 ), (2)

where F(t ) =
{
F
(t )
i

}
∈ [0.1, 1.0]Np represents the scale factor. Once

this mutation has been performed, DE performs a crossover oper-
ation, in which DE selects the value of the variables between the
parent and trial candidate as:

w
(t )
i, j =

{
u
(t )
i, j if randj ≤ CR or j = jrand ,

x
(t )
i, j otherwise,

(3)

whereCR ∈ [0, 1] is a parameter that controls the fraction of param-
eters which are drawn from the trial solution; jrand ∈ [1, 2, . . . ,D]
is a randomly selected position from trial vector; and randj is the
realization of a uniformly distributed random variable with sup-
port R[0, 1]. It is important to note that the condition j = jrand
ensures thatw(t )i, j differs from the original solution in at least one
position. Finally, the selection of the remaining candidate for the
next generation t + 1 is done by selecting the fittest candidate, i.e.:

x
(t+1)
i =

{
w
(t )
i if f (w(t )i ) ≥ f (x

(t )
i ),

x
(t )
i otherwise,

(4)

where f (·) denotes the fitness function of the problem at hand. It
should be left clear that other selection criteria could be imposed
to the heuristic, including elitism and other variants.

2.2 Self Adaptive Differential Evolution

In the self-adaptive DE (jDE) proposed in [8], the crossover rate
CR and scale factor F(t ) are self-adapted during the evolutionary
search. As a result, candidates in jDE are encoded as:

x
(t )
i =

(
x
(t )
i,1,x

(t )
i,2, . . . ,x

(t )
i,D
,CR
(t )
i , F

(t )
i

)
, for i = 1, . . . ,Np , (5)
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namely, as the concatenation of the optimization variables and the
self-adaptive parameters. The equations governing this adaptability
for the crossover rate and scale factor are:

F
(t+1)
i =

{
Fl + r1(Fu − Fl ) if r2 ≤ τ1,

F
(t )
i otherwise,

(6)

CR
(t+1)
i =

{
r3 if r4 ≤ τ2,

CR
(t )
i otherwise,

(7)

where {rm }4m=1 are realizations of uniformly distributed random
variables with support R[0, 1]; τ1 and τ2 stand for the learning rate
of the adaptation; and Fl and Fu represents the lower and upper
bounds of the parameter F(t ), respectively.

This adaptive version of the DE solver has proven to perform
remarkably in problems springing from a wide variety of fields,
such as energy [22, 39], software engineering [24] or industry [2].
For this reason and for its simplicity, we have embraced jDE as the
search heuristic to be combined with a NS-based technique.

2.3 Novelty Search

As has been pointed in Section 1, the rationale behind NS is to
increase the diversity of the population by finding novel candidates
in the behavioral space instead of the search space. It is known that
unless overcome anyhow, candidates tend to collapse and stagnate
in the search space [25], but they do not necessarily do the same in
the space of variables. In this alternative space the amount of novel
brought by a candidate x can be measured as:

ρ(x) =
1

k

k∑

i=0

d(x, µi ), (8)

where d(·, ·) denotes the Euclidean distance, and k is the number of
neighbor candidates selected from the ordered subset of neighbors
of x, namely, N(x) = {µ1, µ2, . . . , µk } ⊆ P, with P representing
the population. The size is problem-dependent, so the value of
k must be selected experimentally. Under the NS approach, the
above measure of diversity can be adopted as a selection criteria
between successive generations of the search heuristic, in such
a way that only the individuals inducing more diversity into the
remaining population are kept. Intuitively, the measure of distance
between candidates d(·, ·) can be also selected depending on the
characteristics of the problem.

Despite the diversity of applications where NS has showcased
its efficiency and outstanding performance [23, 29], in general a
NS technique is weakly defined. This leaves the question of how
to tailor the search in hands of the algorithm developer, and it is
strictly related with the problem which is trying to be solved [19].

3 PROPOSED NS-BASED JDE FOR MMO

With all this, the algorithm proposed in this work focuses in solving
multimodal optimization problems by hybridizing jDE with a NS-
based mechanism (NSjDE). The hybridization of these two concepts
is extremely interesting for this purpose: this is so because one of
the main design directives when devising new algorithms for MMO
is to generate enough diversity in the population towards finding
and maintaining as many local optima of the solution space space as
possible. For this reason, NS seems to be a promisingmethod for this

kind of optimization problems, since it may promote the generation
of new diverse candidates without wasting computational resources.
This helps the solver not be stuck in local optima, yet requires
further modifications to retain already found niches.

Previous studies have unveiled that jDE tends to form neigh-
borhoods during its search process [1]. When accounted together
with its self-adaptive behavior, this tendency makes jDE a very suit-
able algorithmic choice to work with sub-populations and split the
search space in neighborhoods depending on the number of optima.
However, the convergence and optimality of solutions provided by
the off-the-shelf version of jDE can be limited in MMO problems.
To overcome this issue and enhance the multimodal exploration
capability of this heuristic, we propose a vicinity-guided crossover
by which once an optimum is found, the exploration of other areas
is promoted. Meanwhile, the discovered optima keep improving
locally by the exploitative capability of the jDE mutation operator.

As shown in many studies [8], the canonical version of jDE
performs fitness-based selection. By contrast, our proposed method
takes into account the exploration area of the parent individual,
as well as the location of the mutated offspring to perform the
replacement. In order to incorporate the exploration radius, the
search space is normalized and the candidate encoding adapted as:

x
(t )
i =

(
x
(t )
i,1, . . . ,x

(t )
i,D
,σ
(t )
i ,CR

(t )
i , F

(t )
i

)
, for i = 1, . . . ,Np , (9)

where x (t )
i,d
∈ R[0, 1] ∀d = 1, . . . ,D, and σ (t )i represents the explo-

ration radius of the i-th candidate, namely, the maximum distance
at which candidate x(t )i can be replaced. At the same time, in order
to maintain the best candidates of the population and preserve
those with better fitness values, each candidate is endowed with a
radius size according to their fitness value which, as will be later
explained, depends on a inverse normalized function given by:

f̂ (x
(t )
i ) = 1 −

f (x
(t )
i ) − f

(t )
min

f
(t )
max − f

(t )
min

, (10)

where x(t )i ∈ P. The two additional values fmin and fmax in the
expression above represent the historical fitness values from the be-
ginning of the execution to generation (t). These values are checked
every time a candidate is evaluated, and are updated as:

f
(t+1)
min =

{
f (x
(t )
i ) if f (x(t )i ) ≤ fmin,

f
(t )
min otherwise,

(11)

f
(t+1)
max =

{
f (x
(t )
i ) if f (x(t )i ) ≥ fmax,

f
(t )
max otherwise.

(12)

Our goal with this mechanism is to make all candidates be as
exploratory as possible in early stages of the search process, i.e,
all candidates should be configured with maximum exploration
radii. To this end, we define R(t ) = {σ (t )1 , . . . ,σ

(t )
Np
} (i.e. the set

of radii of all candidates at generation (t)), and initialize it to
σ
(0)
i = 1.0 ∀i = 1, . . . ,Np . Once the population has been evaluated
in this initial generation, the candidate with best fitness value is
inserted into the maxima setM with σ

(0)
m = 1.0 ∀x(t )m ∈ M. This

newly introduced setM comprises the group of best candidates
found during the search. At the end of the search process, this set
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This being said, in this work we propose to assign a specific
value to the candidates aiming to evaluate their quality by their
normalized fitness as per Expression 10. Thus, when a candidate
has a high fitness value, it only accepts changes in a low distance
variation. On the other hand, if a candidate has very low fitness
value, it accepts more drastic changes, following the procedure
described in Section 3.1.

Many approaches have been used in the literature for properly
determining which candidates are to be replaced, with the main
goal of keeping the niches or sub-populations as less overcrowded
as possible. Renowned examples along the history of MMO are
crowding methods [15, 31], which have been extensively used for
this kind of problems. Another approach with notable presence
in the literature consists of using a formula to assign probabilities
of being a survivor, taking fitness values as its reference. Among
all available methods, it is interesting to let DE evolve and form
neighborhoods; then, once Novelty Search is applied, we perform a
clearance of overcrowded niches. In this way the radius or explo-
ration distance is computed as follows:

σ
(t+1)
i =

{
f̂ (x
(t )
i ) if x(t )i ∈ Nf r ee ,

1.0 if x(t )i ∈ Nm , m ∈ {1, . . . ,M},
(15)

Let us elaborate further on the particularities of the proposed
replacement criterion. On one hand, Equation 4 in Section 2.1)
determines how the replacement is done in standard jDE. On the
other hand, in NSjDE the replacement is done by considering the
Euclidean distance between the new candidate and its parent. If
the new candidate falls within a distance smaller than the radius
associated to its parent, the replacement is done based on fitness
value. Otherwise, if the distance is higher than the radius of the
parent, the parent will accept a change, and is swappedwith another
candidate in the area to which the new candidate belongs. Each
time a replacement is performed, the candidate is inserted in A
or B depending on its relative fitness with respect to its parent
(better or worse, respectively). Algorithm 1 describes a pseudo-
code illustrating this behavior.

3.3 Novelty Search for MMO

As has been mentioned in previous sections, the benefits of NS
were first exposed over mono-modal, single-objective optimization
problems. This seminal work and other contributions appearing
ever since induce diversity by using the candidates produced in the
last generation so as to introduce novel candidates in the population.
However, in MMO we do not know a priori how many optima
characterize the problem has, nor where they are are located over
the search space. Therefore, our main search rationale is not related
only with the fitness, but also with the efficient traversing a more
unexplored area as possible with the series of candidates yielded by
the search heuristic. As a result of this design principle, the search
can be guided through the solution space in a more efficient way,
maintaining good candidates within the population and attracting
other ones.

For this purpose we partially embrace our initial findings in [20]
to yield the overall search algorithm outlined graphically in Figure
1. We maintain three different subsetsA, B, C ⊆ P, each one with
a fixed size. On the one hand, A and B retain the best and worst

Algorithm 1 Custom Replacement (assuming maximization).

1: x
(t )
i : Parent solution

2: d(x
(t )
i , x

(t )
j ): Distance function between candidate i and j

3: σ
(t )
i : Parent radius

4: u
(t )
i : Candidate solution (trial)

5: procedure Replacement operator

6: if d(x
(t )
i ,u

(t )
i ) ≤ σ

(t )
i then

7: if f (u
(t )
i ) ≥ f (p(t )) then

8: x
(t+1)
i ← u

(t )
i

9: Add u
(t )
i to subset A (Good trial)

10: else

11: Add u
(t )
i to subset B (Feasible novel trial)

12: else

13: Compute nearest neighbor of u(t )i as ϕ(t )i
14: if f (u

(t )
i ) ≥ f (ϕ

(t )
i ) then

15: ϕ
(t+1)
i ← u

(t )
i

16: Update σ (t+1)i ∀i as per (15)

candidates produced in the last generation of the jDE heuristic,
respectively. On the other hand, C represent the candidates which
are more likely to be novel (as told by a measure of diversity) and,
therefore, to be inserted in the population again. Such a measure
of diversity can be furnished by using Expression (8), for which
an inner distance d(·, ·) between candidates must be defined. For
numerical optimization not linked to any specific application, the
default choice is an Euclidean distance between candidates

d(x
(t )
i ,x

(t )
j ) =

√√√ D∑

d=1

(
x
(t )

i,d
− x
(t )

j,d

)2
. (16)

Back to Figure 1, when a trial candidate ui achieves better fitness
than the candidate that it is going to replace, it is inserted both into
the population and inA, whereas the replaced candidate is fed toB.
Otherwise, if the candidate can not be introduced in the population,
it is inserted in B. Once the t-th generation comes to end, subsets
A and B should not be empty. In that case, if rns, (being this a
random number selected from a normal distribution) is lower than
the NS parameter NSP ∈ [0.0, 1.0], the NS algorithm is executed as
shown in Algorithm 2.

4 EXPERIMENTS AND RESULTS

This section is devoted to the presentation of the experimentation
carried out to assess the performance of the proposed NSjDE. The
main goal of these experiments is to showcase that NS is a promising
mechanism to solve MMO problems with random search heuristics.
To this end, we propose a jDE adaptation for MMO that in no way
we intend to compete with the best algorithm in the current state
of the art, but rather to gauge the improvement when NS is added
to jDE. Thereby, the experimentation can be divided into three
different steps:

• First experiment, where we compare the Peak Rate (PR) and ac-
curacy between the proposed NSjDE (configured with [R = 15
and |P | = 100) and a basic version of this method with the same
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Table 3: Comparison (Peak Rate, PR) between NSjDE and NSjDE without novelty injection (R = 0).

NSjDE: R=15, |P|=100 NSjDE: R=0, |P|=100

Function ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

f1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f6 0.875 0.875 0.875 0.875 0.875 0.792 0.792 0.764 0.764 0.750
f7 0.972 0.972 0.972 0.972 0.972 0.958 0.958 0.931 0.924 0.924
f8 0.754 0.752 0.742 0.733 0.730 0.358 0.358 0.349 0.343 0.339
f9 0.588 0.588 0.559 0.469 0.431 0.321 0.321 0.252 0.209 0.185
f10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f11 0.697 0.697 0.697 0.697 0.697 0.417 0.417 0.417 0.417 0.417
f12 0.643 0.643 0.625 0.589 0.589 0.281 0.281 0.281 0.281 0.281
f13 0.667 0.667 0.667 0.667 0.667 0.381 0.381 0.381 0.381 0.381
f14 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167

f15 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

f16 0.375 0.333 0.333 0.333 0.333 0.167 0.167 0.167 0.167 0.167
f17 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

f18 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167

f19 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

f20 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Average 0.620 0.618 0.615 0.608 0.606 0.525 0.525 0.519 0.516 0.514
Tot. Ave. 0.613 0.520

Table 4: Comparison (Peak Rate, PR) between light and

heavy variants of the proposed NSjDE, and the NSjDE with-

out novelty injection (R = 0).

NSjDE: R=15, |P|=100 NSjDE: R=40, |P|=250 NSjDE: R=0, |P|=250

Function ε = 10−1 ε = 10−4 ε = 10−1 ε = 10−4 ε = 10−1 ε = 10−4

f1 1.000 1.000 1.000 1.000 1.000 1.000

f2 1.000 1.000 1.000 1.000 1.000 1.000

f3 1.000 1.000 1.000 1.000 1.000 1.000

f4 1.000 1.000 1.000 1.000 1.000 1.000

f5 1.000 1.000 1.000 1.000 1.000 1.000

f6 0.875 0.875 1.000 1.000 1.000 1.000

f7 0.972 0.972 1.000 1.000 1.000 1.000

f8 0.754 0.733 0.617 0.571 0.864 0.839

f9 0.588 0.469 0.679 0.569 0.477 0.477
f10 1.000 1.000 1.000 1.000 1.000 1.000

f11 0.697 0.697 0.694 0.583 0.417 0.417
f12 0.643 0.589 0.625 0.542 0.375 0.313
f13 0.667 0.667 0.667 0.667 0.667 0.667

f14 0.167 0.167 0.417 0.417 0.167 0.167
f15 0.125 0.125 0.125 0.125 0.125 0.125
f16 0.375 0.333 0.352 0.259 0.333 0.333
f17 0.125 0.125 0.300 0.025 0.125 0.125

f18 0.167 0.167 0.214 0.143 0.167 0.167
f19 0.125 0.125 0.125 0.125 0.125 0.125

f20 0.125 0.125 0.125 0.125 0.125 0.125

Average 0.620 0.608 0.647 0.608 0.598 0.594

instance, aiming to analyze the exploratory and exploitative ca-
pacity of every solver. The last row of the table also indicates the
average PR scores for each algorithm in the benchmark. The main
conclusion drawn from this third experimentation is that NSjDE
outperforms their counterparts in terms of exploration and exploita-
tion, reaching a much better average performance and confirming
that it is a promising method for solving MMO problems, being
able to rival other solvers from the literature.

5 CONCLUSIONS AND FUTUREWORK

This work has elaborated on a new way to induce diversity for
population-based solvers addressing MMO problems. In doing so,
a variation of the self-adaptive DE algorithm is proposed, whose
guided mutation strategy and a tailored neighborhood-based re-
placement strategy makes the population efficiently traverse un-
explored search space regions and retain captured optima along
its way. The insertion of novel (diverse) candidates performed by
the Novelty Search mechanism embodies an enhancement of the
baseline jDE algorithm, but we have experimentally seen that the
parameter configuration of the solver should be tuned differently
as per the problem under consideration. A comparison with other
well-known CEC’13 and CEC’15 algorithms has been carried out,
verifying that NSjDE could enter these competitions. Nevertheless,
there is still room for further improvement towards making the
algorithm more competitive with respect to the state of the art.

It is indeed in this direction where future efforts are foreseen to
be invested. To begin with, the most immediate research line to be
undertaken is to lessen the computational cost of the algorithm, for
which some adjustments will be imprinted to the NS mechanism in
regards to repeated distance calculations. On the order hand, alter-
native Novelty Search induction strategies will be also investigated.
Finally, the findings resulting from this research will be utilized for
solving real problems arising in Aerospacial Sciences, such as the
design of optimal aerodynamic shapes.
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