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ABSTRACT
CMA-ES plus manual code changes rapidly transforms 512 Newton-
Raphson start points from a GNU C library table driven version of
sqrt into a double precision reciprocal square root function. The GI
x−

1
2 is far more accurate than Quake’s InvSqrt, Quare root.
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1 QUAKE
Quake was a first person shooter video game from the end of the
second millennium. It was designed to run on single user consumer
electronics, such as personal computers and home video game con-
soles. For our purposes, it is noteworthy because it made extensive
use of the reciprocal square root function (x−

1
2 ) in computer illumi-

nation calculations (see Figure 1) at a time when lack of hardware
support made x−

1
2 expensive to compute. To produce high quality

video displays many such calculation are needed. And yet there
is very little time for calculation if the software is to achieve satis-
factory interactive real-time response and refresh the user’s video
display at an acceptable rate. Quake solved this computational bot-
tle neck by using a fast approximation to the reciprocal square
root1. Today graphics cards (GPUs) provide hardware support for
x−

1
2 specifically for interactive video games like Quake.
The GNU C library provides many maths functions, including

sqrt. The current version, glibc 2.29, does not include invsqrt (x−
1
2 ).

1 https://en.wikipedia.org/wiki/Fast_inverse_square_root
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Figure 1: In 3D computer graphics the function x−
1
2 may

be used many times to normalise vectors at right an-
gles to surfaces. Such surface normal vectors are used in
light and shade illumination calculations. https://commons.
wikimedia.org/wiki/File:Surface_normals.svg

Although it does include sqrt and invsqrt can be readily calcu-
lated by taking the reciprocal 1/x . Nonetheless even on powerful
modern processors typically division is more expensive than mul-
tiplication. Not all processors provide hardware support for sqrt.
Although hardware support for division is common, it need not be
universal and may be provided by expensive software emulation.
As computing becomes ubiquitous, with the internet-of-things and
in particular mote computing, there will be a demand to run in-
creasingly sophisticated algorithms (such as computer vision and
machine learning) which may require vector normalisation on non-
standard hardware lacking support for some maths functions and
basic facilities we usually take for granted (such as a power sup-
ply). Hence there may be a demand for non-conventional maths
implementations possibly providing unconventional trade-offs with
energy consumption [18] or accuracy [25, 29] and a software based
solution may be preferred to hardware circuits, such as [7].

Starting from an open source table driven glibc sqrt C source
code specifically written for a processor lacking hardware support
for sqrt, we have shown evolution (plus manual changes) can create
double precision implementations for the cube root ( 3√x ) [15] and
the logarithm to the base 2 (log2 x ) [16]. We have claimed that the
frame work is somewhat general and here demonstrate it further
by evolving a table driven double precision implementation of the
inverted square root function.

The next section summarises using genetic improvement (GI)
[27][1][12][8][9][11][13][22][10][21][14][26] to find better software
by updating numeric values within it (rather than modifying the
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Figure 2: Left: Double precision square root Right: Double precision inverted square root

code itself). Section 3 explains how an existing open source C code
calculates sqrt

√
x and the following section (4) explains how to

convert it to 1/
√
x using manual changes (Section 4.2) and evolu-

tion (4.3). We finish with a comparison with Quake (Section 5) and
discussion (Section 6) before (Section 7) concluding that evolution-
ary computation in the form of CMA-ES [5] can rapidly produce a
double precision implementation of the desired reciprocal square
root function.

2 GI FOR NEW FUNCTIONALITY
There is just a tiny bit of work on using genetic improvement (GI)
to create new functionality. In [17] we used custom mutation and
crossover operators to evolve compile time constants within C
source code. Evolution took about five days to find a new program
which on thousands of real examples gave predictions which were
on average 11% more accurate. (Although some were worse, most
were unchanged or better.) Notice that there were no changes to the
code. Only data were changed. The new data have been distributed
with the ViennaRNA package since Version 2.4.6 (released 19 April
2018). (See also Section 6.)

The GNU C library contains more than a million constants. One
file of particular interest holds a table driven implementation of
the double precision square root function, sqrt (see Figure 2). This
specifically targets a processor, an IBM powerPC, without hardware
support for sqrt. In [15] we showed that standard CMA-ES with
default parameters, could evolve in a few seconds several hundred
compile time parameters to give the cube root function, cbrt, which
does not exist in the GNU C library. Although manual changes to
the code were required, they were (as here Section 4.2) primarily
to deal with the exponent part of double precision numbers (green
in Figure 3). At the time we also claimed that the approach was
general and could be widely applied to continuous maths functions.
Since we have also shown evolution can produce a double precision
implementation of log2 [16].

Figure 3: IEEE 754 Double-precision floating-point format
(Wikipedia).

Figure 4: Example of IEEE 754 single precision floating-
point format (Wikipedia).

3 EXISTING NEWTON-RAPHSON
CALCULATION OF SQRT

The current version of the GNU C library, glibc-2.29, was down-
loaded2. The table driven powerPC version of sqrt.c uses the format
of double precision numbers (Figure 3). To find the square root of
the exponent part of x , it uses a shift left operation to divide the
exponent by two. Secondly it treats the least significant bit of the
exponent plus the fractional part as the normalised version of x
lying between 0.5 and 2.0.

It uses the top nine bits of the normalised number as an index
into a table of 512 pairs of floating point numbers. The first of each
pair is used as a start point for a fixed number of iterations of the
Newton-Raphson method to find a root (crossing point for y=0) of
a continuous differentiable function.

Newton’smethod requires the repeated division by the derivative.
The derivative of

√
x is 1

2
1√
x
but since

√
x is unknown, sqrt.c uses

the second of each pair of entries in the table to store the first
estimate of the reciprocal of the derivative. By using the reciprocal,

2 https://ftp.gnu.org/gnu/glibc/glibc-2.29.tar.gz
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the division can be replaced by a (faster) multiplication. Newton-
Raphson is then also applied to the estimate of the reciprocal of the
derivative as well.

Newton-Raphson converges quadratically fast in ideal circum-
stances. By starting with an 8 or 9 bit approximation each iteration
improves the accuracy: 16, 32, and finally 64 bits. Thus for double
precision (52 bits, Figure 3) only three iterations are needed. Also
for speed sqrt.c does not check if that it has reached the right an-
swer at each iteration but proceeds to do all three iteration in an
unrolled loop. The final step is to restore the adjusted exponent.

4 EVOLVING INVSQRT x−
1
2

4.1 Newton-Raphson solves x−
1
2

The function whose root we want is f (x) = 1
x 2 − input. (I.e. what

value of x = 1√
input

?) The derivative of f (x) is f ′(x) = −2
x 3 .

The first iteration of Newton-Raphson is:
x1 = x0 −

f (x0)
f ′(x0)

x1 = x0 +

(
1
x 2
0
− input

)
×

x 3
0
2

x1 = x0 +
(x0−x 3

0 input)
2

Notice this formulation means we do not need to estimate x−
1
2 for

the derivative and so we can avoid maintaining an estimate of its
reciprocal but at the cost of three multiplications.

4.2 Manual changes
As with cbrt and log2 a small number of similar changes are needed
before running evolution on the data table.

• The construction of the nine bit indexing operation is es-
sentially unchanged but must take into account the table
contains 512 floats not 512 pairs of floats.

• The code to maintain the estimate of the reciprocal of the
derivative can be commented out.

• The new formula (Section 4.1) for the Newton-Raphson step
is used (three times).

• The exponent part of the original floating point number must
not only be divided by two (as in sqrt.c) but also must be
negated. Since the IEEE 754 standard uses 11 unsigned bits
to represent the exponent, this is accomplished by a left shift
and then subtracting from the mid point (1023 = 2(11−1) − 1).

• Dealing with denormalised double precision numbers is ac-
complished as in sqrt.c except the constant 2−54 is replaced
by 254.

4.3 CMA-ES evolves x−
1
2 data table

The __t_sqrt table contains 512 pairs of floats, corresponding to
numbers in the range 0.5 to 2. The first of each pair was used as
the start point when evolving the 512 floats in the new table (see
Figures 5 and 6).

The Covariance Matrix Adaptation Evolution Strategy algorithm
(CMA-ES [5]) was downloaded from https://github.com/cma-es/
c-cmaes/archive/master.zip CMA-ES is going to be run at least 512
times. Each time it is initialised to the data value (i.e. first of each
pair) from the corresponding value in __t_sqrt. The initial mutation
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Figure 6: Evolved change from sqrt table values (horizontal
axis) to corresponding invsqrt table value (vertical axis). 512
successful CMA-ES runs. (Diagonal blue line shows y=x, i.e.
no change.)

step size used byCMA-ESwas set to 3.0 times the standard deviation
calculated from the 512 data values in __t_sqrt. (Thus all CMA-ES
runs start with the same mutation step size.)

4.3.1 CMA-ES parameters. The CMA-ES defaults
(cmaes_initials.par) were used, except: the problem size (N 1), the
initial values and mutation sizes are loaded from __t_sqrt (see
previous section) and various small values concerned with run ter-
mination were set to zero (stopFitness, stopTolFun, stopTolFunHist,
stopTolX). The initial seed used for pseudo random numbers was
also set externally.

4.3.2 Fitness function. Each time CMA-ES proposes a value
(N=1), it is converted from a double into a float and loaded into the
table at the location that CMA-ES is currently trying to optimise.
The fitness function uses three test double values in the range 0.5
to 2.0. These are: the lowest value for the table entry, the mid point
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and the top most value. The manually written code is called (using
the updated table) for each and a sub-fitness value calculated with
each of the three returned doubles. The sub-fitnesses are combined
by adding them.

Each sub-fitness takes the output of manual code, and reverses
it (i.e. squares it and the takes the reciprocal) and takes the differ-
ence between this and the corresponding test value. Of course if
everything is working then they are the same. If they are the same,
the sub-fitness is 0, otherwise it is positive. Since when invsqrt is
working well, the differences are very small, they are re-scaled for
CMA-ES. If the absolute difference is less than one, its log is taken,
otherwise the absolute value is used. However, in both cases, to
prevent the sub-fitness being negative, log of the smallest feasible
non-zero difference DBL_EPSILON is subtracted.

CMA-ES will stop when the difference on all three test points is
zero.

Since all the calculations are done as double precision approxima-
tions a certain degree of rounding inaccuracy can be expected. If the
difference is really small, it may be treated as zero. To decide if the
difference is small enough, the reverse operation is repeated for the
double slightly bigger (i.e. larger = multiplied by 1+DBL_EPSILON)
and slightly smaller (i.e. smaller = divided by 1+DBL_EPSILON) to
give two new differences. The original answer may be treated as
close as possible to the right answer, i.e. fitness is zero, if either:
1) the original difference was zero or smaller than both the absolute
difference of either smaller or larger. Or 2) the original difference is
no more than 2×DBL_EPSILON and it lies between d_smaller and
d_larger.

4.3.3 Avoiding Negative Values. Notice all the steps in the fit-
ness function (previous section) do not require comparison with
an existing implementation. They take a purest approach of taking
the inverse function (f −1(x) = x−2) and seeing how closely f −1(y)
resembles the initial input. But notice f −1(x) is not monotonic. In
particular f −1(−x) = f −1(x). Thus from a mathematical perspec-
tive if y is a solution, then so too is −y. In one run evolution found
such negative solutions to 1/

√
x . Although mathematically sound,

programming standards would not allow negative values. There-
fore the fitness function was adjusted, so that negative numbers
appear to be distant from 1/

√
x , by adding 2x to the fitness objective.

(Remember 0.5 ≤ x < 2 during testing and CMA-ES is minimising.)

4.3.4 Restart Strategy. If CMA-ES cannot find a suitable value
(i.e. either zero or a really small difference on all three test points),
it is restarted. That is, CMA-ES is run again with a different pseudo
random seed but with the same initial starting position and muta-
tion size. In 494 of 512 cases CMA-ES found a suitable value in one
run, but in 16 cases it was run twice, and in 2 it was run three times.
To run CMA-ES 532 times took six seconds in total. Figures 7 and 8
shows the effort reported by CMA-ES for each evolutionary run.

4.4 Testing the evolved invsqrt
In all cases invsqrt produced a correct double precision answer.

On 1 536 tests of large integers (≈1016) designed to test each of
the 512 bins 3 times (min, max and a randomly chosen point) our
GI invsqrt always came within a relative error of DBL_EPSILON
(i.e. 2.22 10−16) of the best possible answer.
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points for x−

1
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1
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fitness evaluation.) No strong correlation with change to ini-
tial seed value (Figure 6). However all 20 of the runs which
were restarted (×) are for x>1.
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not find an acceptable solution. Data as Figure 7. Excluding
where CMA-ES was restarted (blue dashed line), search time
for 1 < x < 2 (black dashed line) is similar to 0.5 < x < 1 (red
solid line).

As well as ad-hoc testing, and the large positive integer tests
mentioned in the previous paragraph, invsqrt was tested with 5 120
random numbers uniformly distributed between 1.0 and 2.0. (The
largest relative deviation was 1.5 DBL_EPSILON.) It was also tested
on 5 120 random scientific notation numbers and 5 120 random 64
bit patterns. Half the random scientific notation numbers were neg-
ative and half positive. Half were smaller than one and half larger.
The exponent was chosen uniformly at random from the range 0
to |308|. In one case a random 64 bit pattern corresponded to NAN
(Not-A-Number) and invsqrt correctly returned NAN. Again, in
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most cases invsqrt returned a double, which when squared and in-
verted was its input or within one bit of it. The maximum deviation
from from the best possible answer was two in the fractional part,
Figure 3 (i.e. a maximum relative error of DBL_EPSILON).

5 COMPARISONWITH QUAKE
The Quake (Section 1) fast inverted square root code, InvSqrt, was
down loaded from stack overflow3 and subject to the same tests as
the evolved invsqrt (Section 4.4). In terms of functionality InvSqrt
is far worse:

• InvSqrt gave the correct result to floating point precision in
only 45 of the 16 903 tests. Often the result is up to 0.17% out.
Unsurprisingly it never gave an answer correct to double
precision accuracy.

• InvSqrt does not deal with negative numbers. It may return
inf but there are cases where it returns an incorrect floating
point number.

• Unsurprisingly InvSqrt does not deal with double precision
numbers outside the range of floating point precision (cf. Fig-
ures 3 and 4). It has odd behaviour for numbers smaller than
1.5 10−37 and bigger than 3.3 1038.

6 AUTOMATED PARAMETER TUNING
There is some similarity with deep parameter tuning (also known as
Deep Parameter Optimisation) [32][31] [24][30][4][3][28][2]. Wu’s
deep parameter tuning [31, 32] uses search based techniques to
both expose and then tune values buried in existing source code.
However Wu [32] deals with relatively few parameters, rather
than five hundred. Also [32] seeks to tune existing functionality
rather than as here to use data changes to create a new function, or
to transplant existing functionality from one program to another
[19][23][6].

Section 2 and the previous paragraph have briefly covered the
existing literature. It makes clear that, apart from our own recent
work [15–17], the problem of automatic update of values embedded
in existing software has been little studied.

In these days where much of software development is performed
as continuous integration (CI), it may not be clear in a CI environ-
ment where the boundary between development and bug-fixing and
maintenance lies. Nonetheless the cost of software maintenance
remains staggering.

Naturally most software engineering research concentrates upon
source code. However as well as code, programs contain data and
parameters. In the case of one well used scientific package (Vien-
naRNA [15]), we found 50 000 integers which represent scientific
knowledge. They had been deliberately corralled to separate them
in the source code so that they could be updated as knowledge
of the science increases. However due to the expert manual effort
involved they had been updated by hand only once in several years,
during which the software has been in routine use around the
world. As an initial demonstration, we were able to show search
based techniques could automatically update these compile time
constants [17].

3https://stackoverflow.com/questions/268853/is-it-possible-to-write-quakes-fast-
invsqrt-function-in-c See also Q_rsqr in https://en.wikipedia.org/wiki/Fast_inverse_
square_root (11 March 2019).

It is often the case that software maintenance does not happen
because because it requires specialised expertise and there is no
one available, or that person is already over committed. Initially
that expert may be busy working on more immediate problems.
But overtime the expertise may be lost. In either case an automated
approach may not need to be perfect to be acceptable. Something
which improves on what we have could still be useful.

Currently the task of keeping constants embedded in existing
software up-to-date is labour-intensive and so there is great scope
for automation.

Section 2 expands this to the related task of creating new system
software from existing functions via automated parameter tuning.
In Section 4 we use CMA-ES to automatically adapt 512 float con-
stants, giving rise to 1/sqrt(x), which does not currently exist in the
C run time library. By considering 3√x , log2, and now 1/sqrt(x), we
have shown this framework can be readily adapted to provide new
maths double functions [16] where there is an objective function,
e.g. the inverse operation.4 From a practical point of view perhaps
it will prove most useful for porting existing functions to different
hardware, possibly lacking direct maths support.

Previously [17] we have demonstrated using Genetic Improve-
ment to adapt 50 000 parameters to new scientific knowledge may
be possible. Section 4.3.4 showed in a few seconds it can adapt
several hundred continuous values. (Although previously more
complicated examples took far longer.) We have used extensive
testing to show the correctness of the automatically transplanted
data. Additionally, e.g. following [20], it may be feasible to verify
our Genetic Improvement invsqrt.

This initial work hints that, in a world addicted to software, both
automated data maintenance and data transplantation could be
essential new areas for search based software engineering research.

7 CONCLUSIONS
In keeping with the GGGP [6] philosophy our approach combines
minimal manual code changes (Section 4.2) and search. Starting
from existing open source code, in a few seconds evolution was
able to find 512 values to transform part of the GNU C library
into the reciprocal square root function (invsqrt or x−

1
2 ). Uses of

invsqrt include computer graphics and machine learning, e.g. to
normalise vectors. In all cases the GI invsqrt produced a correct
double precision answer.
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