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ABSTRACT
Kinder SurpriseTM are chocolate eggs that house a small toy. Fans
of the toys across the world are collecting and trading these toys,
with some toys being very rare and highly priced.

With this paper, we present and publish a data set that was
extracted from the German Kinder Surprise pricing guide for 2019.
The data set contains prices and photos of 187 sets of figurines
produced between 1979 and 2018. In total 2366 items are included.

We also provide a few first ideas for using this data as a bench-
mark data set for discrete optimisation, i.e., for subadditive func-
tions with matroid constraints, for combinatorial auctions, and for
functions with occasionally violated conditions.
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1 INTRODUCTION
Kinder SurpriseTM, sometimes also called Kinder Surprise Egg
or Kinder Egg, is a candy manufactured by the Italian company
FerreroTM since 1974. The eggs are hollow chocolate shells that
surround a plastic capsule, which contains a small toy – see Figure 1
for an example. The eggs have been sold billions of times to date
across the world. The USA has been a noteworthy exception for
many years [17], which prompted Ferrero to produce Kinder Joy, a
FDA compliant variant [22].

Typically, several “sets” of toys are released each year, with each
set comprising of a number of similarly themed toys. Consequently,
it does not come to a surprise that many passionate collectors across
the world have been collecting and trading the little toys. Some
figurines are extremely rare andmuch sought after, which can result
in high prices. Similarly, rare production variations, e.g., incorrectly
coloured parts, can attract much interest. It is important to note

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326801

Figure 1: Kinder Surprise Photo [29], Creative Commons
photo.

that the “fixed” figurines (without any moving parts) are traded the
most – although cars, small displays, spinning tops, games, etc. are
also very often included in the Kinder Surprise. In this data set, we
focus exclusively on the fixed figurines.

For us as researchers, the appeal of the figurines is manifold:

(1) For each figurine, the data set provides an anonymised name,
a price and a set identifier. This enables the use in set-based
and graph-based problems.

(2) For each item in the catalog, we include at least one low-
resolution photo. This allows us to incorporate aspects such
as shapes, brightness, and colours into complex fitness func-
tions when simulating the preferences of collectors.

(3) Lastly, quite a few of us can relate to small collectible items,
independent of whether these are toys, postal stamps, trading
cards, or others.

Interestingly, despite the rather broad presence of collectible
items in the real-world, public domain data sets about these are
extremely rare. If researchers are interested in particular types
of problems that relate to items in sets and their characteristics,
and also to the values of sets, then the solution is often just to
produce data sets either randomly or based on some “real-world
inspired” process. Whether the characteristics of common instances
are captured is often a so-called threat-to-validity.

This is the contribution of this article: the Kinder Surprise 2019
data set forms the beginning of TOYlib, and it is available online at
https://github.com/markuswagnergithub/TOYlib under the GNU
General Public License v3.0 (see the end of this paper for more infor-
mation). We offer the data, a brief characterisation and a connection
to a number of discrete optimisation problems.
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This paper is organised as follows. First, in Section 2, we de-
scribe how we extracted and cleansed the data. Then we provide a
brief characterisation in Section 3. Then, we come to optimisation
problems in Section 4, where we (1) establish the connection to
submodular and subadditive functions with matroid constraints, (2)
provide a few formulations with different characteristics, and (3)
propose to use the data set for studies on problems with violated
conditions, such as “almost always submodular functions”.

Thanks and Disclaimer: We would like to express our sincer-
est gratitude to André Feiler from the Feiler Verlag https://www.
feiler-verlag.de, Germany for providing us with a digital copy of
the current pricing guide “O-Ei-A Figuren 2019”, and for allowing
us to make this data available. The authors declare no conflict of in-
terest. Neither are they, nor any of their friends or family members
involved with Ferrero or the Feiler Verlag.

2 CREATION OF THE DATA SET
In this section, we outline how we extracted and prepared the data.
We also explain how we have dealt with missing and ambiguous
information. This “technical” section is necessary as it describes
the data set creation and cleansing.

2.1 Table extraction
Our data extraction begun with a copy of the official catalog “O-Ei-
A Figuren 2019” in the Adobe InDesign 4 format. The extraction
proved to be surprisingly laborious as the data was relatively un-
structured and different exports to XML, HTML, and other formats
resulted in files that required significant cleanup.1

Figure 2 shows an example from a page from the catalogue. In par-
ticular, it shows an example where production variants of figurines
(in the form of different colourings and common manufacturing
defects) exist.

Figure 2: Excerpt from the catalogue. Note that the figurines
in the photo are out-of-order.

After exploring our options, we decided to go for a two-way
approach. First, we extracted the tables and photos from an HTML
export. Then, we used the original PDF to assign tables to pages
1As the InDesign file was incompletely tagged, proceeding with the XML export was
not an option.

Figure 3: Excerpt from the catalogue in HTML format. Note
that the location of the tables’ titles is not consistent with
the PDF (see Figure 2).

and to assign tables to sets when unclear, and to assign photos to
figurines. We have written a custom tool for this.

We started with the HTML export of the original document (see
Figure 3). One challenge that we had to overcome was that the
sets’ titles were not always present, and they did not always appear
before but also after the table. With the help of a few heuristics
and some manual cleanup, we extracted and merged all tables of all
sets and items, with the associated values. Note that we have not
distinguished between figurines and non-figurines, as this could
only have been done manually for each item: if a row in a table
contained a name and a price, then we added it to the respective
set.

When we encountered a page in the catalogue focusing on vari-
ants of figurines of a set, then we have considered this as a new
set. Moreover, when we encountered variants within a set, then we
considered each variant to be a new (i.e., additional) item in the set.
For example, because the snake Kaa appears in three variants in
Figure 2, we added Kaa three times to the set with the respective
names.

When we encountered missing values, e.g. in tables highlighting
manufacturing variants (see Figure 4), we dropped the items from
the set. When we encountered a range or multiple values for a
given price, then we decided to proceed with the minimum value
of the numbers.

We then calculated the sum of the sets and added this as an entry
for each item, for easier look-up.
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Figure 4: Excerpt from the catalogue: missing values.

2.2 Image extraction and association
The association of images with the individual figurines was chal-
lenging for two reasons:

• The individual figurines are normally part of “group shots”,
and are not available as individual image files.

• No export from the InDesign file provides a reliable way of
connecting images to tables, or even to rows within tables.

The extraction of over 2000 images by hand was not an option,
so we sought a semi-automatic process. First, we ran an edge de-
tection algorithm2 on each group shot, and then went from left to
right through the image and cut when a column is empty. For some
images, shadows and overlaps made the process challenging, see
Figure 5 for an example. However, after some tuning of the parame-
ters, we managed to achieve acceptable results across a wide range
of group shots.3

Figure 6 shows one of the most difficult situations that we had
to deal with: uneven spacing and “overlap” in the sense that verti-
cal cuts would result in the parts of neighbouring figurines to be
included. In such cases, we had to accept that overlap cannot easily
be avoided and we cut the images manually. In addition, we had to
manually take care of group shots that involved multiple rows of
figurines.

Lastly, we had to manually tend to cases where photos were split
too often, wheremore properly extracted images existed than priced
items on a page, and when images appeared on pages different from
where they were referenced.

As a result of the semi-automatic process, the image data set
contains noise in the sense of incorrect cuts. We see this more as a
feature than an issue: real-world data can be noisy, and different
approaches can result in different extractions of the individual
photos.

In the future, should we be allowed to publicly share the group
shots in high resolution, then we will make these available in a
different sub-directory of the current repository, e.g., for image
separation and item association benchmarks.
2Following the recommendations of [25] with adjustments.
3Note that this could have been an interesting opportunity for automated parameter
tuning of the edge. However, because we were interested in the once-off extraction
of parts of the images, and because we did not have ground truth data for a train-
ing process but required human intervention, we essentially performed interactive
optimisation with a human in the loop.

Figure 5: Steps in the image extraction process. From top to
bottom: original image, non-tuned edge detection (figurines
could not be separated reliably), final result after tuning.
Units are pixels.

Figure 6: “Overlapping” figurines in a group shot, units are
pixels.

2.3 Data anonymisation
In order to reduce the risk of commercial loss to the publisher of
the catalogue, and also in order to take care of special characters
present in the German language, we anonymised the set names and
item names. Table 1 shows an excerpt from the final table. Further
anonymisation could have been performed, e.g., scrambling the
items within the sets and the order of the sets, however, the chosen
level was sufficient for the publisher to let us publish the data.

The naming convention we used for the images follows the
following format: item_image_prefix :==
<page number>_<item_in_set>_<time stamp of cut>.<file extention>

For a few cases, more than one image exists for an item, e.g., due
to variants. In such cases, we recommend that the lexicographically
first image is associated with an item.

When an item was without an image (but with a price), then we
gave this item a white placeholder image of size 150x150 pixels.

3 CHARACTERISATION
In the following, we provide a brief characterisation of the items
in the data set. We focus the following four features of the data
set: set_total_price, item_price, set_size, and item_in_set. While
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Table 1: Excerpt from KinderSurprise2019data.csv. For example, the last set with the number 187 contains 10 figures (each
valued at EUR 3.00) and 1 leaflet (valued at EUR 0.50).

item_overall_id item item_in_set item_price item_image_prefix set set_size set_total_price

1 1_1 1 1200 2_1 1 4 4800
2 1_2 2 1200 2_2 1 4 4800
3 1_3 3 1200 2_3 1 4 4800
4 1_4 4 1200 2_4 1 4 4800
5 2_1 1 200 2_5 2 3 600
6 2_2 2 200 2_6 2 3 600
7 2_3 3 200 2_7 2 3 600

...

2362 187_7 7 3 243_7 187 11 30.5
2363 187_8 8 3 243_8 187 11 30.5
2364 187_9 9 3 243_9 187 11 30.5
2365 187_10 10 3 243_10 187 11 30.5
2366 187_11 11 0.5 243_11 187 11 30.5

the last one is just a running number within each set, it gives us a
slightly different angle at the set characterisation than set_size.

set_size

set_total_price

item_price

item_in_set

Figure 7: Characteristics of the data set. The violin plot are
an alternative to box plots, and they indicate with thickness
how common values are.

In Figure 7, we start with a few easy-to-compute characteristics.
For example, we can see that most sets are comprised of just over
10 items. This does not come to a big surprise, if one knows that
most sets of figurines actually contain 10-12 figurines plus a small
leaflet. We can also see that some sets are rather large. The reason
for this are the sets there were created for the production variations.
We can also observe that most prices are in the order of just a few
EUR, which caries over to the total values of the sets.

item_price

set_total_price

item_in_set

set_size

Figure 8: Correlations of features. Darker fields correspond
to a larger correlation between the features. X-labels are
omitted as they follow the order of the y-labels.

Figure 8 shows the correlations based on Pearson product-
moment correlation coefficients between the four features and clus-
tered with Wards hierarchical clustering approach.4 As expected,
and as previously observed, set_total_price and item_price are cor-
related, as are set_size and item_in_set.

Lastly, let us investigate how well the figurines are distributed in
the four-dimensional space. We cluster the corpora in the feature
space using a k-means approach. As pre-processing, we use stan-
dard scaling and a principal component analysis to two dimensions.
4Implementation provided by asapy [4], https://github.com/mlindauer/asapy, last
accessed on 25 February 2019.
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Smurfs

Smurfs

Smurfs

variantsrecent figures

Figure 9: Projection of the 4D space of features. A princi-
pal component analysis is used for the projection of the in-
stances from the feature space into 2D.

To guess the number of clusters, we use the silhouette score on the
range of 2 to 12 in the number of clusters. It turns out that many
figurines are surprisingly similar. The six “outliers” (consider the
top half of the figure, with y ≥ 10) are very old and highly-priced
“Smurfs” figurines from various sets. The second cluster of Smurfs
in the bottom right centre also consists of highly-priced items. The
more we move to the left, the more overlap we see, also because
one of the features was item_in_set. Among collectors, the Smurfs
have attracted much attention, being some of the earliest sets ever
to be included in Kinder Surprise and thus (naturally) among the
rarest nowadays.

We can only conjecture that their possibly disproportionally high
value makes them stand out in the PCA. As our data set does not
contain the year of manufacture, we can also only conjecture that
age is correlated with value. Similarly, in principle, the colouring
and shapes of figurines could be correlated with valuations. A
characterisation of the photos (and ideas for considering these
aspects in optimisation problems) will be added eventually to the
repository, however, it is outside the scope of this article.

For the use in discrete optimisation benchmarks, we conjecture
that this structure can result in some challenging scenarios, depend-
ing on the formulation. For example, the resulting hard-to-solve
“cores” of problems can become relatively large when many items
have comparable (but not identical) properties, e.g., in the case of
knapsack problems [20].

4 IDEAS FOR OPTIMISATION PROBLEMS
After the previous sections have introduced the data set, we now
look into real-world problems for which this data set can be used.

4.1 Functions with Matroid Constraints
Much of our current work takes place in the area of combinatorial
optimisation. In particular, we are interested in optimising functions
under a partition matroid constraint. If the matroid constraints are
uniform, then these are also known as cardinality constraints.When
collecting figurines, we can easily think of scenarios where the task
is to distribute a fixed number of figurines among collectors – hence
the connection to functions with cardinality constraints.

Most of the functions that we are interested in are submodular
functions, as they capture the notion of diminishing returns5, i.e. the
more we get the less our marginal gain will be. The real world with
situation that have this characteristic, thus, the problem of maxi-
mizing a submodular function finds applicability in a wide range
of situations. Examples include: maximum cut problems [13], com-
binatorial auctions [19], facility location [8], problems in machine
learning [11], coverage functions [18], and online shopping [28].
In our setting, diminishing returns can occur when the happiness
function of a collector contains aspects such as “the increase of
happiness is sub-linear with the number of figurines a collector
has”.

On the theoretical side, for submodular maximization under ma-
troid and knapsack constraints, the classical result of [8] shows that
a greedy algorithm achieves a 1/2 approximation ratio when maxi-
mizing monotone submodular functions under partition matroid
constraints. [21] showed that no polynomial time algorithm can
achieve a better approximation ratio than (1 − 1/e). While theoret-
ical boundaries like these can often be achieved for certain types
of problems and functions, we also deem it important to show in
experiments how much closer the analysed algorithms can get than
their bound guarantees. Interestingly, suitable real-world data sets
that can serve this purpose are surprisingly rare.

Let us now focus on the class of monotone subadditive func-
tions.6 Subadditivity is a natural property assumed to hold for
functions evaluating items sold in combinatorial auctions [2, 3].
Recently, Friedrich et al. [12] have shown that computing the so-
cial welfare of a subadditive combinatorial auction is a subadditive
function. They considered combinatorial auctions with n players
competing form items, where the items can have different values
for each player – the very same can be said for collectors of Kinder
Surprise toys. Moreover, the value of each item for a player may
depend on the particular combination of items allocated to that
player. For any given player i = 1, . . . ,n, the value of a combina-
tion of items is expressed by the utility function ui : 2[m] → R≥0.
The objective of the social welfare problem (SW) is to find disjoint
sets S1, . . . , Sn maximizing the total welfare

∑n
i=1 ui (Si ). Follow-

ing [3], they made the following natural assumptions on all utility
functions:

(1) ui (∅) = 0;
(2) ui (U ∪T ) ≤ ui (U ) + ui (T ) for allU ,T ⊆ M ;
(3) ui (U ) ≤ ui (T ) for allU ⊆ T ⊆ M .

Friedrich et al. then defined the constraint that each item can be
allocated only to one player, and that a function f that, when
maximizing f , is equivalent to maximizing a monotone function
under a partition matroid constraint. For more technical details,
including the proof an improved approximation bound, we refer
the interested reader to the article [12]. This gives us our possible
connection to submodular and subadditive functions.

4.2 Combinatorial Auctions
Let us consider some basic combinatorial auctions [23] as another
starting point for optimisation problems using our data set.

5strictly speaking: non-increasing returns
6the family of non-negative submodular functions is strictly contained in the family
of subadditive functions
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Single-minded bidders [23] – Here, the bidder is only happy if
she gets exactly the items that she is interested in. If a bidder’s
wishes are not fulfilled (even just partially), then she is not happy.
This binary happiness for each bidder can already result in NP-hard
problems. For our case, having single-minded bidders makes the
problem neither subadditive nor superadditive due to the happiness
that is essentially a needle-in-a-haystack.

It is also not submodular, which we can see with a simple counter
example. Let U be an allocation that assigns to bidder A one un-
wanted item (and thus is unhappy), let V be an allocation that
assigns to bidder B one unwanted item (and thus is unhappy), then
the union of both allocations can result in a happiness that is greater
than zero if the unwanted is in the intersection.

OR-defined happiness [23] – A bit more lenient are so-called OR-
bids. There, bids are fulfilled – and thus contribute to happiness – if
at least one item from a set of desired items is assigned. In addition, a
bidder can specifymultiple such sets. The overall happiness here can
then be defined as the sum of the individual happiness-es assigned
to each fulfilled set.

(Un-)capped happiness – A potentially more natural formulation
than the single-minded bidder situation is one where bidders get
happier and happier, but also with diminishing returns. The ap-
proach that we suggest builds upon OR-bids. It uses mathematical
series and it could look as follows. Assuming n bidders, where each
bidder i desires k items di,1..di,k (k can vary across bidders):7

• For an allocation of items to bidders, sort for each bidder
individually the set of items that she actually gets according
to their value, largest first, resulting in дi,1..дi,m . Undesired
but assigned items are simply ignored.

• Optimisation Problem Variant 1 “uncapped happiness”:
Happiness(i) = дi,1.value ∗1+дi,2.value ∗1/2+дi,3.value ∗
1/3 + ... =

∑k
j=1 1/n · дi, j .value

• Optimisation Problem Variant 2 “capped happiness”:
Happiness(i) = дi,1.value ∗ 1+дi,2.value ∗ 1/4+дi,3 ∗ 1/9+
... =

∑k
j=1 1/n

2 · дi, j .value
• The total sum across all bidders is then the total sum of each
bidder’s happiness.

Variant 1 with the divergent Harmonic series is effectively a
linear function with coefficients attached to each item. Variant 2
comes close to the linear function that is often referred to as “BinVal”
(for “binary values” as coefficients), where decision variables have
the potential to dominate the additive effect of the other decision
variables. Despite this, the variant remains a linear function.

Both happiness functions can be implemented easily, they are
inspired by “OR” from combinatorial auctions, and they are “natu-
rally” constructed based on “diminishing returns” and “(un-)capped
happiness”.

4.3 Unchartered Territory: Breaking
submodularity and similar properties

An interesting direction, for both theoretical and empirical stud-
ies, is to define functions that are almost everywhere submodu-
lar/subadditive/... but with a few sets or points, where this property

7We use the notation дi, j .value to informally refer to bidder i ’s valuation of the
item j . Each bidder might have a different valuation for item j .

breaks. This could then maybe give rise to interesting statements
for mutation operators and greedy algorithms with restarts. To the
best of our knowledge, no works about such occasional violations or
prevailing conditions exist yet – and in particular about their effects
– for example, about “almost always submodular functions”. While
there are works characterising, e.g., the degree of submodularity
via the so-called curvature [7, 30], they do not consider violations.

For this, data is again surprisingly scarce – although one would
also expect many real-world scenarios to reflect “The whole is
more than the sum of its parts”. While this saying might go back
to Aristotle, he does not seem to have left behind a data set that is
easily accessible to support his claims.

Here are five ideas to demonstrate our reasoning process:
Kinder Surprise (again) – One idea here might be to have (some)

sets priced higher than the sum of the individual components. What
intuitively might make sense at first sight backfires quickly for
vendors, as buyers just have to purchase the individual items in
order to get an eventual “boost” for free. As this is indeed not
attractive for sellers, online shops typically sell collections for less
than the total sum of the individual items – for example, the set [10]
is sold for EUR 19, but the sum of the individual items is EUR 20.
In principle, this might still work for rare collections where hardly
anyone has individual components, so that having the full set is
extremely rare and nobody wants to part with the figurines for
little money and sentimental reasons.

Profit in manufacturing – For example, some modern smart-
phones cost about $500 to produce [15], and when the phone is sold
for $1,500, then the manufacturer still makes money after subtract-
ing cost for marketing, development, etc. Note that this is different
from the economics term “value added”, which would be equivalent
to a manufacturer’s own value added to the product due to software,
marketing, infrastructure, etc. What we have in mind is the actual
“profit”. Interestingly, data again is very scarce, with [15] listing
prices of only about a dozen components.

LEGO sets – Each LEGO set consists of sometimes thousands of
items that can be assembled in a myriad of ways. One interesting
aspect here where it differs from our Kinder Surprise data is the
“many components to many sets” relationship, as many blocks are
used throughout many sets. While lists of parts for sets are available,
and so are prices for individual items, our investigations have not
revealed a set that would be worth more than the components. For
example when considering a particular set [27] and two online
shops to source the parts [6, 26], the total cost of the components
was EUR 4.41, whereas a complete set (as typically sold in shops)
costs EUR 4.95 cents; however, this then also includes the packaging
and the building instructions, for which no prices could be sourced.
Thus, there is plenty of data, but acquiring the data collection is
not trivial, and one cannot always find perfect matches.

Algorithm portfolios [14] – Here, we are referring to the combina-
tion with algorithm selection: given a set of algorithms and a new
instance, pick one algorithm that you then run. In algorithm port-
folios, we have the notions of “single best solver (SB)” (if we could
just pick one for the evaluation), “virtual best solver” (assuming
we would always pick perfectly), and of course algorithm selec-
tors perform somewhere in-between. One approach to construct
a good subset (e.g., given 20 algorithms) is to start with SB and
then to add the second solver that adds the most in performance
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(measured in performance of both solvers together in a portfolio).
There is some data available (e.g., [5] contains 30+ different sce-
narios), however, the number of solvers is typically very small. For
example, while [31] contains 10k instances and 55 instance features,
the actual search space here would only be the n = 21 solvers. We
would need to include a cardinality constraint to limit the number
of algorithms in the portfolio, otherwise it is not interesting.

Specialisation of other kinds – With the last one, we are digressing
a fair bit... For example, we can think of the human race benefiting
from the move from “general purpose hunters and gatherers” to
“bakers, Beyoncé, and BB-DOBWorkshop organisers”. Again, while
this is intuitively sound, data is unavailable.

5 CONCLUSIONS AND FUTUREWORK
The Kinder Surprise 2019 data set forms the beginning
of TOYlib, and it is available online at https://github.com/
markuswagnergithub/TOYlib. We propose to use it for relatable,
discrete optimisation problems.

Our long-term vision is to establish TOYlib as a repository –
much akin other collections like TSPlib [24] and MIPlib [1] – and to
acquire additional data sets with a particular focus on collectables
that are organised in sets. This will include trading cards from
sports and trading cards from card games, but also data sets from
more serious domains such as the collection of stamps.

As this is an activelymaintained data set, variations and additions
are likely to happen over time. For example, we envision interfaces
to optimisation packages and frameworks like IOHprofiler [9].

Licence
This data set is published under the GNU General Public License
v3.0 (GNU GPLv3), see Table 2 for an outline.

For more information, we refer the interested reader to https:
//choosealicense.com/licenses/gpl-3.0/.

Table 2: Outline of the usedGNUGeneral Public License v3.0
(GNU GPLv3)

Permissions Conditions Limitations

Commercial use Disclose source Liability
Distribution License and copyright notice Warranty
Modification Same license
Patent use State changes
Private use
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6 APPENDIX
We have moved the demonstration of a simple mathematically
solvable formulation into the appendix, as it serves more the role
of a mini-tutorial for the use of our dataset with Gurobi, than to
propose new formulations for discrete optimisation.

While the following is a feasible formulation, it might be nec-
essary to employ meta-heuristics in order to tackle aspects such
as multi-objectiveness, diversity, and non-linearity of the objective
functions.

6.1 An example of a mathematical approach
Depending on the problem formulation, mathematical optimi-
sation might be feasible to provably compute the optimal so-
lution. To facilitate research in this direction, we provide a
simple problem formulation and an implementation for the
solver Gurobi [16] using a Jupyter Notebook (provided as
KinderSurprise2019gurobi.ipynb). This can serve interested re-
searchers as a starting point for future extension. We outline the
technical details to demonstrate that, if the objective function allows
it, a mathematical approach can be setup quite quickly.

This simple problem is related to the welfare maximisation prob-
lem. Let us assume a situation where a collector can only get one
item per set. Moreover, the collector’s happiness is identical to the
total value of items that she has. This results in a simple optimisa-
tion problem:

maximise
187∑
i=1

∑
j
xi, j · xi, j .value

such that ∑
j
xi, j = 1,∀ sets 1 ≤ i ≤ 187

where xi, j is the decision variable denoting item j in set i . Note that
the sets have varying sizes in our data set.

When using Gurobi’s Python API, this looks as follows. Assum-
ing that items is a list of tuples
<gurobi.tuplelist (2366 tuples, 2 values each):
( 1 , 1 )
( 1 , 2 )
( 1 , 3 )
( 1 , 4 )
( 2 , 1 )
...
where the first column denotes the set and the second column the
respective item within the set, and that itemvalues is a dictionary
with the corresponding values of the items:

{(1, 1): 1200.0,
(1, 2): 1200.0,
(1, 3): 1200.0,
(1, 4): 1200.0,
(2, 1): 200.0,
...

then we can add the decision variables to a new model m (m =
Model(’KinderSurprise2019’)) easily:

vars = m.addVars(items,
vtype=GRB.BINARY,
name="x")

Adding the constraints specifying that only one item per set can
be allocated is straightforward then:

m.addConstrs((vars.sum(i,'*') == 1 for i
in range(1,188,1)), name='useonce')

Our objective function is defined as the product of the decision
variables with the respective value:

obj = vars.prod(itemvalues)

And the optimisation finds an optimal solution (output reformat-
ted and simplified to increase readability):

Optimize a model with 187 rows, 2366 columns
and 2366 nonzeros

Variable types: 0 continuous, 2366 binary
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [2e-01, 1e+04]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Found heuristic solution: objective 16339.1
Presolve removed 187 rows and 2366 columns
Presolve time: 0.00s
Presolve: All rows and columns removed

Solution count 2: 53901.8 16339.1

Optimal solution found (tolerance 1.00e-04)
Best objective 5.390185000000e+04,

best bound 5.390185000000e+04, gap 0.0000%

With a solution like the following (omitting non-zero values):

x[1,1] 1
x[2,1] 1
x[3,1] 1
x[4,1] 1
x[5,2] 1
x[6,1] 1
x[7,6] 1
...

We can see that exactly one item per set has been chosen.
For more details, please see the provided

KinderSurprise2019gurobi.ipynb. At the time of writing,
Gurobi 8.1.0 is available free of charge for academic purposes, see
http://www.gurobi.com/academia/for-universities. Jupyter is an
open-source application, see https://www.jupyter.org/.
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