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ABSTRACT
In deep learning and physical science problems, there is a grow-
ing need for better optimization methods capable of working in
very high dimensional settings. Though the use of approximated
Hessians and co-variance matrices can accelerate the optimization
process, these methods do not always scale well to high dimen-
sional settings. In an attempt to meet these needs, in this paper, we
propose an optimization method, called Adaptive TwoMode (ATM),
that does not use anyDxD objects, but rather relies on the interplay
of isotropic and directional search modes. It can adapt to different
optimization problems, by the use of an online parameter tuning
scheme, that allocates more resources to better performing ver-
sions of the algorithm. To test the performance of this method, the
Adaptive Two Mode algorithm was benchmarked on the noiseless
BBOB-2009 testbed. Our results show that it is capable of solving
23/24 of the functions in 2D and can solve higher dimensional prob-
lems that do not require many changes in the direction of the search.
However, it underperforms on problems in which the function to be
minimized changes rapidly in non-separable directions, yet mildly
in others.
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1 INTRODUCTION
The Two Mode algorithm employs a combination of two search
methods, an isotropic random search and a directional random
search. These two modes complement each other by serving the
roles of exploration (isotropic search) and exploitation (directional
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search). To switch between the two search strategies, we use a
simple set of rules, which can be tuned in real-time.

2 ALGORITHM PRESENTATION
The Two Mode algorithm always starts out in the isotropic search
mode, which randomly samples the local environment around the
initial search point, using a uniform distribution. If no beneficial
search direction is initially found, the algorithm invests more in
exploration, by growing the radius of its isotropic search mode.
Once a promising direction that leads to improvement is found
that meets the set of switching rules, the algorithm causes the di-
rectional mode to grow exponentially, while causing the isotropic
mode to rapidly decay. In order to satisfy our switching rules, the
sampled direction must reduce the objective function and the L2
norm of the displacement from the initial point must be greater
than an adaptive threshold. This exponential growth of the direc-
tional search allows the algorithm to quickly exploit promising
search directions and find new local minima along them. Once
the directional search does not find any new points that lead to
improvement (either because the mode has grown too much or has
reached a local minimum along its line), it begins to decay exponen-
tially. As the directional mode decays (exploitation), the isotropic
mode begins to grow again (exploration), in hope of finding an
improved direction to exploit. The whole process repeats itself over
and over until the algorithm finds a local minima that meets one of
the stopping conditions. It is important to note that both of these
modes have suppression mechanisms to constrain their growth to
within the boundaries of the problem and prevent overflows. To
avoid premature convergence in multimodal scenarios, the search
is restarted if the algorithm fails to improve for 30 iterations.

Because this multimodal search strategy is quite general, the
algorithmic details, such as the distributions used for the random
search of the modes and the rate of growth of each mode, may
be changed without impacting the overall philosophy. Instead of
tuning the parameters manually, we employed online parameter
search to find sets of parameters that work well within the local
environments sampled by the algorithm. This is similar in essence
to the approach taken in [8], but leverages parallelism, rather than
sequential steps. This allows the algorithm to adapt to different
situations in a way that increases its performance.

2.1 ONLINE PARAMETER TUNING
As most optimization algorithms rely on sets of parameters to
govern the optimization process (such as CMA-ES in [10]), it is
important that we find optimal sets to enhance the performance of
our algorithm. Because the local structure of objective functions
can change throughout different stages of the optimization process,
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we need to find a way to adapt the search algorithm to the cur-
rent situation. To do this, we propose an online parameter tuning
scheme that finds the sets of parameters that work best during the
different stages of optimization. These kinds of methods have been
studied in great detail such as in [7], [12], and [8], and some have
been successfully implemented within optimization algorithms,
such as in [10].

In our paper, the method we used to search for optimal sets of
parameters was another "Parameter Search" Two Mode algorithm.
Throughout the optimization process, 4 sets of parameters were
simultaneously tested as possible candidates. All parameter sets
share information among each other about their sample positions
and the objective functions associated with them. Every 5 sequen-
tial steps, the performance of the parameter sets was evaluated,
using the formula in Table 2 (line 28). The best ones were kept and
the bad ones replaced with new suggestions, generated by the "Pa-
rameter Search" Two Mode algorithm. The parameters controlling
this second level Two Mode algorithm were tuned by hand to work
best on the space of parameters. Though we used a secondary Two
Mode algorithm for the online parameter tuning, other methods can
be used as well (such as batch Bayesian optimization, as described
in [19]).

Regardless of the tuning method we use, we cannot avoid the
possibility that some parameter sets will perform better than oth-
ers during different stages of the optimization. Thus, it would be
beneficial to find a way to allocate fewer resources to these "bad
apples" and allocate more resources to better ones.

2.2 PARALLEL OPTIMIZATIONWITH
RESOURCE ALLOCATION

To allocate resources in a way that transfers more resources to
better performing sets of parameters (and away from bad ones),
we propose a resource allocation system called a "Conductor". This
method consists of a linear set of rate equations, which form a
performance-based resource allocation system. In this system, the
better a set of parameters performs during a certain iteration, the
more resources it will receive during the next.

Let us define Ntot = Σmi=1N
i as the total number of parallel

samples in each iteration, across all m parameter sets. Let N be
a vector representing the current allocation of parallel samples
betweenm sets of parameters, such that ΣiN i = Ntot . The resource
allocation of iteration t+1 is determined by:

Nt+1 = Nt − KM−1∆OPbestt − K0M
−1(Nt − N0), (1)

where K symbolizes the interaction matrix, of which all off-diagonal
elements are equal to a constant k and all diagonal elements are
equal to (m − 1)k . K0 is the self interaction, a diagonal matrix with
positive elements k0.M−1 is the inverse mass matrix, a diagonal ma-
trix which represents how difficult it is to change the resources of a
certain algorithm. ∆OPbestt represents a vector of the best change
in the black box objective function we are trying to minimize, found
by the different parameter sets, during iteration t . N0 is a vector
that represents the initial allocation of samples among parameter
sets.

This choice for constructing the matrices aims to conserve the
total number of samples in each iteration, across all parameter sets.

This means that ΣiN i
t = ΣiN

i
0 = Ntot for any iteration t. The first

term removes resources from parameter sets that perform poorly
on minimization (positive ∆Ot ) and towards sets that perform well
(negative ∆Ot ). The second term causes a gradual decay back to the
initial resource allocation. This means that the system will gradu-
ally return to the initial allocation, unless some of the parameter
sets consistently perform better (or worse) than the others. To pre-
vent ∆OPbestt from becoming very big or very small, we found it
beneficial to first normalize this vector using the L2 norm.

2.3 PSEUDO-CODE
We provide the pseudo-code of the Adaptive Two Mode Algorithm
in Table 2. The notation used in the table, that has not been men-
tioned in the previous section, is specified below:

Rt = Amplitude of the isotropic search, at iteration t.
Rmax = Maximal amplitude of the isotropic search.
Dt = Amplitude of the directional search, at iteration t.
X1, ..,8,O1, ..,8 = Positions of the best eight samples and their asso-
ciated objective values.
XP

it = Parameter set i at iteration t.
XP

1,2t
= Best two parameter sets at iteration t.

OP = Vector of objective values for the parameter sets.
Y = Vector containing the adaptation parameters, used to adapt the
search parameters.
r = Growth factor for the amplitude of the isotropic search.
d = Growth factor for the amplitude of the directional search.
Gr = Growth rate for the amplitude of the isotropic search.
Tr = Oscillation period for the amplitude of the isotropic search.
Gd = Growth rate for the amplitude of the directional search.
Dd = Decay rate for the amplitude of the directional search.
®A = Search amplitude vector - controls the amplitude of the search
for each parameter of the problem.
®S = Exponentially weighted squared gradient.
∆X 2

mini = Minimal change to trigger growth of the directional
mode.
f un = The function we are trying to minimize.
crossover (X1, ...,8t ) = create new sample by randomly choosing
values for each elements from X1, ...,8t , (uniformly distribution).
α = controls how much the search amplitude vector is allowed to
deviate from 1.
β = the decay rate of the exponentially weighted average of ®S .

Table 1: Parameter values and ranges

Parameter Ranges for parameter Value of adaptation parameter
Gr (10−2, 10) 5
Tr (10−1, 10) 5

Rmax (10−7, 10) 20
Gd (10−2, 5) 0.5
Dd (10−1, 102) 2

∆X 2
mini

(10−30, 10−2) 10−5

α (10−5, 1015) 109
β (10−1, 1) 0.6
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Table 2: Algorithm: Two Mode

1.Initialize random parameter sets XP
1, . . .,NumSets within ranges.

2.N0 = Ntot/Number of parameter sets.
3.X10, X1−1, X2, . .,80 = x0
4.O1, O2 = f un(x0)
5.A, S = 0, 0
6.ri , di = 0, 0 for all i parameter sets.
7. while ending condition not met do
8. for all i parameter sets do

9. Ri = Rmaxi e
(Gri sin(mod ( ri π2Tri

, π2 )+0.01)−1)

10. Di = Rmaxi e
(Gdi di−Ddi ri )

11. for all n samples in Ni do
12. Mutation = Ri random_vector ∗ Ai

13. RandomSamplesi (n, :) = crossover (X1, . . .,8t ) +Mutation − X1t

14. DirectionalSamplesi (n, :) = Di (X1t − X1t−1 ) · randnum(0, 1)
15. end for
16. Samplesi = X1t + DirectionalSamplesi + RandomSamplesi
17. end for
18. O = f un(AllSamples)
19. ∆OPbesti = best change in O, from each parameter set i
20. OGbest =min(O)

21. Save new X1, . . .,8t

22. S = βS + (1 − β )mean((
O −OGbest

AllSamplest − X1t
)2)

23. A =
α

√
S + α 2

24. N = N − KM−1∆OPbest − K0M−1(N − N0) (Update resource allocation)

25. if (X1t − X1t−1 )
2 > ∆X 2

mini do di+ = 1, ri = 0
26. else do ri+ = 1, d = 0
27. if time to evaluate performance of parameter sets do

28. OP = (mean(∆OPbest) +min(∆OPbest))/2

29. Save best two parameter sets: XP
1,2t

30. Repeat 9-16 (skip 11,15), using: XP
1,2t

, XP
1t−1

, and Y as parameters
31. end if
32.end while
33.Output: X1t (Best Solution found)

3 EXPERIMENTAL PROCEDURE AND CPU
TIMING

In this experiment, we benchmarked the ATM algorithm on the
BBOB noiseless test-bed. A fixed population of 64 samples (to be
evaluated in parallel) was maintained throughout the optimization
process. These samples were distributed among 4 sets of param-
eters, which were adapted in real-time using the secondary Two
Mode algorithm, as discussed in Section 2.1. The resource allocation
system described in Section 2.2 was used to divide samples among
the different parameter sets.
In order to evaluate the CPU timing of the algorithm, we have run
the ATM algorithm on the BBOB test suite [1] with restarts for
a maximum budget equal to 2x105D function evaluations accord-
ing to [2]. The python code was run on a Intel(R) Xeon(R) CPU

E5-2670 0 @ 2.60GHz with 1 processor and 8 cores. The time per
function evaluation for 2, 3, 5, 10, 20, and 40 dimensions, in units
of 10−5seconds equals: 4.1, 4.3, 4.5, 5.0, 6.0, and 7.8 , respectively.

4 RESULTS
Results of ATM from experiments according to [5] and [4] on the
benchmark functions given in [1, 3] are presented in Figures 1, 2, 3,
and 4 and in Tables 3 and 4. The experiments were performed and
the plots were produced with COCO [6], version 2.1.

5 DISCUSSION
As can be seen from the results displayed in the Figure 1, the ATM
performs much better on lower dimensional problems than higher
dimensional ones. It manages to solve 23/24 problems in 2D, but
only 8/24 in 40D, when given a budget of 2x105D.
There are several possible reasons for this. First, because ATM
attempts to find and exploit search directions that lead to improve-
ment, it is challenged by problems that require many changes in
the direction of search, such as f8, f9, and f12. A second reason, is
that the lack of a co-variance matrix seems to limit the capabilities
of the algorithm to adapt to situations in which the objective func-
tion changes very rapidly in some directions but slowly in others.
Though this problem is partially dealt with by the use of the search
amplitude vector ®A (as seen in Table 2), which allows the algorithm
to solve all separable functions f1-f5, it does not always work well
on rotated functions - such as f7 and f10.
As for multi-modal functions, ATM does manage to solve many of
them in low dimensions (D < 5). Though it solves f3, f4 and f21 in
all dimensions, it does not seem to scale well on other multimodal
problems, that have narrow local minima such as f15 and f16. It
is possible that a larger budget will allow the algorithm to make
more progress on these problems. Additionally, performance could
be improved by increasing the number of parameter sets used for
online tuning and/or using a different online parameter tuning
method.

6 CONCLUSIONS
The Adaptive TwoMode optimization algorithm performs relatively
well on problems that do not havemany narrow localminima and do
not have non-separable directions in which the objective function
changesmuch faster or slower than other directions. Because it does
not require large matrix operations, the ATM has the potential to
scale well to high dimensional problems with the previously stated
properties. Though our results show that the internal runtime of
the ATM scales slowly as a function of the dimensionality of the
problems, this is not always true for the runtime to solve them,
especially for problems with the properties stated above. We expect
the ATM to be especially useful for optimizing high dimensional
problems, in which the exact gradients are hard to calculate and/or
do not provide useful information.

7 ACKNOWLEDGMENTS
The author would like to thank Brenda Rubenstein for all of her
help and guidance developing this algorithm. The author would
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to work with and was indispensable for the development of the
algorithm.

8 SOURCE CODE
We made the source code available at:
https://github.com/BjBodner/ATM-optimization-algorithm
We hope this will enable users to test, apply and further develop
the algorithm.
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Figure 1: Scaling of runtime with dimension to reach certain target values ∆f . Lines: average runtime (aRT); Cross (+): median
runtime of successful runs to reach themost difficult target thatwas reached at least once (but not always); Cross (×):maximum
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line with diamonds indicates the best algorithm from BBOB 2009 for the most difficult target. Horizontal lines mean linear
scaling, slanted grid lines depict quadratic scaling.
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Figure 2: Empirical cumulative distribution functions (ECDF), plotting the fraction of trials with an outcome not larger
than the respective value on the x-axis. Left subplots: ECDF of the number of function evaluations (FEvals) divided by
search space dimension D, to fall below fopt + ∆f with ∆f = 10k , where k is the first value in the legend. The thick red
line represents the most difficult target value fopt + 10−8. Legends indicate for each target the number of functions that were
solved in at least one trial within the displayed budget. Right subplots: ECDF of the best achieved ∆f for running times of
0.5D, 1.2D, 3D, 10D, 100D, 1000D, . . . function evaluations (from right to left cycling cyan-magenta-black. . . ) and final ∆f -value
(red), where ∆f and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs
for the most difficult target of all algorithms benchmarked during BBOB-2009.
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∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 12 12 15/15

66(69) 148(133) 259(109) 387(110) 490(164) 673(286) 919(202) 15/15
f2 83 87 88 89 90 92 94 15/15

1597(2070)6214(6483)17669(17126)79700(73035)78820(31945) ∞ ∞500006 0/15
f3 716 1622 1637 1642 1646 1650 1654 15/15

86(135) 4809(2774) ∞ ∞ ∞ ∞ ∞500022 0/15
f4 809 1633 1688 1758 1817 1886 1903 15/15

76(98) 4766(7425) ∞ ∞ ∞ ∞ ∞500020 0/15
f5 10 10 10 10 10 10 10 15/15

109(70) 134(73) 138(78) 140(81) 140(79) 140(63) 140(95) 15/15
f6 114 214 281 404 580 1038 1332 15/15

34(45) 28(28) 36(16) 38(11) 38(21) 42(24) 54(29) 15/15
f7 24 324 1171 1451 1572 1572 1597 15/15

85(71) 21(19) 29(41) 96(128) 157(227) 157(201) 155(231) 15/15
f8 73 273 336 372 391 410 422 15/15

41(43) 593(1135) 602(979) 712(1089) 901(758) 2471(1738)4023(3764) 1/15
f9 35 127 214 263 300 335 369 15/15

20(26) 38(56) 206(158) 433(207) 923(757) 3211(3365)7276(12103) 1/15
f10 349 500 574 607 626 829 880 15/15

1034(1297)2408(4032) 6683(5444) ∞ ∞ ∞ ∞500005 0/15
f11 143 202 763 977 1177 1467 1673 15/15

40(28) 181(62) 111(48) 134(43) 232(90) 506(404) ∞500009 0/15
f12 108 268 371 413 461 1303 1494 15/15

376(1639)1007(1052) 4563(4097) 17156(18766) ∞ ∞ ∞500011 0/15

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 132 195 250 319 1310 1752 2255 15/15

280(799) 1074(1078)2852(2360)4392(3812)5558(9256) ∞ ∞500035 0/15
f14 10 41 58 90 139 251 476 15/15

26(48) 58(36) 77(52) 77(67) 103(83) 736(627) ∞500006 0/15
f15 511 9310 19369 19743 20073 20769 21359 14/15

177(146) 73(30) 82(53) 81(96) 80(74) 78(83) 76(93) 3/15
f16 120 612 2662 10163 10449 11644 12095 15/15

30(78) 93(81) 111(126) 97(103) 345(347) ∞ ∞500018 0/15
f17 5.0 215 899 2861 3669 6351 7934 15/15

159(20) 107(193) 130(95) 157(141) 356(555) ∞ ∞500021 0/15
f18 103 378 3968 8451 9280 10905 12469 15/15

73(26) 165(215) 151(215) 904(1376) ∞ ∞ ∞500023 0/15
f19 1 1 242 1.0e5 1.2e5 1.2e5 1.2e5 15/15

2.0 2.0 154(10) ∞ ∞ ∞ ∞500010 0/15
f20 16 851 38111 51362 54470 54861 55313 14/15

29(29) 80(82) 94(142) 70(83) 66(60) 66(27) 65(41) 2/15
f21 41 1157 1674 1692 1705 1729 1757 14/15

42(10) 206(290) 260(254) 258(269) 257(221) 254(247) 251(194) 14/15
f22 71 386 938 980 1008 1040 1068 14/15

110(175) 115(109) 152(170) 149(319) 147(197) 154(297) 160(290) 15/15
f23 3.0 518 14249 27890 31654 33030 34256 15/15

12(26) 10(11) 28(20) 146(194) 245(229) 241(288) ∞500038 0/15
f24 1622 2.2e5 6.4e6 9.6e6 9.6e6 1.3e7 1.3e7 3/15

109(138) ∞ ∞ ∞ ∞ ∞ ∞500023 0/15

Table 3: Average running time (aRT in number of function evaluations) divided by the aRT of the best algorithm from BBOB
2009 in dimension 5. The aRT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of boot-
strapped run lengths appear in the second row of each cell, the best aRT (preceded by the target ∆f -value in italics) in the
first. #succ is the number of trials that reached the target value of the last column. The median number of conducted func-
tion evaluations is additionally given in italics, if the target in the last column was never reached. Bold entries are statisti-
cally significantly better (according to the rank-sum test) compared to the best algorithm from BBOB 2009, with p = 0.05
or p = 10−k when the number k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions (24).
Data produced with COCO v2.2.1.10

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 43 15/15

103(41) 236(150) 361(160) 470(254) 566(251) 789(442) 1123(288) 15/15
f2 385 386 387 388 390 391 393 15/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2000006 0/15
f3 5066 7626 7635 7637 7643 7646 7651 15/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2000017 0/15
f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2000015 0/15
f5 41 41 41 41 41 41 41 15/15

110(65) 124(46) 130(67) 130(79) 130(85) 130(52) 130(70) 15/15
f6 1296 2343 3413 4255 5220 6728 8409 15/15

69(54) 121(91) 192(238) 290(292) 510(613) 2196(2014)∞2000011 0/15
f7 1351 4274 9503 16523 16524 16524 16969 15/15

1262(988) ∞ ∞ ∞ ∞ ∞ ∞2000089 0/15
f8 2039 3871 4040 4148 4219 4371 4484 15/15

255(230)571(410) 1101(977) ∞ ∞ ∞ ∞2000007 0/15
f9 1716 3102 3277 3379 3455 3594 3727 15/15

86(136)477(491) 2888(1687) ∞ ∞ ∞ ∞2000008 0/15
f10 7413 8661 10735 13641 14920 17073 17476 15/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2000006 0/15
f11 1002 2228 6278 8586 9762 12285 14831 15/15

106(56) 113(65) 127(171) 435(280) 1074(1483) ∞ ∞2000011 0/15
f12 1042 1938 2740 3156 4140 12407 13827 15/15

214(203)307(518) 670(585) 5061(6513) ∞ ∞ ∞2000029 0/15

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 3507 18749 24455 30201 15/15

254(39) 432(558) 582(373) 1196(837)738(1067) ∞ ∞2000031 0/15
f14 75 239 304 451 932 1648 15661 15/15

36(37) 42(20) 63(12) 94(31) 286(217) ∞ ∞2000012 0/15
f15 30378 1.5e5 3.1e5 3.2e5 3.2e5 4.5e5 4.6e5 15/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2000014 0/15
f16 1384 27265 77015 1.4e5 1.9e5 2.0e5 2.2e5 15/15

230(308) ∞ ∞ ∞ ∞ ∞ ∞2000057 0/15
f17 63 1030 4005 12242 30677 56288 80472 15/15

83(41) ∞ ∞ ∞ ∞ ∞ ∞2000008 0/15
f18 621 3972 19561 28555 67569 1.3e5 1.5e5 15/15

16263(18562) ∞ ∞ ∞ ∞ ∞ ∞2000010 0/15
f19 1 1 3.4e5 4.7e6 6.2e6 6.7e6 6.7e6 15/15

2.0 2.0 1.0(3) ∞ ∞ ∞ ∞2000005 0/15
f20 82 46150 3.1e6 5.5e6 5.5e6 5.6e6 5.6e6 14/15

29(15) 610(878) ∞ ∞ ∞ ∞ ∞2000022 0/15
f21 561 6541 14103 14318 14643 15567 17589 15/15

122(300) 235(248) 139(114) 137(176)135(111) 127(112) 113(107) 12/15
f22 467 5580 23491 24163 24948 26847 1.3e5 12/15

158(221) 211(216) 145(116) 142(113)138(63) 133(49) 36(27) 5/15
f23 3.0 1614 67457 3.7e5 4.9e5 8.1e5 8.4e5 15/15

16(16) 29(20) ∞ ∞ ∞ ∞ ∞2000124 0/15
f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 5.2e7 3/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2000016 0/15

Table 4: Average running time (aRT in number of function evaluations) divided by the aRT of the best algorithm from BBOB
2009 in dimension 20. The aRT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of boot-
strapped run lengths appear in the second row of each cell, the best aRT (preceded by the target ∆f -value in italics) in the
first. #succ is the number of trials that reached the target value of the last column. The median number of conducted func-
tion evaluations is additionally given in italics, if the target in the last column was never reached. Bold entries are statisti-
cally significantly better (according to the rank-sum test) compared to the best algorithm from BBOB 2009, with p = 0.05
or p = 10−k when the number k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions (24).
Data produced with COCO v2.2.1.10
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f 1–f 24 in 5-D, maxFE/D=183935
#FEs/D best 10% 25% med 75% 90%

2 2.0 2.4 10 10 10 10
10 2.0 3.3 17 25 50 50
100 14 19 31 50 98 1.8e2
1e3 20 30 51 87 1.4e2 1.8e2
1e4 13 46 1.1e2 1.7e2 3.7e2 6.4e2
1e5 35 83 1.4e2 2.8e2 1.2e3 1.9e3
1e6 65 1.0e2 1.7e2 8.3e2 1.0e4 1.4e4

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5
f 1–f 24 in 20-D, maxFE/D=164187

#FEs/D best 10% 25% med 75% 90%
2 2.0 2.0 13 40 40 40
10 0.80 2.0 14 37 2.0e2 2.0e2
100 2.0 9.3 28 53 89 4.6e2
1e3 2.0 26 56 99 2.6e2 5.1e2
1e4 2.0 1.2e2 1.8e2 3.0e2 6.7e2 1.5e3
1e5 5.8 1.3e2 3.9e2 7.6e2 2.3e3 5.4e3
1e6 47 1.1e2 1.3e3 5.5e3 1.4e4 3.5e4

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

Figure 3: aRT loss ratio versus the budget in number of f -
evaluations divided by dimension. For each given budget
FEvals, the target value ft is computed as the best target
f -value reached within the budget by the given algorithm.
Shown is then the aRT to reach ft for the given algorithm or
the budget, if the best algorithm from BBOB 2009 reached
a better target within the budget, divided by the aRT of the
best algorithm from BBOB 2009 to reach ft. Line: geometric
mean. Box-Whisker error bar: 25-75%-ile with median (box),
10-90%-ile (caps), and minimum and maximum aRT loss ra-
tio (points). The vertical line gives the maximal number of
function evaluations in a single trial in this function sub-
set. See also Figure 4 for results on each function subgroup.
Data produced with COCO v2.2.1.10
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Figure 4: aRT loss ratios (see Figure 3 for details).
Each cross (+) represents a single function, the line is the
geometric mean.
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