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ABSTRACT
The Rotated Klee-Minty Problem represents an advancement of
the well-known linearly constrained Klee-Minty Problem that was
introduced to illustrate the worst case running time of the Sim-
plex algorithm. Keeping the linearity as well as the complexity of
the original Klee-Minty Problem, the Rotated Klee-Minty Problem
remedies potential biases with respect to Coordinate Search and
turns out to be a suitable constrained test environment for ran-
domized search heuristics. The present paper is concerned with
the comparison of recent evolutionary algorithm variants for con-
strained optimization on this respective test bed. The considered
algorithm variants include the most successful participants of the
CEC Competition on Single Objective Real-parameter optimization
and other selected strategies that are not directly applicable to the
CEC test suite. Taking into account the diverse constraint handling
approaches, the performance results of all search heuristics are in-
terpreted. It turns out that most strategies that have been successful
in the CEC competitions do have severe problems on the RKMP.
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1 INTRODUCTION
The development and the assessment of Evolutionary Algorithms
(EA) widely rely on benchmarking due to the limited availability of
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theoretical performance results. One goal of such benchmark envi-
ronments is supporting the selection of that algorithm best suitable
for a given real-world applications. Other aims would be gathering
experimental insights into the working principles of algorithmic
ideas and fostering the algorithm development for specific tasks.
Further, benchmarks can be used to verify theoretically derived
performance results.

Regarding single-objective constrained optimization benchmarks
for randomized search heuristics, the most elaborated test suites
have been provided in the context of the IEEE Congress on Evolu-
tionary Computation (CEC) competitions (2006, 2010, and 2017) on
constrained real-parameter optimization. These test functions as
well as the associated rules for algorithm evaluation are commonly
used to promote novel algorithmic ideas in the EA community.
However, these benchmark sets mainly consist of very complex
non-linear constraint and objective functions. Yet, rather simple
constrained problem formulations still may present a difficult task
for EAs. Additionally, the CEC benchmarks are missing a clear
structure that would allow for allocating specific problem classes
to especially beneficial algorithmic ideas in retrospect. While other
constrained test function sets do exist, the respective problems
do not come with properly defined standards for algorithm com-
parison and usually do not scale with the search space dimension.
An exception is the COCO BBOB-constrained test suite [4] which
is currently under development. It is based on the unconstrained
COCO suite and makes use of 8 distinct objective functions. Yet,
it is restricted to varying numbers of (almost) linear inequality
constraints (i.e. the boundary of the feasible set is subject to small
nonlinear perturbations).

Compared to the vast number of distinct constrained problem
features, only a small number of well-designed benchmarks exist.
This makes it hard to determine those features that do make a con-
strained optimization problem hard for a specific search algorithm.
Hence, a benchmark suite needs to take into account consistent
subgroups of conceivable problems. Based on these considerations,
the Rotated Klee-Minty Problem (RKMP) was proposed in [7]. It
scales with the search space dimensionality, and, by construction,
causes the Simplex-Algorithm to exhibit an exponential worst-case
running time. While EAs usually cannot compete with custom-
built linear problem (LP) solvers, the RKMP represents a reasonably
complex problem even for certain LP solvers (e.g. interior-point
methods (IPM) or basis-exchange pivoting algorithms). Interest-
ingly, by realizing comparable or even improved precision, some
EA variants for constrained optimization are able to compete with
LP solvers on the RKMP [7, 13].
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The present paper is concerned with the assessment and the
performance comparison of selected EA algorithms for constrained
optimization. Interpreting the gathered data, we come across the
interesting observation that most of the algorithms that are con-
sidered to be successful in the CEC competitions exhibit severe
problems on the RKMP. Furthermore, the comparison gains in-
sights into the working principles of those strategies using the
so-called ϵ-level constraint handling [15]. This constraint handling
technique is part of the recently most successful algorithms for
constrained optimization, but it slows down the algorithm perfor-
mance in the context of the RKMP. The present paper comes up
with an explanation of this ϵ-level constraint handling drawback.

The rest of this paper is organized as follows: We recap the
Rotated Klee-Minty Problem and the comparison methodology in
Sec. 2. Section 3 then introduces the algorithms considered in this
study. The algorithm results are presented and discussed in Sec. 4.
The paper is concluded in Sec. 5.

2 BENCHMARK FORMULATION
This section recaps the Rotated Klee-Minty benchmark definition
introduced in [7] and states the corresponding benchmarking con-
ventions as well as the criteria considered for algorithm assessment.
The source code of the Rotated Klee-Minty Problem is available in
a separate Github.com branch [14].

2.1 The Rotated Klee-Minty Problem
The Rotated Klee-Minty Problem represents a scalable linear con-
strained optimization problem [7]. The optimization problem is
determined by

min
y∈RN

d⊤y

s.t. A · R(y − t) ≤ b,

y̌ ≤ y ≤ ŷ,

(1)

with linear objective function given by d = (0, 0, . . . , 0, 1)⊤ ∈ RN .
Note that the terms objective function value and fitness are used
synonymously, as essentially evolutionary methods are considered
in this study.

The feasible region of (1) represents a perturbed unit hyper cube
in theRN which is defined by a matrix A and a vector b as

A =

(
B + I
B − I

)
∈ R2N×N , and b =

(
1
0

)
∈ R2N×1, (2)

with identity matrix I ∈ RN×N ,

B =

©­­­­­­­­«

0 0 . . . 0 0 0
ϵ 0 . . . 0 0 0
0 ϵ . . . 0 0 0
...
...
. . .

. . .
...
...

0 0 . . . ϵ 0 0
0 0 . . . 0 ϵ 0

ª®®®®®®®®¬
∈ RN×N , and ϵ = 1/10. (3)

By application of the translation vector t = N 3 ·(1, 1, . . . , 1)⊤ ∈ RN

and the rotation matrix R ∈ RN×N (det(R) = 1), the feasible region
of problem (1) is relocated within the N -dimensional domain.1 For
1The deterministically chosen motions represent a trade-off between problem hardness
for LP solvers and unbiasedness of EAs.

Figure 1: Translation and rotation of the 2-dimensionalKlee-
Minty cube. The contour lines of the objective function are
indicated by the color (or grey-scale) gradient.

the definition of the rotation matrix R refer to [7]. The optimal
solution is moved to y∗ = N 3 · 1 with f (y∗) = d⊤y∗ = N 3. The
relocation of the optimal solution away from the origin removes
undesired problem characteristics that would prevent reasonable
algorithm comparisons. An illustration of the transformation in the
2-dimensional case is provided in Fig. 1.

Additionally, we provide component-wise lower and upper pa-
rameter bounds, or box-constraints, to constitute the domain of
eligible input values for black-box optimization strategies and to
facilitate the generation of initial populations. These are defined by
y̌ = 0 ∈ RN and ŷ = 5N 3 · 1 ∈ RN .

2.2 Algorithm Assessment
This section introduces the benchmarking principles as well as the
performance indicators used in the context of the Rotated Klee-
Minty Problem. The proposed benchmark problem takes into ac-
count search space dimensions N ∈ {2, 3, 5, 10, 20, 40}. Accordingly,
six distinct constrained functions are considered. For each dimen-
sion, the following three performance indicators are derived from
15 independent algorithm runs:

i) The algorithm runtime is measured with respect to the func-
tion evaluations consumed. This information is displayed by
use of empirical cumulative distribution functions (ECDF),
or performance profiles [11], respectively.

ii) We assess the effectiveness of each algorithm by taking into
account its feasibility ratio (FR) as well as the deviation of its
median fitness realization (among all final feasible solutions)
from the known optimal function value.

iii) Effectiveness is also evaluated in the search space by tak-
ing into account the combination of the FR and the mean
deviation of all feasible solutions from the known optimizer.

Depending on the search space dimension, the total budget of func-
tion evaluations per run is predefined as 2 · 104 · N . One single
function evaluation is consumed regardless of whether the objec-
tive function, a single constraint function, or the whole constrained
problem is evaluated for a single parameter vector y at a time.

The final candidate solutions realized in different algorithm runs
are compared by use of a lexicographic ordering ⪯lex that takes
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into account the objective function value f (y) as well as the corre-
sponding amount of constraint violation ν (y). The respective order
relation is defined by

y ⪯lex z ⇔

{
f (y) ≤ f (z), if ν (y) = ν (z),
ν (y) < ν (z), else. (4)

In the context of the RKMP, the objective function value corre-
sponds to f (y) B d⊤y. The constraint violation value ν (y) can be
measured as the sum of the deviation over all inequality constraints

ν (y) B
N∑
i=1

max
{
0,
(
ARy −ARt − b

)
i
}
. (5)

The lexicographic order relation permits to define the quality indica-
tors that can be used to assess and compare algorithm performance
on problem (1). Note that the lexicographic order is also known as
Deb’s method or as the Superiority of Feasibility (SOF) principle [5].

Taking into account different search space dimensions, the ef-
fectiveness indicators (ii) and (iii) of each algorithm are presented
in a table. Facilitating the comparison of multiple algorithms, we
use a graphical representation. To this end, the indicators are plot-
ted against the dimension. Note that, due to the limitation of the
page number, the tabular presentation of the individual algorithm
results is omitted in the paper but can be found in the supplemen-
tary material. Regarding performance indicator (i), the running
time of meta-heuristic algorithms can be directly identified with
the number of function evaluations needed to satisfy a number of
predefined targets. This definition is adopted from [11]. It is used
in the context of the COCO BBOB benchmarks. A more detailed
explanation of the ECDF construction and interpretation is pro-
vided in [6]. We also apply a bootstrapping procedure to obtain

Algorithm 1 Pseudo-code for the bootstrapping.

1: Initialize the maximum number of tries K for sampling a suc-
cessful run and the number of bootstrapped runs S to generate

2: for all targets t do
3: if at least one of the 15 runs reached target t then
4: for s in {1, . . . , S} do k ← 0
5: success← false
6: rl ← 0
7: while ((not success) and k < K ) do
8: Sample one run r of the 15 runs

with replacement uniformly at random
9: rl ← rl + fevals of run r to reach target t
10: if r was a successful run then
11: success← true
12: end if
13: k ← k + 1
14: end while
15: if success then
16: Runlength for the bootstrapped run s

considering target t is rl
17: end if
18: end for
19: end if
20: end for

more accurate performance profiles while minimizing the bench-
mark execution time. The pseudo code of the bootstrapping used is
displayed in Alg. 1. Yet, the target definition used for the Rotated
Klee-Minty Problem is different. Instead of defining targets only for
the feasible region of the search space, we allocate about half of
the targets to the infeasible region. This supports the illustration of
algorithm behavior within the infeasible region. Refer to Sec. 4 for
the illustration of the algorithm results. In total, 103 target values
are defined.

The 52 targets in the infeasible region are defined with respect to
the constraint violation of a candidate solution. They are uniformly
distributed between 104 and 10−6 as well as 0. Realizing a candidate
solution with constrained violation below a target definition for
the first time, a target value is considered to be hit.

The logarithmically equidistant targets in the feasible region
range from 100 to 10−8 and take into account the fitness value
realized by a strategy. The targets are reached after having realized
a feasible candidate solution with an objective function value that
deviates from the known optimal value by a number smaller than
a certain target value. For example, target ti , (i ∈ 1, . . . , 51) is hit
after the algorithm generates a candidate solution y which satisfies
| f (y) − f (y∗)| < ti for the first time. The ECDF plots display the
percentage of the targets reached in all 15 algorithm runs for any
number of function evaluations. Accordingly, an algorithm realizes
a 100% target ratio if and only if it manages to yield a feasible final
solution with higher accuracy than specified by the final target
precision 10−8 in all 15 runs. This way they provide a notion of
algorithm performance: Smaller upper left areas indicate faster
algorithm running times [11].

3 METHODS
This section introduces the eight search strategies considered for
comparison on the Rotated Klee-Minty Problem. Among the five
considered Differential Evolution (DE) variants, the selection of
algorithms comprises the CEC competitionwinners of 2010 (ϵDEag),
2017 (LSHADE44), and 2018 (iUDE), respectively. The other two
DE variants, and the ϵMAg Evolution Strategy (ES), also turned out
to be successful on many CEC benchmark problems. In particular,
the ϵMAg-ES showed superior performance with regard to high-
dimensional search spaces of the CEC 2018 competition. The other
ES variants have not been developed to solve the CEC benchmark
problems. Both instead originate from theoretical considerations on
constrained optimization problems. For example, the Active-Set-ES
and the lcCMSA-ES assume that linear constraints are provided in
explicit form. As all the algorithms treat the RKMP problem as a
black-box problem, a preprocessing step that determines the RKMP
linear constraint system is necessary to compare those two with the
other strategies. The remainder of this section briefly introduces all
search algorithms considered in the present study and provides their
references. Due to the space restrictions, this paper is confined to
the comparison of EA variants on RKMP. We refer to [7] for results
of the Octave interior point LP-solver glpk. That respective paper
also indicates very poor performance of Random Search on RKMP.
Hence, a comparison of the EA variants with Random Search is
omitted in this paper.

1881



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Hellwig et al.

ConSaDE – The Self-adaptive Differential Evolution Algorithm
for Constrained Real-Parameter Optimization (ConSaDE) has been
proposed in [9]. It incorporates constraint handling into the Self-
adaptive Differential Evolution (SaDE) algorithm. The two central
ideas of the SaDE algorithm are the use of multiple mutation oper-
ators and self-adaptive parameter adaptation. The mutation opera-
tors DE/rand/1, DE/current-to-best/2, DE/rand/2, and DE/current-
to-rand/1 are used together with binary crossover. Each of them
is applied with equal probability in the beginning. The probability
is then adapted from one generation to the next according to the
number of successful individuals created by the respective mutation
operators. Additionally, local search (Sequential Quadratic Program-
ming) is used every 500 generations for convergence speedup. The
extension ConSaDE uses the lexicographic ordering for handling
constraints the selection step.

ECHT-DE – The algorithm Differential Evolution with Ensem-
ble of Constraint Handling Techniques (ECHT-DE) [10] combines
multiple constraint handling methods into a single DE algorithm
with the idea that some constraint handling approaches are better
suited for some problems than others. The constraint handling ap-
proaches used are Superiority of Feasiblility, Self-Adaptive Penalty,
ϵ-level constraint handling, and Stochastic Ranking. Every of those
constraint handling approaches has its own population with a set of
parameters and generates offspring. For the computation of the next
generation’s population of a specific constraint handling method,
the offspring populations of the other constraint handling meth-
ods are considered in addition to the parental population of the
constraint handling method under consideration.

ϵDEag – The algorithm Constrained Optimization by the ϵ Con-
strained Differential Evolution with an Archive and Gradient-Based
Mutation (ϵDEag) has been presented in [16]. It integrates four
main ideas into a DE algorithm. First, an archive of individuals
is kept throughout the optimization. Individuals from the archive
form a part of the trial vector generation with the intention to
maintain diversity. Second, if an offspring is not better than its
parent, the corresponding parental individual is used to generate a
second offspring. Third, the ϵ-level constraint handling approach
is used for dealing with constrained optimization problems. And
fourth, gradient-based mutation is performed to mutate in a way
that reduces the constraint violation.

L-SHADE44 – L-SHADE with Competing Strategies Applied to
Constrained Optimization (LSHADE44) [12] is an algorithm that
enhances the Success History based DE with linear population size
reduction (L-SHADE) [17]. It incorporates four different combi-
nations of mutation and crossover operators that compete with
each other for the creation of a trial point. Specifically, DE/current-
to-pbest/1/bin, DE/current-to-pbest/1/exp, DE/randrl/1/bin, and
DE/randrl/1/exp are used. For the constraint handling, the strategy
uses the lexicographic ordering approach.

iUDE – The Unified Differential Evolution (UDE) algorithm
for constrained optimization problems has been proposed in [18].
An improved version of this algorithm, the iUDE, represents the
winner strategy of the IEEE CEC competition on single objective
real-parameter optimization. While the respective paper was not
yet published in the context of the CEC, a technical report [19] as
well as theMatlab source code of iUDE are available on the CEC2018

competition website2. The algorithm combines a multitude of ideas
fromDE algorithms. It makes use of the three trial vector generation
approaches DE/rand/1, DE/current-to-rand/1, and DE/current-to-
pbest/1. A dual population approach with strategy adaptation is
used. For constraint handling, a combination of lexicographic and
ϵ-level constraint handling is used.

ϵMAg-ES – Based on the Matrix Adaptation (MA) ES [3], the
ϵMAg-ES [7] incorporates basically three constraint handling tech-
niques. It uses a reflection approach for the box-constraints and the
ϵ-level constraint handling to rank the individuals of a current pop-
ulation. Additionally, it occasionally makes use of a repair approach
that is based on estimated gradients for equality and inequality con-
straints in order to prevent premature convergence. The ϵMAg-ES
achieved the second over-all rank in the CEC 2018 competition. In
particular, it showed superior performance in high-dimensional
search spaces.

Active-Set-ES – The Active-Set-ES [1] is a (1+1)-ES interleaved
with an evolution of the active set of constraints. In every generation
one feasible offspring is generated. It is then projected either onto
the whole feasible region or onto a reduced search space. The choice
is done uniformly at random with a fixed probability. The reduced
search space is created by making all the inequality constraints
equality ones that are active at the parent. It replaces the parent if
its objective function value is better.

lcCMSA-ES –The Linear Constraint CMSA-ES (lcCMSA-ES) [13]
is an interior point method that specializes on linear constraints. It
is based on the Covariance Matrix Self-Adaptation (CMSA) ES [2]
and extends it with constraint handling. It turns a set of linear
(in)equality constraints into a linear equality constraint system
with a non-negativity constraint. Then, the main idea of the ap-
proach is to evolve in the null space of the constraint matrix. By
doing this, the mutated individuals do not violate the linear equality
constraints. Possible violation of the non-negativity constraint is
dealt with using repair by projection onto the non-negative orthant.

The last two ES variants need information about the problem
specific constraints. As the RKMP is regarded to be a black-box
optimization problem, this information needs to be gathered in a
preprocessing step and the associated function evaluations con-
sumed need to be taken into account appropriately to ensure a fair
competition. The preprocessing step reconstructs the matrix/vector
form of the RKMP constraints by querying the black-box constraint
function. For this, the constraints are evaluated for a given num-
ber of randomly sampled vectors in the search space to create a
(possibly overdetermined) system of equations. Solving it (possi-
bly using the pseudoinverse) allows computing the original RKMP
linear constraint system. With this preprocessing, the last two ES
variants are able to evolve in such a way that the individuals are
always feasible. They start with an initially feasible solution which
is obtained by projecting onto the feasible region.

The original algorithm codes are used for our comparisons where
possible. These are partly available on the CEC competition web-
site or are published by the authors themselves. Only the code
of the ϵDEag algorithm needed to be transferred from a C to a

2http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/
CEC-2018/Constrained
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Matlab implementation. In order to establish a fair comparison,
we slightly adjust the termination criteria to fit the Rotated Klee-
Minty framework. That is, the search is stopped after the maximal
function evaluation budget is consumed or after having found a
feasible candidate solution the fitness of which deviates from the
optimal fitness value by less than 10−8. The strategy parameters
recommended by the algorithm developers have been used.

4 RESULTS
Having introduced the algorithms of interest, the corresponding
test results obtained on the Rotated Klee-Minty benchmark are pre-
sented and discussed in Sec. 4.1. Interestingly, in comparison to the
outcome of the past CEC competitions, one observes very different
performance results of those strategies that use the so-called ϵ-
level constraint handling method. The reason for this performance
deterioration is examined in Sec. 4.2.

4.1 Algorithm Comparison
Aiming at a performance comparison on the rotated Klee-Minty
Problem (1), Fig. 2 displays the performance profiles (ECDF plots) of
the eight algorithms under consideration (Sec. 3) for the dimensions
N ∈ {2, 3, 5, 10, 20, 40}. Each plot displays the percentage of targets
reached in all 15 runs for each number of function evaluations.
We use two distinct black-rimmed markers (▽▽▽ and △△△) to illustrate
the transition from the infeasible region to the feasible region for
each algorithm. The markers must be interpreted as follows: The ▽▽▽
marker displays the expected number of function evaluations for
which an algorithm has reached a single feasible target for the first
time in at least one of the considered runs. Whereas, the△△△ indicates
the expected number of function evaluations after which at least
one feasible solution was found in each algorithm run. Hence, the
△△△ maker indicates the expected number of function evaluations to
realize a feasibility ratio of one.

Taking into account the respective markers (▽▽▽ and △△△), one ob-
tains a clear ranking of all algorithms in each dimension.3 The effect
of the preprocessing for lcCMSA-ES and for Active-Set-ES is clearly
visible. In the implementation for the experiments, an overdeter-
mined system consisting of 10 · N equations is used to reconstruct
the RKMP linear constraint system. Because the lcCMSA-ES and
the Active-Set-ES then project onto this system, the step observed
in Fig. 2 is the result.4 That is, on average those two algorithms
reach the feasible region earliest. Among the other strategies, Con-
SaDE appears to realize feasible solutions first (especially in high
dimensions). However, the algorithm faces difficulties to satisfy all
feasible targets. Except for Active-Set-ES and iUDE, all algorithms
can be considered rather resilient in terms of their search behavior
in the infeasible region. In contrast, due to numerical approxima-
tion errors, the Active-Set-ES struggles to find feasible solutions
in each run (△△△) for higher dimensions. That is, many runs of the
Active-Set-ES faces stagnation in the vicinity of the boundary of
the feasible region.

3Note that the close proximity (in terms of function evaluations) of both data points
for most algorithms is augmented by the logarithmic scaling and by the resolution of
the x-axis.
4A number of further evaluations (constant w.r.t. N ) are used up in the preprocessing
for tasks such as determining the number of constraints. Hence, the step observed in
Fig. 2 at around 101 is slightly above 101 for the smaller dimensions.

Regarding the infeasible targets for the remaining algorithms, the
transitioning into the feasible region occurs rather rapidly. For di-
mension 2, the LSHADE44 reaches the feasible region first, followed
by the ConSaDE, the ECHT-DE, the ϵDEag, the ϵMAg-ES, and the
iUDE. For dimension 3, it is very similar, except that the ϵMAg-ES
reaches the feasible region before the ϵDEag. In dimensions 5 and 10
the order is ConSaDE, LSHADE44, ECHT-DE, ϵMAg-ES and ϵDEag,
however, iUDE does not reach it. The situation for dimensions 20
and 40 is very similar, except that ECHT-DE performs worse than
for small N .

Considering also the targets in the feasible region, the ConSaDE
reaches all targets in dimensions 2, 3, 5, 20, and about 90% of the
targets for dimensions 10 and 40. The ECHT-DE reaches all targets
for the dimensions 2, 3, and 5. For the dimensions 10, 20, and 40,
about 70%, 60%, and 50% of the targets are reached, respectively. In
higher dimensions, it takes considerably more function evaluations
to reach the same number of targets. The ϵDEag reaches all the
targets for dimensions 2 and 3. In dimensions 5, 10, 20, and 40 the
strategy satisfies about 98%, 70%, 58%, and 55% of the targets, respec-
tively. The LSHADE44 reaches all the targets in all dimensions. The
Active-Set-ES reaches all the targets for the dimensions 2, 3, 5, and
10. It reaches about 78% and 72% of the targets for the dimensions
40 and 20, respectively. The lcCMSA-ES reaches all the targets for
the dimensions 2, 3, 5, and 10. It reaches about 73% and 67% of the
targets for the dimensions 20 and 40, respectively. Considering the
ϵMAg, it reaches all the targets in all the dimensions. The iUDE
reaches all the targets only for dimensions 2 and 3. This is very
surprising as it was the winner of the IEEE CEC 2018 competition.
Further investigations in this regard revealed that the ϵ constraint
handling is a reason for this behavior on the RKMP (see Sec. 4.2 for
a more detailed discussion of this aspect).

In overall, the LSHADE44, the ϵMAg-ES, and the ConSaDE are
the best performing algorithms when considering all the dimen-
sions and default parameters on the RKMP (1). For dimensions 2, 3,
5, and 10, the lcCMSA-ES and the Active-Set-ES can also compete
with the LSHADE44 and the ϵMAg-ES, but they require more func-
tion evaluations to reach all the targets. However, they are able to
beat the ConSaDE for dimension 10. For the dimension 40, only
the LSHADE44 and the ϵMAg-ES are able to reach all the targets.
Regarding the strategies that make use of the ϵ-level constraint
handling, the ϵMAg-ES exhibits the best performance on the RKMP
in all dimensions N ≥ 3.

Figs. 3 and 4 show plots comparing the errors in the objective
function space and the search space, respectively, for the different
algorithms and the dimensions considered. From them, the same
observations as for the ECDF plots can be concluded, however, from
a different perspective. The median objective function error plot
shows that the LSHADE44 and the ϵMAg-ES reach all the targets
for all the dimensions in the median (as they are on the dashed
black line). Apart from that, one can see that the median error to
the optimum in the objective function increases with increasing
dimension for the other algorithms. This also holds for the mean
norm error in the parameter space. Note that only the algorithms
that achieve feasible solutions in all the runs are considered in those
two figures. Information on the feasibility ratio of the other strate-
gies and on the performance indicators ii) and iii) corresponding
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Figure 2: Comparison of the performance profiles (ECDF plots) of the eight algorithms presented in Sec. 3 obtained on prob-
lem (1) in different dimensions. The black-rimmed markers are obtained based on the bootstrapped data. The ▽▽▽ marker
displays the event of hitting the first feasible target, and △△△ indicates number of function evaluations for which all runs have
reached the feasible region, respectively.

1884



EA Comparison on the Rotated Klee-Minty Problem GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Figure 3: Comparison of themedian fitness value deviations
from the known optimal objective function valueN 3. The al-
gorithm realizations are plotted against the search space di-
mension N . The final target defines a precision of 10−8. Data
points for each algorithm are only shown if all runs of that
algorithm resulted in feasible solutions for the given dimen-
sion. In N = 2 and N = 3 all data points do interleave. Only
these two data points are obtained for the Active-Set-ES. No-
tice that all the data points obtained by ϵMAg-ES and by
LSHADE44 overlap with the final target for all dimensions.

to Fig. 3 and Fig. 4 are available in the supplementary material. As
suggested in [7], the results are presented in tabular form.

In order to precisely distinguish two similar performing algo-
rithms, particular events may be examined for significant differ-
ences by making use of statistical tests, e.g. differences in the
amount of function evaluations needed to reach the final target.
Depending on the number of compared algorithms and the test
objective, the Wilcoxon rank-sum test or the Friedman test are
well-known non-parametric hypothesis tests for this purpose.

4.2 Additional Investigations
In this section we compare only those algorithms that incorpo-
rate the ϵ-level constraint handling approach [15]. This constraint
handling represents a relaxation of the lexicographic ordering pre-
sented in (4). The ϵ-level constraint handling softens the principle
that feasible solutions are always considered superior to infeasible
solutions. It enables the algorithm to treat infeasible candidate so-
lutions with constraint violation below a specific ϵ (д) threshold as
feasible. The threshold ϵ (д) is continuously reduced to zero with the
number of iterations д. Hence, the strategy is able to move outside
the feasible region within the early phase of the search process
which can potentially support the convergence to the optimizer y∗
in some cases. This constraint handling technique turned out to
be especially successful in the context of the CEC competitions. In
fact, the LSHADE44 algorithm (CEC 2017) is the only competition
winner that refrained from using the ϵ-level constraint handling.

Preliminary experiments suggest that the performance deteri-
oration on the Rotated Klee-Minty Problem (1) can at least partly

Figure 4: Comparison according to the mean distance devia-
tion from the known optimal solution of (1). The algorithm
results are plotted against the search space dimension N .
Data points are only shown if all runs of a particular algo-
rithm resulted in feasible solutions for the given dimension.

be attributed to the use of ϵ-level constraint handling. In order
to support this claim, we execute the following experiment. The
performance profiles of iUDE, ϵDEag, and ϵMAg-ES, are compared
to those ECDF plots that are obtained by running the exact same
algorithms after turning off the ϵ-level constraint handling method.
To this end, the ϵ threshold is initially set to zero in all algorithm
runs, i.e. the ϵ-level ordering is replaced with the lexicographic or-
dering (4). The resulting algorithm variants are denoted as lexiUDE,
lexDEag, and lexMAg-ES, respectively. Due to the space limitation,
the comparison of the corresponding ECDF plots is only illustrated
for dimension N = 40 in Fig. 5. Yet, the results in lower dimensions
look very similar. One observes in Fig. 5 that setting the ϵ threshold
to zero initially improves the original counterparts for the algo-
rithms considered. The lexDEag transitions into the feasible region
earlier but is not able to reach more feasible targets than the ϵDEag.
The lexMAg-ES reaches all targets with less evaluations compared
to the ϵMAg-ES. The most surprising result is achieved by the lex-
iUDE. Whereas the iUDE is not even able to reach the infeasible
targets, its lexicographic variant lexiUDE performs similarly to the
lexMAg-ES5.

In order to further investigate the influence of ϵ , an additional
experiment is conducted. While Fig. 5 shows the two extremes of
setting ϵ to zero initially and using the original ϵ decay, Figure 6 dis-
plays the results obtained by accelerating the ϵ reduction within the
iUDE. An acceleration of the ϵ decay is expected to result in a perfor-
mance in between those exhibited by the two extremes (see Fig. 5).
Considering the three corresponding iUDE variants (iUDE, lexiUDE,
and iUDE (with faster ϵ decay)), the empirical results substantiate
our proposition. As intuitively expected, the lexiUDE achieves the
best performance, the original iUDE performs worst, and the iUDE
with faster ϵ threshold reduction shows a performance that is in
5Note that, in terms of the ECDF plots, the lexMAg-ES performance and the lexi-
UDE performance, respectively, turn out to be slightly superior to the LSHADE44
performance on the RKMP.

1885



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Hellwig et al.

Figure 5: Investigation of the ϵ-level constraint handling
impact on the algorithm performance. The black-rimmed
markers display the first (▽▽▽) observation of hitting a feasi-
ble target, and the number of function evaluations when all
(△△△) runs have reached the feasible region, respectively.

Figure 6: Investigation of the ϵ-level constraint handling in-
fluence on the algorithm performance of the iUDE.

between the former two variants. Searching for an explanation
of this weakness, we come to the conclusion that the benefit of
using the ϵ-level constraint handling is strongly connected to the
analytical structure of the objective function. The objective func-
tion of problem (1) is a linear function and thus strictly monotonic.
Hence, the optimal solution is always located on the boundary of
the feasible region. In such situations, a certain relaxation of the
constraints that define the boundary of the feasible set will result
in the relocation of the optimal solution. For simplicity, the emerg-
ing optimal solution is referred to as the relaxed optimal solution.
Accordingly, when starting with comparably large ϵ (0)-threshold, a
strategy employing the ϵ-level constraint handling will approach
towards the relaxed optimal solution. By gradually reducing the

ϵ (0) with the number of iterations, the relaxed optimal solution will
approach the real optimal solution. However, this process might
already consume a large amount of function evaluations that would
have been needed at the end of the algorithm run for the search
within the feasible region, or even for the detection of the feasible
region, respectively.

Hence, boundary relaxation techniques like ϵ-level constraint
handling can be disadvantageous in similar environments, i.e. on
constrained problems with strictly monotonic decreasing objective
functions in at least one dimension of the search domain.

5 CONCLUSION
In this paper, the results of evaluating multiple randomized search
methods on the RKMP [7] have been presented. To this end, the
benchmark function has been recapped (1) and a selection of promi-
nent algorithms for constrained optimization have been described.
Regarding the corresponding empirical algorithm results yields an
interesting observation: search algorithms that rely on the ϵ-level
constraint handling technique can exhibit a comparably weak per-
formance on the RKMP. This is in contrast to the results obtained in
the context of the CEC competitions on single objective constrained
real-parameter optimization, where these strategies commonly per-
formwell. Whereas the ϵ constraint handling is beneficial in solving
the CEC constrained benchmark problems, it is disadvantageous
for the considered Rotated Klee-Minty Problem.

The RKMP still represents a quite new benchmark proposal.
Taking into account the survey in [8], the design of elaborated
test suites for benchmarking randomized search heuristics on con-
strained optimization problems still is in its infancy. Hence, the
benchmarking conventions and the considered performance in-
dicators must be regarded as first suggestions. For example, the
questions of which performance indicators need to be captured
to provide a full picture of the algorithm performance, how these
should be parameterized, and how the results should be presented
best in order to provide easy performance interpretations are not
conclusively answered. They should to be thoroughly discussed
and examined theoretically if possible.

However, due to the number of distinct constrained problem
features, the work towards a sophisticated algorithm selection for
real-world problems requires an extension of the available bench-
mark environments. The RKMP contributes to this line of research
and the present paper supplies a first comparison of selected EAs
on this linearly constrained problem class. In future studies, we
aim to explore the incremental progression of the RKMP towards
nonlinear objective functions and disconnected feasible regions (by
adding multiple hyper cubes to the search domain).

Finally, an elaborated ranking approach that determines the best
algorithm in a certain dimension is still missing. To this end, the
question of how to combine the individual performance indicators
in an unbiased way still needs to be answered.
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