
Benchmarking Discrete Optimization Heuristics
with IOHprofiler

Carola Doerr
Sorbonne Université, CNRS

Paris, France

Furong Ye
LIACS

Leiden, The Netherlands

Naama Horesh
Migal Institute

Upper Galilee, Israel

Hao Wang
LIACS

Leiden, The Netherlands

Ofer M. Shir
Tel-Hai College and Migal Institute

Upper Galilee, Israel

Thomas Bäck
LIACS

Leiden, The Netherlands

ABSTRACT
Automated benchmarking environments aim to support researchers
in understanding how different algorithms perform on different
types of optimization problems. Such comparisons carry the po-
tential to provide insights into the strengths and weaknesses of
different approaches, which can be leveraged into designing new
algorithms. Carefully selected benchmark problems are also needed
as training sets in the context of algorithm selection and configura-
tion. With the ultimate goal to create a meaningful benchmark set
for iterative optimization heuristics, we compile and assess in this
work a selection of discrete optimization problems that subscribe
to different types of fitness landscapes. All problems have been
implemented and tested within IOHprofiler, our recently released
software built to assess iterative heuristics solving combinatorial
optimization problems. For each selected problem we compare per-
formances of eleven different heuristics. Apart from fixed-target
and fixed-budget results for the individual problems, we also derive
ECDF results for groups of problems. To obtain these, we have
implemented an add-on for IOHprofiler which allows aggregation
of performance data across different benchmark functions.

CCS CONCEPTS
• Human-centered computing → Scientific visualization; •
Theory of computation→Theory of randomized searchheuris-
tics; • Software and its engineering → Software libraries and
repositories;

1 INTRODUCTION
Benchmarking optimization solvers aims at supporting practition-
ers in choosing the best algorithmic technique and its optimal
configuration for the problem at hand. It is achieved through a
systematic empirical assessment and comparison amongst com-
peting techniques on a set of carefully selected optimization prob-
lems. At the same time, benchmarking may benefit theoreticians
by enhancing mathematically-derived ideas into techniques being
broadly applicable in practical optimization. Moreover, empirical

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326810

performance comparisons constitute a catalyst in formulating new
research questions. Finally, carefully chosen benchmark problems
covering various of the multifaceted characteristics of real-world
optimization challenges serve as training sets for the automation
of algorithm configuration and selection.

The fact that there already exists a broad range of available
benchmarking environments demonstrates that the performance
assessment of optimization solvers over a set of representative
test-problems serves several complementary purposes. The nature
of the Application Programming Interface, or the identity of the
benchmark problems, define together the implementation, and are
usually rooted in the sought target(s). In the context of discrete
optimization, several attempts to construct widely accepted bench-
marking environments have been undertaken, but these (1) are typ-
ically restricted to certain problem classes (often classicalNP-hard
problems such as SAT, TSP, etc.), (2) strongly focus on constructive
heuristics, which are assumed to have access to the instance data (in
contrast to black-box optimization heuristics, which implicitly learn
about the problem instance only through the evaluation of potential
solutions), or (3) aim to bundle efforts on solving specific real-world
problem instances, without the attempt to generate a set of scal-
able or otherwise generalizable optimization problems. Benchmark
competitions and crowd-sourcing platforms such as [41] fall into
this latter category.

The few attempts to create a sound benchmarking platform for
discrete black-box optimization heuristics, e.g., Weise’s optimiza-
tion benchmarking platform [42], have not yet received significant
attention from the scientific community. In December 2018 Face-
book announced its own benchmarking environment for black-box
optimization [37]. While their focus is mostly in noisy continuous
optimization, the platform also comprises a few discrete problems.

Interestingly, the situation significantly differs in continuous
optimization, where the BBOB workshop series [28] constitutes a
well-established and widely recognized platform for benchmarking
derivative-free black-box optimization heuristics. Capitalizing on
the COCO software [27] – which is the primary tool on which the
BBOB workshops rely – we recently released a discrete optimiza-
tion benchmarking environment, IOHprofiler [21] (see Section 2
for a brief discussion). Prior to this work, however, IOHprofiler
only provided the experimental setup, which enables a detailed
performance analysis. It did not fix any benchmark problems nor
reference algorithms (yet proposing default test-functions). IOH-
profilerwas used in [23] for the comparison of different (1+λ) EA

1798

https://doi.org/10.1145/3319619.3326810

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. Doerr, F. Ye, N. Horesh, H. Wang, O.M. Shir, and Th. Bäck

variants on two elementary problems, OneMax and LeadingOnes.
We are not aware of extensions to more complex problems.

With this work, we contribute to the development of IOHpro-
filer by compiling and evaluating a set of 23 functions for a possible
inclusion to a reference set of benchmark problems. We also con-
tribute a set of eleven different heuristics that can serve as a first
baseline for the performance evaluation of user-defined heuristics.
All problems and algorithms have been implemented and integrated
in the environment of IOHprofiler, so that they are easily acces-
sible for future comparative studies. An important by-product of
our contribution is the identification of additional statistics, which
should be included within the IOHprofiler environment. In this
respect we contribute a new module for IOHprofiler, which can
aggregate performance data across different benchmark problems.
More precisely, our extension allows to compute ECDF curves for
sets of benchmark problems, thereby extending the IOHprofiler
statistics for individual functions.

While the focus of this present work is on the assessment of
possible benchmark problems (Section 3) and reference algorithms
(Section 4), we also prescribe a suitable experimental setup and
briefly discuss the obtained performance results (Section 5).

2 THE IOHPROFILER ENVIRONMENT
IOHprofiler is a novel environment for analyzing behavior of iter-
ative optimization heuristics when run on selected problems, and
for drawing comparisons of performances when multiple heuristics
are run. Given algorithms and test problems implemented in C
or in python, it outputs a statistical evaluation of the algorithms’
performance, formed as the distribution of the fixed-target running
time and the fixed-budget function values. In addition, IOHpro-
filer also permits tracking the evolution of algorithms’ parameters,
an attractive feature for analyses, comparisons, and the design of
(self-)adaptive algorithms.

IOHprofiler consists of two components: IOHexperimenter,
a module for processing the actual experiments and generating the
performance data, and IOHanalyzer, a post-processing module
for compiling detailed statistical evaluations.

IOHexperimenter is built on the COCO software [27], which
has been adjusted to handle discrete optimization problems, and to
facilitate a user-defined selection of benchmark problems (unlike
COCO, whose 24 functions form a fixed selection and adding new
functions requires low-level reprogramming of the tool).

IOHanalyzer, in contrast, has been independently developed
from scratch. This module can be utilized as a stand-alone tool for
the running-time analysis of any algorithm on arbitrary benchmark
problems. It supports various input file formats, among others
the IOHexperimenter’s and the COCO platform’s output formats.
IOHanalyzer is designed for an interactive evaluation, enabling the
user to define their required precision and ranges for the displayed
data.

Source-codes of both modules of IOHprofiler are available
at [22], while its documentation is provided in [21]. A web-based
application of IOHanalyzer is available at http://iohprofiler.liacs.nl/.

As mentioned in the introduction, IOHprofiler in its current
state constitutes a standardized experimental setup for discrete
optimization benchmarking, but does not provide yet a selection of

built-in benchmark problems, nor algorithms - a gap that we aim
to reduce with this present work.

3 SUGGESTED BENCHMARK FUNCTIONS
We evaluate a selection of 23 functions and assess their suitability
for inclusion in a standardized discrete optimization benchmark-
ing platform. All problems have been implemented and integrated
within the IOHprofiler framework, and are available at [22].

Following the suggestion in [38], we restrict our attention to
pseudo-Boolean functions, i.e., all the suggested benchmark problems
can be expressed as functions f : {0, 1}n → R.

Conventions. Throughout this work the variable n denotes the
dimension of the problem that the algorithm operates upon. We
assume that n is known to the algorithm; this is a natural assump-
tion, since every algorithm needs to know the decision space that
it is requested to search. Note though, that the effective dimension
of a problem can be smaller than n, e.g., due to usage of “dummy
variables” that do not contribute to the function values, or due to
other reductions of the search space (see Section 3.7 for examples).
In practice, we thus only require that n is an upper bound for the
effective number of decision variables.

For constrained problems, such as the N-Queens problem, which
we discuss in Section 3.11, we follow common practice in the evolu-
tionary computation community and use penalty terms to discount
infeasible solutions by the number and magnitude of constraint
violations.

Notation. By [k]we abbreviate the set {1, 2, . . . ,k} and by [0..k]
the set [k] ∪ {0}. All logarithms are to the base 10 and denoted by
log. An exception is the natural logarithm, which we denote by
ln. Finally, we denote by id the identity function, regardless of the
domain.

3.1 Rationale Behind The Selection
We briefly discuss the ambition of our work, and the requirements
that drove our selection and that should be imposed upon future
selection of problems for benchmarking purposes.

Ambition. Our ultimate goal is to construct a benchmarking
suite that covers wide ranges of the multifaceted problem character-
istics found in real-world combinatorial optimization challenges.A
second ambition, which is not necessarily perfectly identical to this
goal, lies in building a suitable training set for automated algorithm
design, configuration, and selection.

A core assumption of our work is that there is no room for a
static, “ultimate” set of benchmark problems. We rather anticipate
that a suitable training set should be extendable, to allow users
to adjust the selection to their specific needs, but also to reflect
advances of the field and to correct misconceptions. We particularly
foresee a need for augmenting our set of functions, in order to cover
landscape characteristics that are not currently present in the prob-
lems assessed in this present work. At the same time, we do not rule
out the possibility of removing some of the functions considered
below, for example if they do not contribute to our understanding
how to distinguish amongst various heuristics, or if they can be
replaced by other problems showing similar effects. Indeed, as we
will argue in Section 5.4, some of the 23 assessed functions do not
seem to contribute to a better discrimination between different

1799

http://iohprofiler.liacs.nl/

Benchmarking Discrete Optimization Heuristics with IOHprofiler GECCO ’19, July 13–17, 2019, Prague, Czech Republic

algorithms, and are therefore evaluated as being obsolete. As we
shall discuss in Section 6, we are confident that further advances in
the research on exploratory landscape analysis [33] will help us to
identify additional problems to include in the benchmark suite.

Problem Properties.We are mostly interested in problems that
are arbitrarily scalable with respect to the dimension n. However,
as the N-queens problem suggested below shows, we do not require
that there exists a problem instance for each and every n, but we
are willing to accept modest interpretations of scalability.

For the purposes of our work we demand that evaluating any
search point is realizable in reasonable time. As a rule of thumb,
we are mostly interested in experimental setups that allow one
cycle of evaluating all problems within 24 hours per each algorithm.
Put differently, we do not address with this work settings that fea-
ture expensive evaluations. We believe that those should be treated
separately, as they typically require a different type of solvers.

3.2 Problems vs. Instances
While we are interested in covering different types of fitness land-
scapes, we care much less about their actual embedding, and mainly
seek to understand algorithms that are invariant under the prob-
lem representation. In the context of pseudo-Boolean optimization
f : {0, 1}n → R, a well-recognized approach to request represen-
tation invariance is to demand that an algorithm shows the same
or similar performance on any instance mapping each bit string
x ∈ {0, 1}n to the function value f (σ (x ⊕z)), where z is an arbitrary
bit string of lengthn, ⊕ denotes the bit-wise XOR function, and σ (y)
is to be read as the string (yσ (1), . . . ,yσ (n)) in which the entries are
swapped according to the permutation σ : [n] → [n]. IOHprofiler
supports such analysis by allowing to use these transformations
(individually or jointly) with randomly chosen z and σ . Using these
transformations, we obtain from one particular problem f a whole
set of instances { f (σ (· ⊕ z)) | z ∈ {0, 1}n ,σ permutation of [n]},
which all have fitness landscapes that are pairwise isomorphic. The
works [21, 32] provide further discussions of these unbiasedness
transformations.

Apart from unbiasedness, we also focus in this work on ranking-
based heuristics, i.e., algorithms which only make use of relative,
and not of absolute function values. For a comparison with non-
ranking-based algorithms, we test all algorithms on instances that
are shifted by a multiplicative and an additive offset. That is, instead
of receiving the values f (σ (x ⊕ z)) only the transformed values
af (σ (x ⊕ z)) + b are made available to the algorithms. We use here
again the built-in functionalities of IOHprofiler to obtain these
transformations.

In the following subsections we describe only the basic instance
of each problem, which always forms instance 1 in IOHprofiler.
We then test all algorithms on instances 1-6 and 51-55, which are
obtained from this instance by the transformations described above.
In theses instances the ⊕ and σ transformations are separated.
Instances 2-6 are obtained from instance 1 by a ‘⊕z’ rotation with
a randomly chosen z ∈ {0, 1}n , and random fitness offsets a ∈

[1/5, 5], b ∈ [−1000, 1000]. For instances 51-55 there is no ‘⊕z’
rotation, but the strings are permuted by a randomly chosen σ and
the ranges for the random fitness transformation are chosen as for
instances 2-6. For each function and each dimension the values of

z and σ are fixed per each instance, but different functions of the
same dimensions may have different z and σ transformations.

3.3 Overview of Selected Benchmark Problems
The following list summarizes our 23 selected benchmark problems.
For reasons of space, we will only provide short discussions in the
subsequent sections.

• F1: OneMax, see Sec. 3.4
• F2: LeadingOnes, see Sec. 3.5
• F3: Harmonic, see Sec. 3.6
• F4: OneMax +W ([n/2], 1, 1, id), see Sec. 3.7
• F5: OneMax +W ([0.9n], 1, 1, id), see Sec. 3.7
• F6: OneMax +W ([n], µ = 3, 1, id), see Sec. 3.7
• F7: OneMax +W ([n], 1,ν = 4, id), see Sec. 3.7
• F8: OneMax +W ([n], 1, 1, r1), see Sec. 3.7
• F9: OneMax +W ([n], 1, 1, r2), see Sec. 3.7
• F10: OneMax +W ([n], 1, 1, r3), see Sec. 3.7
• F11: LeadingOnes +W ([n/2], 1, 1, id), see Sec. 3.7
• F12: LeadingOnes +W (0.9n, 1, 1, id), see Sec. 3.7
• F13: LeadingOnes +W ([n], µ = 3, 1, id), see Sec. 3.7
• F14: LeadingOnes +W ([n], 1,ν = 4, id), see Sec. 3.7
• F15: LeadingOnes +W ([n], 1, 1, r1), see Sec. 3.7
• F16: LeadingOnes +W ([n], 1, 1, r2), see Sec. 3.7
• F17: LeadingOnes +W ([n], 1, 1, r3), see Sec. 3.7
• F18: LABS: Low Autocorrelation Binary Sequences, see
Sec. 3.8

• F19: Ising-Ring, see Sec. 3.9
• F20: Ising-Torus, see Sec. 3.9
• F21: Ising-Triangular, see Sec. 3.9
• F22: MIVS: Maximum Independent Vertex Set, see Sec. 3.10
• F23: N-Queens, see Sec. 3.11

3.4 F1: OneMax (Hamming Distance)
The OneMax function is the best-studied benchmark problem in
the context of evolutionary computation (EC), often coined the
“drosophila of EC”. It asks to optimize the function OM : {0, 1} →
[0..n],x 7→

∑n
i=1 xi . The problem has a very smooth and non-

deceptive fitness landscape. Due to the well-known coupon collec-
tor effect, it is relatively easy to make progress when the function
values are small, and the probability to obtain an improving move
decreases considerably with increasing function value.

With the ‘⊕z’ transformations introduced in Sec. 3.2, the One-
Max problem becomes the problem of minimizing the Hamming
distance to an unknown target string z ∈ {0, 1}n .

OneMax is easily solved in n steps by a greedy hill climber that
flips exactly one bit in each iteration, e.g., the one recursively going
through the bit string from left to right until no local improvement
can be obtained. This algorithm is included in our set of 11 refer-
ence algorithms as gHC, see Section 4. Randomized local search
(RLS) and several classic evolutionary algorithms require Θ(n logn)
function evaluations on OneMax, due to the mentioned coupon
collector effect [25]. The self-adjusting (1 + (λ, λ)) GA from [11]
is the only EA known to optimize OneMax in o(n logn) time, it
requires only a linear expected number of function evaluations to
locate the optimum. The best expected running time that any itera-
tive optimization algorithm can achieve is Ω(n/logn) [24]. Unary

1800

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. Doerr, F. Ye, N. Horesh, H. Wang, O.M. Shir, and Th. Bäck

unbiased algorithms cannot achieve average running times bet-
ter than Ω(n logn) [13, 32]. A more detailed survey of theoretical
running-time results forOneMax can be found in [23], and a survey
of lower bounds (in terms of black-box complexity results) can be
found in [19].

3.5 F2: LeadingOnes
Among the non-separable functions, the LeadingOnes function
is certainly the one receiving most attention in the theory of EC
community. The LeadingOnes problem asks to maximize the func-
tion LO : {0, 1}n → [0..n],x 7→ max{i ∈ [0..n] | ∀j ≤ i : x j = 1} =∑n
i=1

∏i
j=1 x j , which counts the number of initial ones.

Most EAs require quadratic running time to solve LeadingOnes,
see again [23] or the full version of [10] for a summary of theoret-
ical results. It is known that all elitist (1+1)-type algorithms [20]
and all unary unbiased [32] are restricted to an Ω(n2) expected run-
ning time. However, some problem-tailored algorithms optimizing
LeadingOnes in sub-quadratic expected optimization time have
been designed [1, 15, 18]. It is also known that the best-possible
expected running time of any iterative optimization heuristic is
Θ(n log logn) [1].

3.6 F3: Harmonic Weights Linear Function
Two extreme linear functions areOneMaxwith its constant weights
and binary value BV(x) =

∑n
i=1 2

n−ixi with its exponentially de-
creasing weights. An intermediate linear function is f : {0, 1}n →

R,x 7→
∑
i ixi with harmonic weights, which was suggested to be

considered in [38]. We add this linear function as F3.

3.7 F4-F17: The W-model
In [44] a collection of different ways to “perturb” existing bench-
mark problems in order to obtain new functions of scalable diffi-
culties and landscape features has been suggested, the so-called
W-model. These W-model transformations can be combined arbi-
trarily, resulting in a huge set of possible benchmark problems. In
addition, these transformations can, in principle, be superposed
to any base problem, giving yet another degree of freedom. Note
here that the original work [44] as well as the existing empirical
evaluations [43] only consider OneMax as underlying problem, but
there is no reason to restrict the model to this function. We expect
that in the longer term, the W-model, similarly to the well-known
NK-landscapes [29] may constitute an important building block
for a scalable set of discrete benchmark problems. More research,
however, is needed to understand how the different combinations
influence the behavior of state-of-the-art heuristic solvers. In this
work, we therefore restrict our attention to instances in which
the different components of the W-model are used in an isolated
way. The assessment of combined transformations clearly forms a
promising line for future work.

Basic Transformations. TheW-model comprises 4 basic trans-
formations, each coming with different instances. We useW (·, ·, ·, ·)

to denote the configuration chosen in our benchmark set. For rea-
sons of space we can only provide a very short summary of the
W-model, focusing on the transformations assessed in our work.We
note that, following the suggestion in [44], the transformations are
executed in the same order as induced by the following description.

(1) Reduction of dummy variablesW (k, ∗, ∗, ∗): a reduction
mapping each string (x1, . . . ,xn) to a substring (xi1 , . . . ,xik)
for randomly chosen, pairwise different i1, . . . , ik ∈ [n].

(2) Neutrality W (∗, µ, ∗, ∗): The bit string (x1, . . . ,xn) is re-
duced to a string (y1, . . . ,ym) with m := n/µ, where µ is
a parameter of the transformation. For each i ∈ [m] the
value of yi is the majority of the bit values in a size-µ sub-
string of x . More precisely, yi = 1 if and only if there are at
least µ/2 ones in the substring (x(i−1)µ+1,x(i−1)µ+2, . . . ,xiµ).
When n/µ < N, the last bits of x are simply copied to y. In
our assessment, we regard only the case µ = 3.

(3) Epistasis W (∗, ∗,ν , ∗): The idea of epistasis is to intro-
duce local perturbations to the bit strings. To this end, a
string x = (x1, . . . ,xn) is divided into subsequent blocks of
size ν . Using a permutation eν : {0, 1}ν → {0, 1}ν , each
substring (x(i−1)ν+1, . . . ,xiν) is mapped to another string
(y(i−1)ν+1, . . . ,yiν) = eν ((x(i−1)ν+1, . . . ,xiν)). The permu-
tation eν is chosen in a way that Hamming-1 neighbors
u,v ∈ {0, 1}ν are mapped to strings of Hamming distance
at least ν − 1. In our evaluation, we use ν = 4 only, and the
construction given in [44, Section 2.2].

(4) Fitness perturbation W (∗, ∗, ∗, r). With this transforma-
tion we can determine the ruggedness and deceptiveness of
a function. Unlike the previous transformations, this per-
turbation operates on the function values, not on the bit
strings. To this end, a ruggedness function r : { f (x) | x ∈

{0, 1}n } =: V → V is chosen. The new function value of a
string x is then set to r (f (x)), so that effectively the problem
to be solved by the algorithm becomes r ◦ f . We use the
following three ruggedness functions.
• r1 : [0..s] → [0..⌈s/2⌉ + 1] with r1(s) = ⌈s/2⌉ + 1 and
r1(i) = ⌊i/2⌋ + 1 for i < s and even s , and r1(i) = ⌈i/2⌉ + 1
for i < s and odd s . This function maintains the order of
the search points (i.e., for all x and y with f (x) ≥ f (y)
it holds that r1(f (x)) ≥ r1(f (y))), but introduces small
fitness plateaus.

• r2 : [0..s] → [0..s] with r2(s) = s , r2(i) = i + 1 for i ≡

s (mod 2) and i < s , and r2(i) = max{i − 1, 0} otherwise.
This function introduces moderate ruggedness at each
fitness level.

• r3 : [0..s] → [0..s] with r3(s) = s and r3(s − 5j + k) =
s − 5j + (4 − k) for all j ∈ [s/5] and k ∈ [0..4] and r3(k) =
s − (5⌊s/5⌋ − 1) − k for k ∈ [0..s − 5⌊s/5⌋ − 1]. With this
function the problems become quite deceptive, since the
distance between two local optima implies a difference of
5 in the function values.

We study superpositions of individual W-model transformations
to the OneMax (F1) and the LeadingOnes (F2) problem, so as
to study their effects on a well-understood separable and a well-
understood non-separable problem.

3.8 F18: Low Autocorrelation Binary Sequences
The LowAutocorrelation Binary Sequences (LABS) problem poses a
non-linear objective function over a binary sequence space, with the
goal to maximize the reciprocal of the sequence’s autocorrelation:

[LABS:] n2

2E(S) with E(S) =
∑n−1
k=1

(∑n−k
i=1 si · si+k

)2
,

1801

Benchmarking Discrete Optimization Heuristics with IOHprofiler GECCO ’19, July 13–17, 2019, Prague, Czech Republic

where the sequence is of length n, S := (s1, . . . , sn) with si = ±1.
To obtain a pseudo-Boolean problem, we use the straightforward
interpretation si = 2xi − 1 for all i ∈ [n]. The LABS problem has
been studied over several decades (see, e.g., [34, 35]), but exact
solutions are known only for problem dimensions n ≤ 66 [35].

3.9 F19-F21: The Ising Model
The classical Ising model [5] considers a set of spins placed on a
regular lattice G = ([n],E), where each edge (i, j) ∈ E is associ-
ated with an interaction strength Ji j . Given a configuration of n
spins, S := (s1, . . . , sn), this problem poses a quadratic function,
representing the system’s energy and depending on its structure
Ji j . Assuming zero external magnetic fields and using si = 2xi − 1
we obtain the following pseudo-Boolean maximization problem:
[ISING:]

∑
{i, j }∈E

[
xix j − (1 − xi)

(
1 − x j

)]
In our benchmark set we consider three instances: the one-
dimensional ring (F19), the two-dimensional torus (F20), and the
two-dimensional triangular (F21).

3.10 F22: Maximum Independent Vertex Set
Given a graphG = ([n],E), an independent vertex set is a subset of
vertices where no two vertices are linked by an edge. A maximum
independent vertex set (MIVS) is defined as an independent subset
V ′ ⊂ [n] having largest possible size.
[MIVS:]

∑
i xi s.t.

∑
i<j xix jei j = 0 .

Following [3], we use as F22 the instance of concatenated modules
of X shape with horizontal edges between any two neighboring
vertices on the top and the bottom, respectively. We use a straight-
forward penalty approach mentioned above to discount infeasible
solutions.

3.11 F23: N-Queens Problem
The N -queens problem (NQP) [7] is defined as the task to place N
queens on an N × N chessboard in such a way that they cannot
attack each other. Using binary representation with n := N 2

variables xi j , NQP subscribes to the following objective function:
[NQP:]

N∑
i=1

N∑
j=1

xi j − N ·

(
N∑
i=1

max

{
0, −1 +

N∑
j=1

xi j

}
+

N∑
j=1

max

{
0, −1 +

N∑
i=1

xi j

}

+

N−2∑
k=−N+2

max

0, −1 +
∑
j−i=k

i, j∈{1,2, . . .,N }

xi j

 +
2N−1∑
ℓ=3

max

0, −1 +
∑
j+i=ℓ

i, j∈{1,2, . . .,N }

xi j

ª®®®¬

4 ALGORITHMS
For our comparison, we have implemented the following 11 algo-
rithms, which can serve as a baseline for future tests. For reasons
of space, we can again only give the main references here.

We note that, except for the vGA, our implementations (deliber-
ately) deviate slightly from the text-book descriptions referenced
below. Following the suggestions made in [36] (and numerous other
works), we enforce that offspring created by mutation are different
from their parent (by resampling if needed), and, secondly, we do
not evaluate recombination offspring that are identical to one of

their immediate parents. With this convention, we omit the sub-
script >0 previously used in [23, 36].

All algorithms start with uniformly chosen initial solution can-
didates.

With these conventions, our algorithms are as follows:

(1) gHC: A (1+1) greedy hill climber, which goes through the
string from left to right, flipping exactly one bit per each
iteration, and accepting the offspring if it is at least as good
as its parent.

(2) RLS: Randomized Local Search, the elitist (1+1) strategy
flipping one uniformly chosen bit in each iteration. I.e., RLS
and gHC differ only in the choice of the bit which is flipped.
While RLS is unbiased in the sense of Sec. 3.2, gHC is not
permutation-invariant and thus biased.

(3) (1 + 1) EA: The (1+1) EA with static mutation rate p = 1/n.
This algorithm differs from RLS in that the number of uni-
formly chosen, pairwise different bits to be flipped is sampled
from the conditional binomial distribution Bin>0(n,p).

(4) fGA: The “fast GA” proposed in [17] with β = 1.5. Its muta-
tion strength (i.e., the number of bits flipped in each iteration)
follows a power-law distribution with exponent β . This re-
sults in amore frequent use of largemutation-strength, while
maintaining the property that small mutation strengths are
still sampled with reasonably large probability.

(5) (1+ 10) EA: The (1+10) EA with static p = 1/n, which differs
from the (1+1) EA only in that 10 offspring are sampled
(independently) per each iteration. Only the best one of these
(ties broken at random) replaces the parent, and only if it is
at least as good.

(6) (1 + 10) EAr/2,2r : The two-rate EA with self-adjusting mu-
tation rates suggested and analyzed in [14].

(7) (1 + 10) EAnorm. : a variant of the (1 + 10) EA sampling the
mutation strength from a normal distributionN (pn,pn(1−p))
with a self-adjusting choice of p [46].

(8) (1+10) EAvar. : The (1+10) EAnorm. with an adaptive choice
of the variance in the normal distribution from which the
mutation strengths are sampled. Also from [46].

(9) (1 + 10) EAlog-n. The (1+10) EA with log-normal self-
adaptation of the mutation rate proposed in [4].

(10) (1+ (λ, λ))GA: A binary (i.e., crossover-based) EA originally
suggested in [12]. We use the variant with self-adjusting λ
analyzed in [11].

(11) vGA: A (30, 30) “vanilla” GA (following the so-called tradi-
tional GA, as described, for example, in [2, 26]).

5 EXPERIMENTAL RESULTS
As a demonstration of the proposed benchmarking environment,
we report here on basic experiments that were run on it. Notably,
due to space limitations and following the primary scope of this
work, the experimental report features only the major empirical
findings.

5.1 Experimental Setup
We summarize our experimental setup:

• 23 test-functions

1802

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. Doerr, F. Ye, N. Horesh, H. Wang, O.M. Shir, and Th. Bäck

Figure 1: ERT values of all 11 algorithms for the 625-dimensional test suite, with respect to the best solution quality found by
any of the algorithms (see Section 5.2 for the ERT value derivation).

Figure 2: ERT values of selected algorithms for the 64-dimensional test suite, with respect to the best solution quality found
by any of the algorithms (see Section 5.2 for the ERT value derivation).

• Each test-function is assessed over four problem dimensions,
n ∈ {16, 64, 100, 625}, yielding altogether 92 (F ,n) pairs.

• Each algorithm is run on 11 different instances (instances
1 − 6 and 51 − 55, see Sec. 3.2) of each of these 92 pairs,
yielding 1,012 different runs per each algorithm.

• Each run is granted a budget of 100n2 function evaluations
for dimensionsn ∈ {16, 64, 100} and a budget of 5n2 function
evaluations for n = 625.

As mentioned, we are interested in experimental setups that
allow to evaluate one entire experiment (for one algorithm) within
24 CPU hours. All 11 tested algorithms finished experimentation
within this time frame.

We note that for each set of results (instance 1 only and in-
stances 1-6+51-55) we collect very detailed performance data, so
as to compare not only ERT and AHT values, but also the anytime
behavior in terms of fixed-target runtimes, fixed-target results, and
EDCF curves (see Section 5.2 for a recap of these performance mea-
sures). For the adaptive algorithms we also track the evolution of
the most relevant algorithmic parameters, e.g., the value of λ in

the (1 + (λ, λ)) GA, and the mutation rates for the (1+10) EAr/2,2r ,
(1+10) EAvar. , (1+10) EAnorm. .

All data is available for interactive evaluation with IOHanalyzer
at http://iohprofiler.liacs.nl/. The reader can upload her/his own
runtime data, to compare performances against our 11 baseline
algorithms. In the remainder of this section we show some selected
statistics created with this tool. For reasons of space, we can only
highlight a few of the findings, a detailed report will be made
available on arXiv in due time.

5.2 Performance Measures
Given performance data of r independent runs of an algorithm A
with a maximal budget of B function evaluations, the ERT value
of A for a target value v is (n − s)B + AHT, where s ≤ r is the
number of successful runs in which a solution of fitness at least
v has been found, and AHT is the average first hitting time of
these successful runs. We mostly concentrate on ERT values in our
analysis. A definition of ECDF curves can be found, for example,
in [21, Section 4.1].

1803

http://iohprofiler.liacs.nl/

Benchmarking Discrete Optimization Heuristics with IOHprofiler GECCO ’19, July 13–17, 2019, Prague, Czech Republic

5.3 ERT Analysis
We first regard the ERT values per each (function, dimension) pair,
accounting for the best value found by any of the 11 algorithms in
any of the 11 independent runs. Figure 1 shows these ERT values
for all 11 algorithms for problem dimension n = 625. Performance
data of selected algorithms for n = 64 is displayed in Figure 2.

Our analysis considers two complementary perspectives, aiming
to recognize patterns and identify classes within (i) the set of all
functions, and (ii) the set of all algorithms.

Functions’ Empirical Grouping. It is evident that the low-
dimensional F1-F6, F8, F11-F13 and F15-F16 are easily treated by the
majority of the algorithms, with those functions based on Leadin-
gOnes (i.e., F2, F11-13, F15, F16) and theOneMaxwith plateaus (F8)
being more challenging within this group. On the other extreme, F7,
F10, F14, F18 and F22 evidently constitute a class of hard problems,
on which all algorithms consistently exhibit difficulties (except for
n = 16); the LABS function (F18) seems the most difficult among
them. F9, F17, and the instances of the Ising model (F19-F21), as well
as the NQP (F23), constitute a class of moderate level of difficulty.

Algorithms’ Observed Trends. The gHC and the vGA usually
exhibited extreme performance with respect to the other algorithms.
The vGA consistently suffers from poor performance over all func-
tions, while the gHC either leads the performance on certain func-
tions or undergoes deteriorated performance on other. The gHC’s
behavior is to be expected, since it is correlated with the existence
of local traps (by construction) – for instance, it consistently ex-
cels on F1-F6, while having difficulties on F7-F10. Otherwise, we
observe one primary class of algorithms exhibiting equivalent per-
formance over all problems in all dimensions: The 7 algorithms
(1+(λ, λ))-GA, (1+1)-EA, (1+10)-EAvar. , (1+10)-EA, (1+10)-EAnorm. ,
(1+10)-EAr/2,2r , and (1+1)-fGA behave consistently, typically ex-
hibiting fine performance.

Ranking. We also examined the overall number of runs per
test-function in which an algorithm successfully located the best
recorded value – the so-called hitting number. We then grouped
those hitting numbers by dimension, and ranked the algorithms
per each dimension. The (1+10)-EAr/2,2r consistently leads the
grouped hitting numbers on the “low-dimensional” functions (n ∈

{16, 64, 100}), with (1+1)-fGA being the first runner-up (on n = 64
in close tie with (1+10)-EAnorm.). The (1+10)-EA also exhibits high
ranking across all dimensions. On the other hand, the (1+1)-EA leads
the grouped hitting numbers on the “high-dimensional” functions at
n = 625, with (1+10)-EA being the runner-up. Across all dimensions,
gHC, vGA and (1+10)-EAlog-n. are with the lowest rankings.

Visual Analytics. As a demonstration of the proposed tool, we
provide snapshots of visual analytics that supported our examina-
tion. Figure 3 depicts basic performance plots for F19 at dimension
n = 100, in so-called fixed-target and fixed-budget perspectives.
Furthermore, Figure 4 depicts an ECDF curve for the “easily-solved”
functions in dimension n = 625: F1-F6, F11-F13, and F15-F16, with
10 equally spaced target values per each function.

5.4 Aftermath
The reported experiments reveal interesting findings on the test-
functions and the algorithms’ behavior when solving them – among
which we highlight a few. By construction, the current test-suite

proposed functions with various degrees of difficulty. Certain func-
tions are inherently difficult (e.g., F18), and some synthetically (e.g.,
F7 and F14, regenerated by “epistasis”). Our empirical observations
on such synthetically regenerated hard problems corroborated the
effectiveness of the W-model in such a benchmarking environ-
ment. Moreover, on a different note, the hardness of all functions
consistently increase with their problem dimension – exhibiting a
desirable property that we mentioned in Sec. 3.1.

We also observe that functions F3, F4, F5, F11, F12 do not con-
tribute much additional information to discriminate between the
eleven reference algorithms, as the rankings of these algorithms is
almost identical as for OneMax (F3-5) and LeadingOnes (F11, F12),
respectively. In general, our analysis shows that further research is
required to determine configurations of the W-model which maxi-
mize the information gain. The empirical results for F3 suggest that
linear functions may not be suitable candidates for a benchmarking
suite. While the performance analysis of EAs on these functions has
inspired significant advances in our theoretical understanding of
randomized search heuristics [16, 45], they may be less meaningful
for a performance comparison targeting to understand performance
across broad sets of combinatorial optimization problems. This ex-
ample underlines the importance of the statement already made
in Section 3.1: the most suitable set of benchmark problems
strongly depends on the question that one aims to answer.

6 OUTLOOK
Among the many possible directions for future work, we consider
the following ones particularly interesting.

Additional Performance Measures. While IOHprofiler al-
ready provides a very detailed assessment of algorithms’ perfor-
mance data, we suggest to extend its statistics by additional mea-
sures. We have implemented for this report and for future use in
IOHprofiler the possibility to generate ECDF curves, for a user-
defined set of functions and target values, thereby following the
interactive performance evaluation paradigm which distinguished
IOHprofiler from other existing benchmarking platforms (where
the targets or budgets are typically set fixed). Going forward, we
suggest to include modules that allow performance comparisons
across different dimensions. Statistical tests such as the Wilcoxon-
Mann-Whitney-type tests might be useful, but one should also
evaluate the possibility to automate the generation of Bayesian
statistics as suggested, for example, in [8]. Such an approach has
recently been suggested for the EA context in [9].

Feature-Based Analyses. Another interesting extension of IO-
Hanalyzer would be the design of modules that allow us to couple
the performance evaluationwith an analysis of the fitness landscape
of the considered problems. Such feature-based analyses are at the
heart of algorithm selection techniques [30], which use landscape
features and performance data to build a model that predicts how
the tested algorithms will perform on a previously not tested prob-
lem. Similar approaches can be found in per-instance-algorithm
configuration (PIAC) approaches, which have recently shown very
promising performance in the context of continuous black-box opti-
mization [6]. A key step towards such a feature-based performance
analysis are the selection and the efficient computation of meaning-
ful features: while in continuous optimization a large set of features

1804

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. Doerr, F. Ye, N. Horesh, H. Wang, O.M. Shir, and Th. Bäck

80 100 120 140 160 180 200

1

10

100

1E+3

1E+4

1E+5

1E+6

1E+7
(1+(λ,λ)) GA.ERT

(1+1) EA_>0.ERT

gHC.ERT

(1+10) EA_{r/2,2r}.ERT

(1+10) EA_>0.ERT

(1+10) EA_logNormal.ERT

(1+10) EA_normalized.ERT

(1+10) EA_var_ctrl.ERT

(1+1) fGA.ERT

(30,30) vGA.ERT

RLS.ERT

best-so-far f(x)-value

fu
n

ct
io

n
 e

va
lu

a
ti

o
n

s

5 1 2 5 10 2 5 100 2 5 1E+3 2 5 1E+4 2 5 1E+5 2 5 1E+6 2

100

120

140

160

180

200
(1+(λ,λ)) GA.mean

(1+1) EA_>0.mean

gHC.mean

(1+10) EA_{r/2,2r}.mean

(1+10) EA_>0.mean

(1+10) EA_logNormal.mean

(1+10) EA_normalized.mean

(1+10) EA_var_ctrl.mean

(1+1) fGA.mean

(30,30) vGA.mean

RLS.mean

runtime

b
e
st

-s
o
-f

a
r

f(
x)

-v
a
lu

e
Figure 3: Demonstration of the basic performance plots for F19 at dimension n = 100: [LEFT] best obtained values as a function
of evaluations calls (“fixed-target perspective”), versus [RIGHT] evaluations calls as a function of best obtained values (”fixed-
budget perspective”). For F19, these patterns of relative behavior are observed across all dimensions.

1 10 100 1E+3 1E+4 1E+5 1E+6

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(1+(λ,λ)) GA

(1+1) EA_>0

gHC

(1+10) EA_{r/2,2r}

(1+10) EA_>0

(1+10) EA_logNormal

(1+10) EA_normalized

(1+10) EA_var_ctrl

(1+1) fGA

(30,30) vGA

RLS

function evaluations

P
ro

p
o
rt

io
n

 o
f

(r
u

n
,
ta

rg
e
t,

 .
..
)

p
a
ir

s

Figure 4: An ECDF curve for the class of “easily-solved” func-
tions in dimension n = 625: F1-F6, F11-F13, and F15-F16.

has been defined and can be computed with the flacco package [31],
the research community currently lacks a meaningful analog for dis-
crete optimization problems. We note though, that several advances
in this direction have been made, including the above-introduced
features covered by the W-model (size of the effective dimension,
neutrality, epistasis, ruggedness) and the local optima networks
(see [39, 40] and references mentioned therein). We suggest to start
a first prototype using these existing features, while at the same
time intensifying research efforts to find additional landscape fea-
tures that can be used to characterize pseudo-Boolean optimization
problems.

Critical Assessment of Benchmark Problems. With such
a feature-based approach, we also hope to more systematically
identify problem characteristics that are not well represented in the
selection of problems described above. We emphasize once again
the fact that we see the here-suggested set of benchmark problems
as a first step towards a sound benchmarking suite, not as a static
“ultimate” selection. Quite the contrary, another important direction
of our future research concerns the identification, critical selection,
and implementation of additional benchmark problems. We believe
that a good benchmark environment should offer the possibility to
add new problems, so that users can focus their experimentation
on problems relevant to their work. IOHprofiler is build with this
functionality in mind, making it a particularly suitable testbed for
our studies.

Combinations of W-model Transformations. As discussed
in Section 3.7, the transformations of the W-model can be com-
bined with each other. To analyze the individual effects of each
transformation, and in order to keep the size of the experimental
setup reasonable, we have not considered such combinations in this
work. A critical consideration of adding such combinations, and of
extending the base transformations (e.g., with respect to the fitness
transformation, but also the size of the neutrality transformation,
etc.) forms another direction that we will address in future work.

ACKNOWLEDGMENTS
We are very grateful to our colleagues Arina Buzdalova, Maxim Buz-
dalov, Michal Horovitz, Mordo Shalom, Dirk Sudholt, and Thomas
Weise for valuable discussions on the topic of benchmarking IOHs.

This work was supported by the Chinese scholarship council
(CSC No. 201706310143), by ANR-11-LABX-0056-LMH, by the Paris
Ile-de-France Region, and by COST Action CA15140.

1805

Benchmarking Discrete Optimization Heuristics with IOHprofiler GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr,

Kasper Green Larsen, and Kurt Mehlhorn. 2019. The query complexity
of a permutation-based variant of Mastermind. Discrete Applied Mathematics
(2019). https://doi.org/10.1016/j.dam.2019.01.007 In press.

[2] Thomas Bäck. 1996. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, NY, USA.

[3] Thomas Bäck and Sami Khuri. 1994. An evolutionary heuristic for the max-
imum independent set problem. In Proc. 1st IEEE Conference on Evolutionary
Computation. IEEE, 531–535. https://doi.org/10.1109/ICEC.1994.350004

[4] Thomas Bäck and Martin Schütz. 1996. Intelligent Mutation Rate Control in
Canonical Genetic Algorithms. In International Symposium on Foundations of In-
telligent Systems (ISMIS’96) (Lecture Notes in Computer Science), Vol. 1079. Springer,
158–167.

[5] F. Barahona. 1982. On the computational complexity of Ising spin glass models.
Journal of Physics A Mathematical General 15 (Oct. 1982), 3241–3253. https:
//doi.org/10.1088/0305-4470/15/10/028

[6] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. 2017. Per
instance algorithm configuration of CMA-ES with limited budget. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’17). ACM, 681–688.
https://doi.org/10.1145/3071178.3071343

[7] Jordan Bell and Brett Stevens. 2009. A Survey of Known Results and Research
Areas for N-queens. Discrete Math. 309, 1 (Jan. 2009), 1–31. https://doi.org/10.
1016/j.disc.2007.12.043

[8] Alessio Benavoli, Giorgio Corani, Janez Demsar, and Marco Zaffalon. 2017. Time
for a Change: a Tutorial for Comparing Multiple Classifiers Through Bayesian
Analysis. Journal of Machine Learning Research 18 (2017), 77:1–77:36. http:
//jmlr.org/papers/v18/16-305.html

[9] Borja Calvo, Josu Ceberio, and José Antonio Lozano. 2018. Bayesian inference
for algorithm ranking analysis. In Proc. of Genetic and Evolutionary Computation
Conference, companion material. ACM, 324–325. https://doi.org/10.1145/3205651.
3205658

[10] Benjamin Doerr. 2018. Better Runtime Guarantees via Stochastic Domination. In
Proc. of Evolutionary Computation in Combinatorial Optimization (EvoCOP’18)
(Lecture Notes in Computer Science), Vol. 10782. Springer, 1–17. https://doi.org/
10.1007/978-3-319-77449-7_1 Full version available at http://arxiv.org/abs/1801.
04487.

[11] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting
Parameter Choices for the (1+ (λ, λ)) Genetic Algorithm. Algorithmica 80 (2018),
1658–1709.

[12] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-
plexity to designing new genetic algorithms. Theoretical Computer Science 567
(2015), 87–104.

[13] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. Optimal Parameter Choices
via Precise Black-Box Analysis. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16). ACM, 1123–1130.

[14] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2017. The
(1 + λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’17). ACM, 1351–1358.

[15] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus
Wagner, and Carola Winzen. 2011. Faster black-box algorithms through higher
arity operators. In Proc. of Foundations of Genetic Algorithms (FOGA’11). ACM,
163–172.

[16] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative
Drift Analysis. Algorithmica 64 (2012), 673–697.

[17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017. Fast
genetic algorithms. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17). ACM, 777–784. https://doi.org/10.1145/3071178.3071301

[18] Benjamin Doerr and Carola Winzen. 2012. Black-Box Complexity: Breaking
the O (n logn) Barrier of LeadingOnes. In Artificial Evolution (EA’11), Revised
Selected Papers (Lecture Notes in Computer Science), Vol. 7401. Springer, 205–216.

[19] Carola Doerr. 2018. Complexity Theory for Discrete Black-Box Optimization
Heuristics. CoRR abs/1801.02037 (2018). arXiv:1801.02037 http://arxiv.org/abs/
1801.02037

[20] Carola Doerr and Johannes Lengler. 2018. The (1+1) Elitist Black-Box Complexity
of LeadingOnes. Algorithmica 80 (2018), 1579–1603. https://doi.org/10.1007/
s00453-017-0304-6

[21] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck.
2018. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Opti-
mization Heuristics. arXiv e-prints:1810.05281 (Oct. 2018). arXiv:1810.05281
https://arxiv.org/abs/1810.05281

[22] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2019.
Data Repository for IOHprofiler data sets. (2019). https://github.com/IOHprofiler

[23] Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, and Thomas Bäck. 2018.
Towards a theory-guided benchmarking suite for discrete black-box optimization
heuristics: profiling (1 + λ) EA variants on OneMax and LeadingOnes. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’18). ACM, 951–958.

https://doi.org/10.1145/3205455.3205621
[24] Paul Erdős and Alfréd Rényi. 1963. On Two problems of Information Theory.

Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 8 (1963),
229–243.

[25] Josselin Garnier, Leila Kallel, and Marc Schoenauer. 1999. Rigorous Hitting Times
for Binary Mutations. Evolutionary Computation 7 (1999), 173–203.

[26] David Goldberg. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA.

[27] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
2016. COCO: A Platform for Comparing Continuous Optimizers in a Black-Box
Setting. CoRR abs/1603.08785 (2016). arXiv:1603.08785 http://arxiv.org/abs/1603.
08785

[28] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík. 2010.
Comparing Results of 31 Algorithms from the Black-box Optimization Bench-
marking BBOB-2009. In Proceedings of the 12th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’10). ACM, New York, NY, USA,
1689–1696. https://doi.org/10.1145/1830761.1830790

[29] Stuart Kauffman and Simon Levin. 1987. Towards a general theory of adaptive
walks on rugged landscapes. Journal of Theoretical Biology 128 (1987), 11–45.

[30] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2018.
Automated Algorithm Selection: Survey and Perspectives. CoRR abs/1811.11597
(2018). arXiv:1811.11597 http://arxiv.org/abs/1811.11597

[31] Pascal Kerschke and Heike Trautmann. 2016. The R-Package FLACCO for ex-
ploratory landscape analysis with applications to multi-objective optimization
problems. In Proc. of Congress on Evolutionary Computation (CEC’16). IEEE, 5262–
5269. https://doi.org/10.1109/CEC.2016.7748359

[32] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-
tion. Algorithmica 64 (2012), 623–642.

[33] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and
Günter Rudolph. 2011. Exploratory Landscape Analysis. In Proc. of Genetic and
Evolutionary Computation (GECCO’11). ACM, 829–836. https://doi.org/10.1145/
2001576.2001690

[34] Burkhard Militzer, Michele Zamparelli, and Dieter Beule. 1998. Evolutionary
search for low autocorrelated binary sequences. IEEE Transactions on Evolutionary
Computation 2, 1 (Apr 1998), 34–39. https://doi.org/10.1109/4235.728212

[35] Tom Packebusch and Stephan Mertens. 2016. Low autocorrelation binary se-
quences. Journal of Physics A: Mathematical and Theoretical 49, 16 (2016), 165001.

[36] Eduardo Carvalho Pinto and Carola Doerr. 2017. Discussion of a More Practice-
Aware Runtime Analysis for Evolutionary Algorithms. In Proc. of Artificial Evolu-
tion (EA’17). 298–305. https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_
978-2-9539267-7-4.pdf

[37] J. Rapin and O. Teytaud. 2018. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad. (2018).

[38] Ofer M. Shir, Carola Doerr, and Thomas Bäck. 2018. Compiling a benchmarking
test-suite for combinatorial black-box optimization: a position paper. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’18), Companion. ACM,
1753–1760. https://doi.org/10.1145/3205651.3208251

[39] Sarah L. Thomson, Sébastien Vérel, Gabriela Ochoa, Nadarajen Veerapen, and
David Cairns. 2018. Multifractality and dimensional determinism in local op-
tima networks. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’18). ACM, 371–378. https://doi.org/10.1145/3205455.3205472

[40] Sarah L. Thomson, Sébastien Vérel, Gabriela Ochoa, Nadarajen Veerapen, and
Paul McMenemy. 2018. On the Fractal Nature of Local Optima Networks. In Proc.
of Evolutionary Computation in Combinatorial Optimization (EvoCOP’18) (Lecture
Notes in Computer Science), Vol. 10782. Springer, 18–33. https://doi.org/10.1007/
978-3-319-77449-7_2

[41] SzymonWasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal.
2016. Optil.io: Cloud Based Platform For Solving Optimization Problems Using
Crowdsourcing Approach. In Proc. of ACM Conference on Computer Supported
Cooperative Work and Social Computing (CSCW’16), Companion Volume. ACM,
433–436. https://doi.org/10.1145/2818052.2869098

[42] Thomas Weise. 2016. Optimization Benchmarking. (2016). http://
optimizationbenchmarking.github.io/

[43] Thomas Weise. 2018. The W-Model , a tunable black-box discrete optimization
benchmarking (bb-dob) problem, implemented for the bb-dob@gecco workshop.
(2018).

[44] Thomas Weise and Zijun Wu. 2018. Difficult Features of Combinatorial Optimiza-
tion Problems and the Tunable W-Model Benchmark Problem for Simulating
them. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18),
Companion Material). ACM, 1769–1776. https://doi.org/10.1145/3205651.3208240

[45] Carsten Witt. 2013. Tight Bounds on the Optimization Time of a Randomized
Search Heuristic on Linear Functions. Combinatorics, Probability & Computing
22 (2013), 294–318.

[46] Furong Ye, Carola Doerr, and Thomas Bäck. 2019. Interpolating Local and Global
Search by Controlling the Variance of Standard Bit Mutation. coRR abs/1901.05573
(2019). http://arxiv.org/abs/1901.05573

1806

https://doi.org/10.1016/j.dam.2019.01.007
https://doi.org/10.1109/ICEC.1994.350004
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1016/j.disc.2007.12.043
https://doi.org/10.1016/j.disc.2007.12.043
http://jmlr.org/papers/v18/16-305.html
http://jmlr.org/papers/v18/16-305.html
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1007/978-3-319-77449-7_1
https://doi.org/10.1007/978-3-319-77449-7_1
http://arxiv.org/abs/1801.04487
http://arxiv.org/abs/1801.04487
https://doi.org/10.1145/3071178.3071301
http://arxiv.org/abs/1801.02037
http://arxiv.org/abs/1801.02037
http://arxiv.org/abs/1801.02037
https://doi.org/10.1007/s00453-017-0304-6
https://doi.org/10.1007/s00453-017-0304-6
http://arxiv.org/abs/1810.05281
https://arxiv.org/abs/1810.05281
https://github.com/IOHprofiler
https://doi.org/10.1145/3205455.3205621
http://arxiv.org/abs/1603.08785
http://arxiv.org/abs/1603.08785
http://arxiv.org/abs/1603.08785
https://doi.org/10.1145/1830761.1830790
http://arxiv.org/abs/1811.11597
http://arxiv.org/abs/1811.11597
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1109/4235.728212
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1145/3205651.3208251
https://doi.org/10.1145/3205455.3205472
https://doi.org/10.1007/978-3-319-77449-7_2
https://doi.org/10.1007/978-3-319-77449-7_2
https://doi.org/10.1145/2818052.2869098
http://optimizationbenchmarking.github.io/
http://optimizationbenchmarking.github.io/
https://doi.org/10.1145/3205651.3208240
http://arxiv.org/abs/1901.05573

	Abstract
	1 Introduction
	2 The IOHprofiler Environment
	3 Suggested Benchmark Functions
	3.1 Rationale Behind The Selection
	3.2 Problems vs. Instances
	3.3 Overview of Selected Benchmark Problems
	3.4 F1: OneMax (Hamming Distance)
	3.5 F2: LeadingOnes
	3.6 F3: Harmonic Weights Linear Function
	3.7 F4-F17: The W-model
	3.8 F18: Low Autocorrelation Binary Sequences
	3.9 F19-F21: The Ising Model
	3.10 F22: Maximum Independent Vertex Set
	3.11 F23: N-Queens Problem

	4 Algorithms
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Performance Measures
	5.3 ERT Analysis
	5.4 Aftermath

	6 Outlook
	Acknowledgments
	References

