
A New approach for Malware Detection Based on Evolutionary
Algorithm

 Farnoush Manavi
Department of Computer Science and

Engineering & IT
Iran

F.Manavi@cse.shirazu.ac.ir

Ali Hamzeh
Department of Computer Science and

Engineering & IT
Iran

Ali@cse.shirazu.ac.ir

ABSTRACT
Malware is a malicious code which intends to harm computers
and networks. Each year, a huge number of malicious programs
are released. Therefore, detecting malware has become one of the
most important challenges for the security of computer systems.
Various methods have been defined for detecting and classifying
malware, such as signature-based and heuristic-based techniques.
This paper proposes a new malware detection method based on
the operational codes (OpCodes) within an executable file by
using the evolutionary algorithm. There are several steps in the
proposed method, which includes disassembling the executable
files, generating a graph of OpCodes and using the evolutionary
algorithm to find the most similar graph to each suspicious
instance. Finally, the label of each suspicious instance is detected
based on the most similar graph obtained from the evolutionary
algorithm with each class (family of malware and benign). The
results show that, the proposed method can be used as a method
for malware detection and malware category. 1
CCS CONCEPTS
•Theory of computation → Evolutionary algorithms •
Security and privacy → Malware
KEYWORDS
Classification, Evolutionary algorithm, Malware detection,
OpCode, Graph.
ACM Reference format:
F. Manavi and A. Hamzeh. 2019. SIG Proceedings Paper in word Format.
In Proceedings of ACM GECCO conference, Prague, Czech Republic,
July 2019 (GECCO’19), 6 pages.
https://doi.org/10.1145/3319619.3326811

1 INTRODUCTION

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
GECCO’19, July 13-17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). 978-1-4503-6748-
6/19/07 $15.00
https://doi.org/10.1145/3319619.3326811

Malware is a program that is developed with malicious purpose,
such as harming computer systems or doing unwanted actions on
a computer system [1]. Virus, Worm, Trojan, Spyware, Adware,
Rootkit, Backdoors, and etc. are among different types of malware
[2]. The number of malware attacks has increased dramatically.
Therefore, identifying malware has been more critical in computer
systems [3]. Softwares, such as anti-virus and anti-malware
programs or devices used to try and protect a user's computer
against activity identified as malicious, and to recover from
attacks. However, malware writers apply various concealment
strategies to deceive malware detectors such as anti-malware,
when they realize their malware are going to be detected.
Therefore, there is an intensive competition between malware and
anti-malware [2, 4, 5].

A branch of computer security is malware detection which
attempts to analyze suspicious programs and detect malware [2].
There are many approaches to detect malware, which are usually
divided into three categories [6]:

Signature-based techniques: This approach is based on the
assumption that malware can be described through patterns which
is called signature. This detection scheme identifies the presence
of a malware infection or instance by matching at least one
signature of the software in question with the database of
signatures of known malicious programs. This method is the most
commonly used technique for anti-malware systems that is
relatively fast but, it is not able to detect unknown malware [7].

Behavior-based techniques: This approach monitors behaviors
of a program to extract features and determine whether it is a
malicious or not. Therefore, each application must run in a virtual
environment and the actual behavior of the program is observed.
Majority of malware do not perform their actual behavior for
some time after the program is running as to deceive the detection
method [6-8]. Due to its low speed, this method is not suitable for
rapid detection.

Heuristic-based techniques: This approach uses operational
codes (Opcodes) or file bytes to detect malware. Typically, this
approach utilizes machine learning methods [2, 6].

Considering that signature-based methods compare a
signature, these methods are only able to detect known malware
and those are weak to detect new (or unknown) ones. Behavior-
based methods also have quite low speed, which makes them
inefficient for fast detection. Based on the shortcomings
mentioned, this research focuses on malware detection by
heuristic-based techniques.

Biological behaviors have always been a good source of
inspiration for computer scientists. Among them, Darwinian
evolution have shown a good potential for being a model for

1619

GECCO’19, July 13-17, 2019, Prague, Czech Republic F. Manavi et al.

2

search algorithms. Nowadays, their ideas apply to various
problems like optimization, search, or problems from machine
learning. Evolutionary algorithms (EAs) are generic population-
based metaheuristic optimization algorithms. EAs usually have
better performance in challenging search spaces than alternative
methods. This property of EAs has made them an efficient way to
approximate solutions [9]. Therefore, in this research instead of
using machine learning methods like previous approaches
evolutionary algorithms are used, and it attempts to detect
malware based on discovered malware.

The structure of this paper is organized as follows. Section 2
provides related work in malware detection. Section 3 is focused
on the detailed description of the proposed method, overview of
the system, graph extraction and evolutionary algorithm. The
system evaluation and discussion is presented in Section 4.
Finally, Section 5 provides conclusion.
2 RELATED WORK
Some methods for malware detecting rely on features extracted
from API calls, strings, byte n-grams, OpCode, etc. Santos et al.
[10] proposed a method to identify critical windows malware
based on the frequency of appearance of OpCode sequences. They
showed the cosign relevance of two OpCodes based on the
frequency with which it appears in malware and benign files.
They computed the mutual information between each OpCode and
provided a method which uses weighted similarity function for
OpCode relevance. They created a vector for each file that each of
its elements represent the Weighted Term Frequency related to an
OpCode sequence. Finally, these vectors are utilized to train a
machine learning model by the purpose of classifying unknown
instances. Runwal et al. [11] proposed a metamorphic malware
detection method based on the OpCodes within an executable file.
They generated a weighted directed graph according to OpCode
diagram, which is created based on counting the number of
OpCode pairs that appeared in the OpCode sequence. Finally,
they classified each file as malware or benign by measuring the
similarity between the extracted graphs. Rad et al. [12] build a
database of different variants of the morphed virus and used the
histogram of OpCodes as a feature to determine classification of
metamorphic virus family variants. Hashemi et al. [5] proposed a
malware detection method based on the OpCodes within an
executable file. They generated a graph of OpCode within an
executable file and then embedded this graph into eigenspace
using “Power Iteration” method. They converted an executable
file as a linear combination of eigenvectors proportionate to their
eigenvalues, which is beneficial to train machine learning
classifiers such as k-nearest neighbor and support vector machine.
Manavi et al. [2] proposed a malware detection method based on
the OpCodes within an executable file by using image processing
techniques. They generated a graph of OpCodes from an
executable file and converted this graph to an image and then
using “GIST” method in order to extract features from each image
and then used machine learning methods such as Support Vector
Machine, K-Nearest Neighbor, Ensemble to classification.
Darabian et al. [13] used sequential pattern mining technique to

detect most frequent OpCode sequences of malicious IoT
applications. They used maximal frequent patterns (MFP) of
OpCode sequences to differentiate malicious from benign IoT
applications. Srivastava et al. [14] proposed a feature extraction
process based on Genetic process for malware detection. They
used the existing features to generate new features; These newly
generated features are then evaluated using a fitness function.
Then, they used the extracted features to train the classifier to
Malware Detection process.
3 PROPOSED METHOD
As it was mentioned, this research is focused on malware
detection based on heuristic techniques. This section describes
how to construct adjacency graph for malware and benign files,
and explains how to determine malware or benign files based on
adjacency graph using an evolutionary algorithm.
3.1 The Overview of the System
The proposed method consists of two main preprocessing steps.
At first, the database of executable files is disassembled. Second,
for each file based on binary combinations of consecutive
OpCodes a graph is constructed. In this graph weight to each edge
represents the number of binary combinations of consecutive
OpCodes. These graphs will be the initial population of the
evolutionary algorithm. For the target file, OpCodes are extracted
and our system creates graph based on these extracted OpCodes.
Using the evolutionary algorithm, the most similar graph to each
class (family of malware and benign) is constructed. Then, the
graph of the suspicious file is compared with the obtained graphs
from the designed evolutionary algorithm. After these
comparisons, we can classify the target file to the most similar
class. The overview of the system is illustrated in Fig. 1.
3.2 Graph Adjacency Matrix
After disassembling the executable files, the sequence of the file
OpCodes is extracted. For each file, a graph of the possible binary
combinations of consecutive OpCodes is built. This graph shows a
directed and weighted graph which represents frequency of 2-
gram OpCodes in a program. In this graph, each node represents
an OpCode of files, and each directed edge from node v1 to node
v2 means that OpCode v2 is after the OpCode v1, and the weight
on the edge shows the number of these occurrences. Table 1
shows a small part of the instructions and OpCodes of malware
called Worm.Win32.Doomer and Fig. 2 and Table 2 gives a graph
and adjacency matrix of graph which is shown in Table 1.
3.3 The Evolutionary Part
Evolutionary algorithms (EAs) are meta-heuristic methods for
solving computationally difficult problems. EAs often perform
well approximating solutions to all types of problems because
those ideally do not make any assumption about the underlying
fitness landscape. In this proposed method, the evolutionary
algorithm is used to specify the label of each file. First, for all the
files in dataset, from the OpCodes of 2-grams a graph is extracted.

1620

Magnetic Normal Modes of Bi-Component Permalloy Structures GECCO’19, July 13-17, 2019, Prague, Czech Republic

 3

Then, the suspicious instance along with the graphs of each class
will be as an input of the evolutionary algorithm. In other words,
according to target instance, the most similar graph from each
class (family of malware and benign) is created. Finally, the most
similar graph of the resulting evolutionary algorithm will
determine the target label. The evolutionary algorithm which has
been used is depicted in Algorithm 1.

Step 1, creates an initial population for each graph of each
class. Step 2, selects parents from population for creating new
individuals by genetic variation. In step 3, offspring populations
are created by crossover and mutation. In step 4, the fitness of
each individual (offspring and populations) is calculated and
saved best graph. Step 5, replaces N best individual from current
population and offspring to next population. Finally returns the
best chromosome. If best chromosome satisfies the termination
condition or the number of repetitions to be sufficient, the
algorithm stops, otherwise the algorithm jumps to step 2. In the
following, is described the details of our evolutionary algorithm.
3.3.1 Representation
Each chromosome is represented as a matrix, which represents the
graph adjacency matrix of 2-grams of OpCodes. If the number of
unique OpCodes in the dataset are N, then the size of the matrix
will be N * N. For example, Table 2 gives adjacency matrix of
graph which is shown in Table 1.
3.3.2 Initialization
A part of the training set is selected and used for the initial
population. The size of the population is proportional to the
dataset size between 100 and 200.
3.3.3 The Fitness Function
Since each graph is represented as a N*N matrix, and the goal of
the algorithm is to obtain the most similar graph to the target
graph, Euclidean distance is used as the fitness function.
3.3.4 Selection
Since tournament selection is not sensitive to the fitness value of
population [15], we used this method for parent selection. Often
tournaments are held between 2-5 individuals, so 5th tournament
selection is used here. Five individuals randomly are chosen from
the population and the best individual will be selected as a parent.
3.3.5 Crossover
Uniform crossover is used for the proposed method. In this
crossover, each bit from the offspring's genome is independently
chosen from the two parents according to a given distribution. In
other words, each element of the offspring matrix is selected with
equal probability from their parents. The rate of crossover is set to
0.9.
3.3.6 Mutation
For mutation the maximum and minimum allele value in
chromosome is determined and randomly an integer of this

interval is selected. Then, one positions in the chromosome
randomly is selected and its allele value is changed to that integer
mentioned. The rate of the mutation is set to 0.1.

Figure 1: Overview of the Proposed Method.

Table 1: Extracted OpCodes from Executable File
Line OpCode Operand

1 push ebp
2 mov ebp, esp
3 push 0FFFFFFFFh
4 push offset stru_422220
5 push offset sub_4036E4
6 mov eax, large fs:0
7 push eax
8 mov large fs:0, esp
9 add esp, 0FFFFFFF0h
10 push ebx
11 push esi
12 push edi
13 mov [ebp+ms_exc.old_esp], esp
14 call ds:GetVersion
15 mov dword_425764, eax
16 mov eax, dword_425764
17 shr eax, 8
18 and eax, 0FFh
19 mov dword_425770, eax
20 mov ecx, dword_425764
21 and ecx, 0FFh
22 mov dword_42576C, ecx
23 mov edx, dword_42576C
24 add edx, dword_425770
25 mov dword_425768, edx
26 mov eax, dword_425764
27 shr eax, 10h
28 and eax, 0FFFFh
29 mov dword_425764, eax
30 push 0

1621

GECCO’19, July 13-17, 2019, Prague, Czech Republic F. Manavi et al.

4

Table 2: The Adjacency Matrix of Graph
OpCode add and call shr push mov

add 0 0 0 0 1 1
and 0 0 0 0 0 3
call 0 0 0 0 0 1
shr 0 2 0 0 0 0

push 0 0 0 0 4 4
mov 2 1 1 2 3 4

Figure 2: The OpCode Graph Shown in Table 1.

Algorithm 1: Evolutionary algorithm.
 Input: The target graph (G) along with the graphs of each

class (family of malware and benign).
 Output: The most similar graph to the target graph.
 Step1: Create initial population from graphs of each

class.
 repeat
 Step2: Choose parents from population
 Parent1= tournament(population)
 Parent2= tournament(population)
 Step3: apply Cross over and mutation on parents
 Offspring1, 2= Xover(parent1, parent2)
 Offspring1= Mutation(Offspring1)
 Offspring2= Mutation(Offspring2)
 Step4: Add offspring to the population and save best

chromosome (the most similar graph to G).
 Step5: Sort chromosomes based on fitness and

replace N best chromosome as next generation.
 until termination

3.3.7 Replacement
For survival, replaces N best individual from current population
and offspring to next population is considered.
3.3.8 Stopping Criterion
Proposed algorithm stops when it reaches to the zero fitness. In
this case it finds the target graph. Otherwise has been set the
number of maximum generation to 500.

4 RESULTS AND DISCUSSION
This section provides information on our experimental results.
First, the evaluation metrics, dataset, hardware and software used
in the experiments is discussed. Then, main results are presented
and proposed method is compared to other relevant methods.
4.1 Evaluation Metrics
To evaluate the competency of proposed method, some common
machine learning performance evaluation metrics such as
Accuracy and F-measure are used. At first, some required terms
for introducing Accuracy and F-measure are defined. The true
positive (TP) indicates the number of items which are correctly
labeled as the positive class. True negative (TN) represents the
number of items which are correctly labeled as the negative class.
False positive (FP) indicates the number of items which are
incorrectly labeled to be in the positive class. False negative (FN)
represents the number of items which are incorrectly labeled as
negative. Table 3 shows the relationships between these metrics.

Table 3: Evaluation Metrics Formula
Metrics Formula
Recall ܶܲ

ܶܲ + ܰܨ
Precision ܶܲ

ܶܲ + ܲܨ
Accuracy ܶܲ + ܶܰ

ܶܲ + ܲܨ + ܶܰ + ܰܨ
F-measure 2 ∗ ݊݋݅ݏ݅ݏ݁ݎܲ ∗ ܴ݈݈݁ܿܽ

݊݋݅ݏ݅ܿ݁ݎܲ + ܴ݈݈݁ܿܽ
4.2 Dataset
In order to evaluate the proposed method, three different datasets
are used2. Each dataset has different features and samples. Dataset
number 1 has 3200 files including 1600 malware and 1600 benign
samples where malware files are selected randomly from
executable files of VX Heavens virus collection which is one of
the well-known datasets in malware detection context and
includes different kinds of malware such as Virus, Trojan,
Backdoor, Hacking tools and Rootkits. Benign files are also
selected randomly from original Windows files and other utility
software. All benign files in dataset are scanned using ESET
NOD32 and KASPERSKY to ensure that they are not
contaminated. Dataset number 2 has 4000 APK files including
2000 malware and 2000 benign APK samples. The android
malware dataset is a subset of the benchmark dataset called
Drebin which provided by Arp et al [16]. Drebin dataset contains
2631 Android non-malicious application and more than 5500
Android malware files. Benign files are also selected randomly
from android application markets (Google Play store). All benign
files in dataset are scanned using VirusTotal service to ensure that

2 In order to access the data, send an email to f.manavi@cse.shirazu.ac.ir

shr and

call mov

push

3

1
4 3

1
1

add

4

2

2
1

1

1
1

2

4

1622

Magnetic Normal Modes of Bi-Component Permalloy Structures GECCO’19, July 13-17, 2019, Prague, Czech Republic

 5

they are not contaminated. Dataset number 3 has 2042 files
including nine different malware families where malware families
are selected randomly from Kaggle Microsoft Malware
Classification challenge (BIG 2015) [17].
4.3 The Experimental Environment
All experiments were done under the environment with following
specification: Windows 10 as operating system, AMD FX(tm)-
6200 Six-Core Processor 3.80 GHz and 32GB of RAM.
MATLAB 2018 and Python 3.3 is used for implementation
Evolutionary algorithm and graph extraction task. IDA Pro tools,
Baksmali and Androguard are chosen in our work for extracting
OpCodes.
4.4 Discussion of the Results
Polymorphic and metamorphic malware employ obfuscation
techniques to bypass traditional detection methods. Owing to the
fact that, any file has usually a specific sequence of OpCodes in
its nature, obfuscation techniques can not be covered fully in this
nature. But, extracting high-level features such as Opcode,
function calls or program’s control flow graph(CFG) alone is not
enough. Evolutionary algorithms have an ability to evolve a
sample of the population and build new ones. Therefore,
evolutionary algorithms can be used to find out the other
structures of a malware. The proposed method attempts to detect
the structure of new malware due to discovered malware and the
capabilities of evolutionary algorithms. The results show that the
proposed method has been effective in achieving this goal.
4.5 Comparison with other Methods
The proposed method is compared with two powerful Hashemi et
al. [5] and Santos et al. [10] methods which are based on
OpCodes. Moreover, in Tables 4-6, the proposed method is
compared with Nataraj et al. [18] method which is common
method based on raw bytes. Hashemi et al. [5] generated a graph
of OpCode within an executable file and then embedded this
graph into eigenspace using “Power Iteration” method. Finally,
they used eigenspace as representative sample feature-set for
training a machine learning model. Santos et al. [10] disassembled
files and extracted OpCodes. They generated OpCode profile that
is a matrix shows the frequency number of each OpCodes in all
files. They showed the cosign relevance of two OpCodes based on
the frequency with which it appears in malware and benign files.
They computed the mutual information between each OpCode and
provided a method which uses weighted similarity function for
OpCode relevance. They created a vector for each file that each of
its elements represent the Weighted Term Frequency related to an
opcode sequence. Finally, these vectors are utilized to train a
machine-learning model by the purpose of classifying unknown
instances. Nataraj et al. [18] represented executable file as a
binary string of zeros and ones. Then, they converted these strings
to grayscale images and used GIST [19] to compute texture
features. The process ends with a K-Nearest Neighbors
classification with Euclidean distance as the distance measure for
classification.

The experiments show that our method has good results in
comparison with other mentioned methods. Therefore, the
proposed method can be used as a method for detecting and
categorizing malware.
In Tables 4-6, the maximum value of each row is highlighted in
bold. For the Hashemi, Santos and Nataraj methods, the best
result of KNN (k=1:10) is expressed.

Table 4: Comparing Results Obtained from Dataset 1
 Proposed

method
Santos et
al. [10]

Hashemi
et al. [5]

Nataraj et
al. [18]

Accuracy 85.80 85.72 86.56 80.06
F-measure 86.41 86.61 86.12 79.84

Table 5: Comparing Results Obtained from Dataset 2
 Proposed

method
Santos et
al. [10]

Hashemi
et al. [5]

Nataraj et
al. [18]

Accuracy 85.80 85.30 86.69 73.90
F-measure 85.18 85.28 87.10 74.78

Table 6: Comparing Results Obtained from Dataset 3
 Proposed

method
Santos et
al. [10]

Hashemi
et al. [5]

Nataraj et
al. [18]

Accuracy 87.67 80.23 75.39 68.80
F-measure 86.71 78.47 70.18 66.50

5 CONCLUSIONS
In this research, we have been looking for a novel approach with
high detection rates to detect unknown malware based on their
OpCode sequence and Evolutionary algorithm; For this purpose,
binary sequences of Opcodes have been extracted from the
executable files and have been converted to a graph corresponding
to each file. Using the evolutionary algorithm, the most similar
graph to each class has been constructed. Then, the graph of the
suspicious instance has been compared with the obtained graphs
from the designed evolutionary algorithm. After these
comparisons, we can classify the target instance to the most
similar class.
REFERENCES
[1] Christodorescu, M., Jha, S., Maughan, D., Song, D., & Wang, C. (Eds.).

(2007). Malware detection (Vol. 27). Springer Science & Business Media.
[2] Manavi, F., & Hamzeh, A. (2017, October). A new method for malware

detection using opcode visualization. In 2017 Artificial Intelligence and Signal
Processing Conference (AISP) (pp. 96-102). IEEE.

[3] Farrokhmanesh, M., & Hamzeh, A. (2018). Music classification as a new
approach for malware detection. Journal of Computer Virology and Hacking
Techniques, 1-20.

[4] Jang, J. W., Kang, H., Woo, J., Mohaisen, A., & Kim, H. K. (2016). Andro-
dumpsys: anti-malware system based on the similarity of malware creator and
malware centric information. computers & security, 58, 125-138.

[5] Hashemi, H., Azmoodeh, A., Hamzeh, A., & Hashemi, S. (2017). Graph
embedding as a new approach for unknown malware detection. Journal of
Computer Virology and Hacking Techniques, 13(3), 153-166.

1623

GECCO’19, July 13-17, 2019, Prague, Czech Republic F. Manavi et al.

6

[6] Bazrafshan, Z., Hashemi, H., Fard, S. M. H., & Hamzeh, A. (2013, May). A
survey on heuristic malware detection techniques. In The 5th Conference on
Information and Knowledge Technology (pp. 113-120). IEEE.

[7] Mujumdar, A., Masiwal, G., & Meshram, D. B. (2013). Analysis of signature-
based and behavior-based anti-malware approaches. International Journal of
Advanced Research in Computer Engineering and Technology
(IJARCET), 2(6).

[8] Ye, Y., Li, T., Jiang, Q., & Wang, Y. (2010). CIMDS: adapting postprocessing
techniques of associative classification for malware detection. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 40(3), 298-307.

[9] Wiegand, R. P., & Sarma, J. (2004, September). Spatial embedding and loss of
gradient in cooperative coevolutionary algorithms. In International Conference
on Parallel Problem Solving from Nature (pp. 912-921). Springer, Berlin,
Heidelberg.

[10] Santos, I., Brezo, F., Nieves, J., Penya, Y. K., Sanz, B., Laorden, C., & Bringas,
P. G. (2010, February). Idea: Opcode-sequence-based malware detection. In
International Symposium on Engineering Secure Software and Systems (pp.
35-43). Springer, Berlin, Heidelberg.

[11] Runwal, N., Low, R. M., & Stamp, M. (2012). Opcode graph similarity and
metamorphic detection. Journal in Computer Virology, 8(1-2), 37-52.

[12] Rad, B. B., Masrom, M., & Ibrahim, S. (2012, September). Opcodes histogram
for classifying metamorphic portable executables malware. In 2012
International Conference on e-Learning and e-Technologies in Education
(ICEEE) (pp. 209-213). IEEE.

[13] Darabian, H., Dehghantanha, A., Hashemi, S., Homayoun, S., & Choo, K. K.
R. An opcode-based technique for polymorphic Internet of Things malware
detection. Concurrency and Computation: Practice and Experience, e5173.

[14] Srivastava, P., & M. Raj, (2018). Feature extraction for enhanced malware
detection using genetic algorithm. International Journal of Engineering &
Technology, 444-449.

[15] Blickle, T., & Thiele, L. (1995). A comparison of selection schemes used in
genetic algorithms. TIK-Report 11, TIK Institut fur Technische Informatik und
Kommunikationsnetze. Computer Engineering and Networks Laboratory, ETH,
Swiss Federal Institute of Technology, Gloriastrasse, 35, 8092.

[16] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C.
E. R. T. (2014, February). Drebin: Effective and explainable detection of
android malware in your pocket. In Ndss (Vol. 14, pp. 23-26).

[17] Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., & Ahmadi, M. (2018).
Microsoft malware classification challenge. arXiv preprint arXiv:1802.10135.

[18] Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July).
Malware images: visualization and automatic classification. In Proceedings of
the 8th international symposium on visualization for cyber security (p. 4).
ACM.

[19] Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic
representation of the spatial envelope. International journal of computer vision,
42(3), 145-175.

1624

