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ABSTRACT
The Firefighter Problem (FFP) is a graph-based optimization prob-
lem that is an abstraction of real-life problems such as epidemics
control, economic crises prevention, etc. In the FFP spreading of
fire is simulated on a graph in discrete time steps. In the origi-
nal formulation of the problem a fixed number of graph nodes
Nf can be defended in each time step. In this paper the problem
is reformulated, and three different solution representations are
studied. In one of the representations (N+P), the Nf parameter is
a decision variable and in the other two (P using permutations
and T using integer vectors) it is determined when the solution
is decoded. Because higher Nf values mean more resources used
for defense it is desirable to minimize this value, but on the other
hand we want to minimize the number of graph nodes consumed
by fire. Therefore the Parameterless FFP is tackled using two well-
known multiobjective evolutionary algorithms: the MOEA/D and
the NSGA-II as a multiobjective optimization problem with two
and three objectives. The results presented in the paper show that
for the Parameterless FFP the best solution representation is N+P.
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1 INTRODUCTION
Many real-life problems can be described using a scenario in which
a threat spreads among entities connected by relationships, forming
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a networked system. Epidemics, bankruptcies, computer viruses
and fake news can be described using a similar formalism in which
some entities are affected by a threat (e.g. a pathogen) and this
threat subsequently spreads to other entities via certain contacts
(e.g. meeting an infected person). Depending on the problem, the
dynamic of the spreading of the threat can, of course, be different
and different countermeasures can be used to prevent a particular
threat from spreading.

The Firefighter Problem (FFP) is an optimization problem in
which the spreading of fire is simulated on an undirected graph
G with Nv nodes. The nodes of the graph can be in one of the
states from the set L = { ‘B’, ‘D’, ‘U’ } which indicate, respectively:
‘B’ - burning, ‘D’ - defended and ‘U’ - untouched (neither burn-
ing nor defended). Each FFP instance is a triple ⟨G, S0,Nf ⟩, where
S0 ∈ LNv is the initial graph state and Nf is the number of nodes
that can be defended in each time step. The most common approach
is to set the initial state S0 in such a way that some nodes are ini-
tially burning (‘B’) and all the remaining nodes are untouched (‘U’).
Starting from S0 the spreading of fire is simulated in discrete time
steps. In each time step Nf untouched nodes become defended, so
their state is changed from ‘U’ to ‘D’. After the nodes to defend are
selected, fire spreads from burning nodes to untouched ones along
the edges of the graph. Nodes in the ‘D’ state are immune, that is
fire cannot spread to, nor through, them, and they remain defended
until the end of the simulation. Edges of the graph define connec-
tions between nodes and are not themselves subject to burning nor
defense.

The definition of an optimization problem must include the def-
inition of the search space and one or more objective functions.
Most commonly, solutions of the FFP are represented as permu-
tations and therefore the search space is Ω = ΠNv - the set of all
permutations of Nv elements. A solution π ∈ ΠNv is evaluated by
simulating the spreading of fire, starting from the initial state S0
and using the permutation π to determine the order in which the
nodes should be protected. In each time step the first Nf elements
of π are taken for which the corresponding nodes in the graph are
in the ‘U’ state and these nodes are defended. The evaluation of
the solution depends on the nodes that were protected from fire,
both the defended ones (‘D’) and nodes which were not reached
by fire (‘U’). In the original version of the problem [15] the eval-
uation of the solution is equal to the number of nodes protected
from fire. In some other papers variable node costs were used in
a single-objective [26] and multiobjective [24] versions of the prob-
lem. Naturally, both the maximization version of the problem can
be studied (maximize the number or total value of the saved nodes)
as well as the minimization version (minimize the number or total
value of the burnt nodes).
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The FFP has been to date a subject of numerous theoretical
works focused on such aspects as the conditions under which it is
possible to save the graph [11]. Numerous works focus on special
cases which lend themselves to theoretical investigations, such
as multidimensional grids [29], trees [8], digraphs [20], graphs
with a limited degree [12], planar graphs [19] or cubic graphs [18].
Recently, numerous metaheuristic approaches to the FFP have been
studied. The classical version of the FFP was solved using Ant
Colony Optimization (ACO) method by Blum et al. [4] and using
the Variable Neighbourhood Search (VNS) method by Hu [16] and
coauthors. Also, Estimation of Distribution Algorithms (EDAs) with
probabilistic models dedicated to the FFP have been studied in
the literature [26]. Various metaheuristic approaches have been
applied to the multiobjective FFP to date, such as multipopulation
evolutionary algorithms [24] and dedicated local search methods
[25]. Also, an extended variant of the FFP has been proposed in
which two different threats spread simultaneously in the same
graph [22]. Apart from the most often studied deterministic variant
of the problem a non-deterministic version has been studied [28],
to which a simheuristic approach [17] has been applied combining
metaheuristic optimization with extensive simulations.

In all the works discussed above the number of nodes that can be
defended in each time stepNf is treated as a parameter of a problem
instance, which is set to a fixed value before the algorithm starts
solving this problem instance. In this paper a different approach
is considered which is to allow the algorithm to find solutions for
many different values of Nf in the same run. The contributions of
this paper are threefold:

(1) The Parameterless Firefighter Problem is formulated inwhich
the number of firefighters Nf assigned per a time step is not
predetermined. In this problem formulation the optimization
algorithm has to find good trade-offs between the value of
the Nf parameter and the number of finally burnt nodes.

(2) Three different solution representations are proposed in
which the parameter Nf is encoded either explicitly as a de-
cision variable or implicitly (in which case its value is deter-
mined when the solution is decoded).

(3) The effectiveness of various genetic operators is tested for
the proposed solution representations.

The rest of this paper is organized as follows. Section 2 describes
the parameterless version of the FFP and solution representations
proposed in this paper. Section 3 presents the experiments in which
the performance of multiobjective evolutionary algorithms using
different solution representations and genetic operators was com-
pared. Section 4 concludes the paper.

2 THE PARAMETERLESS FIREFIGHTER
PROBLEM

In the original Firefighter Problem formulation [15] the number
of graph nodes that can be protected in each time step is set to
a constant number Nf . This parameter represents a limitation of
available resources that can be used for protecting the graph. The
value of Nf can have a very strong impact on the number of nodes
that can be saved from fire. For example, if the limit Nf is high
enough to cut off the nodes burning in the initial state S0 from the
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Figure 1: The number of test instances for which a given fi-
nal number of burnt nodes was obtained depending on the
number of firefighters Nf .

rest of the graph, it is easy to save many nodes in the graph. Con-
versely, for a fixed Nf , the difficulty of problem instances strongly
depends on the graph structure. Figure 1 shows the number of
test instances for which a given final number of burnt nodes was
obtained depending on the number of firefighters Nf for optimized
solutions of the FFP with Nv = 1000 nodes.

For Nf ≥ 3 it is clearly visible that for some instances it is very
easy to contain fire (very few nodes are burnt) and for some it is
impossible (almost all nodes are burnt) with no instances for which
a medium result was obtained. Because of this effect when generat-
ing tests instances for the FFP it is difficult to obtain instances that
allow testing the algorithms adequately. Some of the instances are
very easy and they do not pose a real challenge for the optimizers
and some are very hard and all the algorithms perform equally
poorly.

2.1 Parameterless FFP as a multiobjective
optimization problem

As noted above, the number of graph nodes that can be protected
in each time step Nf can have a very strong impact on the diffi-
culty of problem instances. Conversely, problem instances with
the same number of graph nodes Nv and the Nf parameter value
can be of very different difficulty depending on the graph struc-
ture (cf. Figure 1). From this observation a motivation arises to
study a parameterless version of the FFP for which optimization
algorithms have to find good trade-offs between the number of
firefighters Nf and the number of finally burnt nodes. The Parame-
terless FFP can thus be formulated as a multiobjective optimization
problem. The objective f1 is the number of burnt nodes and is to be
minimized. The objective f2 is the maximum number of firefighters
Nf that were assigned to nodes in one time step (thereby changing
the state of these nodes from ‘U’ to ‘D’). The f2 objective is the
equivalent of the Nf parameter in the classical Firefighter Problem,
in that it represents the value of Nf for which a given solution
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would attain the objective f1 in the classical FFP. The f3 objective is
the total number of defended nodes in the entire simulation. Both
objectives f2 and f3 represent different kinds of resources needed to
prevent the threat from spreading. The f2 objective is "the number
of firefighters" and can indeed represent the number of people (or
teams) involved in threat containment. Apart from firefighters these
can be medical personnel necessary for vaccinations or brigades
that reinforce floodbanks to prevent a flood. After the work is done
in one location they move to another place, and hence the resource
limitation is expressed as the maximum number of graph nodes that
become (and later stay) defended per a time step. The f3 objective
represents the total cost of countermeasures applied in the entire
simulation. This can be the cost of vaccine doses or the cost of ma-
terial used to reinforce floodbanks. Obviously, we want to minimize
both f2 and f3. In this paper, two multiobjective variants of the
Parameterless FFP are studied: a bi-objective one with objectives
f1 and f2 and a three-objective one with objectives f1, f2 and f3.

2.2 Solution representations
In this paper three different solution representations are studied.

Permutation (P) in which solutions are permutations from the
set ΠNv of all permutations of Nv elements. This representation
takes advantage of the fact that permutation-based representation is
redundant when used for the classical FFP. For example if S0 = [ ‘B’,
‘U’, ‘U’, ‘U’, ‘U’ ] and Nf = 2, solutions 12345, 13245, 21345, 23145,
31245 and 32145 are all equivalent, because node 1 is burning and
therefore in the first time step nodes 2 and 3 will become defended,
regardless of the permutation of the numbers 1, 2 and 3. In the
representation used in this paper the number of nodes defended
in each time step is implicitly encoded in the permutation π in
the following manner. Nodes to be defended in time step 1 are
those with the numbers placed at the beginning of the permutation
that are in the state ‘U’. The list of nodes to be defended in time
step 1 ends when nodes burning in the state S0 are found in π .
After that, nodes to be defended in time step 2 are found, after
which nodes burning in time step 1 follow (see Figure 2). The
P representation proposed in this paper is less redundant than the
one using permutations in conjunction with the Nf parameter for
the classical FFP. For example, the six solutionsmentioned above are
all equivalent in the classical FFP (if S0 = [ ‘B’, ‘U’, ‘U’, ‘U’, ‘U’ ] and
Nf = 2), but when decoded using the P representation proposed
here, they result in different nodes protected in time step 1. For the
solutions 12345 and 13245 no nodes are defended in the first time
step, because no non-burning nodes are placed before the element
equal 1, which is burning in the initial state S0. For the solution
21345 node 2 is defended in time step 1 and for the solution 31245
node 3 is defended in time step 1. Both solutions 23145 and 32145
result in nodes 2 and 3 being defended in time step 1. It is worth
noticing that the P representation allows the number of defended
nodes to be different in each time step. For example in Figure 2 two
nodes are defended in time step 1 and three in time step 2.

Number of firefighters + Permutation (N+P) in which a per-
mutation is used for determining the order in which nodes are
defended in the graph and one integer is used for determining the
number of firefighters (the number of nodes that become defended

Figure 2: Permutation-based (P) representation.

Figure 3: Number of firefighters + Permutation (N+P) repre-
sentation.

per a time step) Nf . These two elements are combined in the geno-
type (Figure 3). In this representation the number of nodes defended
in each time step is the same, equal Nf . The permutation part of
the genotype in the N+P representation is interpreted in the same
way as in the classical Firefighter Problem. At the beginning of each
time step the first Nf elements which correspond to nodes in the
‘U’ state are selected from the permutation. The nodes of the graph
G corresponding to the selected elements of the permutation are
defended by changing their state to ‘D’.

Time step (T) in which the genotype is an array of positive
integers. Each entry in the genotype represents the number of
the time step in which a given node is to be defended (Figure 4).
Similarly as the N+P representation the T representation allows
the number of defended nodes to be different in each time step. For
example in Figure 4 three nodes are defended in time step 1, two
nodes are defended in time step 2, and four nodes are defended in
time step 3.
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Figure 4: Time step (T) representation.

2.3 Genetic operators
In this paper three solution representations are proposed for the
Parameterless Firefighter Problem. In order for evolutionary algo-
rithms to work with these representations, crossover and mutation
operators are necessary. In this paper the following operators were
used.

For the Permutation (P) representation ten crossover opera-
tors were used: Cycle Crossover (CX) [31], Linear Order Crossover
(LOX) [10], Merging Crossover (MOX) [30], Non-Wrapping Order
Crossover (NWOX) [6], Order Based Crossover (OBX) [32], Order
Crossover (OX) [13], Position Based Crossover (PBX) [32], Partially
Mapped Crossover (PMX) [14], Precedence Preservative Crossover
(PPX) [2, 3] and Uniform Partially Mapped Crossover (UPMX) [7].
Also, five mutation operators were used: Displacement, Insertion,
Inversion, Scramble and Transpose.

For the permutation part of the Number of firefighters + Per-
mutation (N+P) representation the same ten crossover and five
mutation operators were used as for the Permutation (P) repre-
sentation. The Nf parameter is represented as one integer in the
genotype. This integer was selected randomly from one of the par-
ents in the crossover operator and was mutated using uniform
mutation.

For the Time step (T) representation single point, two point
and uniform crossover operators were used. Also, two operators
dedicated to this representation were tested, named MinCrossover
and MaxCrossover which produced one offspring from the two
parents by taking, respectively, a minimum or maximum at each
position from each of the two parent genotypes. For mutation
the Displacement, Insertion, Inversion, Scramble, Transpose and
uniform mutation operators were used.

In the parameter tuning phase of the experiments these operators
were tested individually and with an autoadaptation mechanism
selecting operators with probabilities based on success rates of
these operators [24].

3 EXPERIMENTS
The experiments presented in this paper were aimed at three goals:

• determining the best operators and algorithm parameteriza-
tion for each solution representation,

• finding out which solution representation is the best, overall,
• comparing different multiobjective evolutionary algorithms.

In the experiments two algorithms were used: the MOEA/D
[21, 34] and the NSGA-II [9], both with each of the three solution
representations described in Section 2. These two algorithms were

selected because they use two different approaches to multiob-
jective optimization. The NSGA-II is a Pareto-based algorithm in
which solutions are selected according to Pareto dominance, and the
MOEA/D is a decomposition-based algorithm in which solutions
are selected using scalarized values of the objectives. Therefore, it is
interesting to check if the choice of the optimization algorithm has
any influence on which representation and genetic operators are
the best. Also, these two algorithms are very often used in various
applications, with the number of citations of the original papers
exceeding 26 000 (the NSGA-II, [9]) and 4 000 (the MOEA/D, [21]
and [34] combined) according to Google Scholar. The following
sections describe the test instances, the parameter tuning method
and the comparison of solution representations and algorithms.

3.1 Test instances
Test instances used in the experiments were based on REDS graphs
[1]. This graph model was proposed in order to obtain spatial edge
distribution resembling the distribution in a real-life social network.
In REDS graphs denser cliques are separated by relatively sparse
areas. Nodes of an REDS graph are placed randomly, with a uni-
form probability on the unit square [0, 1] × [0, 1]. Three parameters
are used to control the generation of edges: R - the maximum dis-
tance between connected vertices, E - the social energy, and S - the
synergy parameter.

Each node in the graph is initially given an energy budget equal
to E. Pairs of nodes separated by a distance not larger than R are
randomly selected and for each selected pair ⟨vi ,vj ⟩ an attempt is
made to generate an edge connecting these nodes. The base cost of
an edge is equal to its length Di j = d(vi ,vj ), but if nodes vi and vj
have ki j neighbours in common, the cost of the edge is discounted
by the factor of 1

1+Ski j , where S is the synergy parameter. Also, the
addition of the new edge between vi and vj may discount costs of
other edges, because vi can become a new common neighbour for
vj and one of its adjacent nodes or vj can become a new common
neighbour for vi and one of its adjacent nodes. Thus, edge costs
have to be recalculated for all edges connected tovi andvj . If these
recalculated costs (including the cost of the newly created edge) do
not exceed E for neither vi nor vj , the new edge is created.

In the experiments graphs with Nv = 1000, . . . , 10000were used.
Table 1 lists the parameters used for generating the graphs: R, E
and S . Apart from the graph parameters the time limit tmax for
each instance is given, starting from 30 seconds for graphs with
Nv = 1000 nodes and scaling linearly with the graph size.

Figure 5 shows an example of an REDS graph with Nv = 5000
nodes generated using the parameters shown in Table 1.

3.2 Operator selection and parameter tuning
The parameters of the algorithms were tuned by running both algo-
rithms using each of the solution representations and with various
settings of the parameters. Parameter tuning runs were performed
on 30 Parameterless FFP instances with Nv = 1000 nodes with
a running time limit of tmax = 30 seconds. Note, that in order to
avoid overfitting, the parameter tuning was performed on differ-
ent 30 instances than the ones used in Section 3.3 for comparing
solution representations and algorithms. The performance of the
algorithms was measured using the hypervolume (HV) indicator
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Table 1: Parameters of graphs on which test instances were
based and time limits used in the experiments.

Nv R E S tmax
1000 0.1000 0.15 0.5000 30.0
1250 0.0890 0.15 0.4470 37.5
1500 0.0820 0.15 0.4080 45.0
1750 0.0760 0.15 0.3780 52.5
2000 0.0700 0.15 0.3500 60.0
2250 0.0670 0.15 0.3330 67.5
2500 0.0630 0.15 0.3160 75.0
5000 0.0447 0.15 0.2236 150.0
10000 0.0316 0.15 0.1581 300.0

Figure 5: An example of anREDS graphwithNv = 5000nodes
generated using the parameters shown in Table 1.

[35] calculated for the set of nondominated solutions produced in
each of the runs. From these 30 runs a median value was calculated.

Because of the large number of parameters the parameter tuning
was split into three rounds in which, respectively, parameters of the
evolutionary algorithms, crossover operators and mutation were ad-
justed. For both the MOEA/D and the NSGA-II the population size
Npop can be adjusted. The MOEA/D algorithm is also parameter-
ized by T - the neighbourhood size, δ - the probability of selecting
parents from the neighbourhood, nr - the maximum number of
neighbours replaced by a newly generated solution. In the first tun-
ing round the parameters of the algorithms (Npop for NSGA-II and
Npop ,T , δ andnr for theMOEA/D)were tuned using the grid search
approach. The sets of tested values were Npop ∈ {50, 100, 200, 500},
δ ∈ {0.6, 0.7, 0.8, 0.9, 1.0} and nr ∈ {2, 4, 6, 8, 10}. Following the

findings of the paper [23] the neighbourhood size was set to odd val-
uesT ∈ {13, 17, 21, 25, 29} in order to avoid an asymmetric selective
pressure.

After finding the best setting for population size and (in the
case of the MOEA/D) other parameters, the selection of crossover
operator was performed. The algorithms were run with each of the
crossover operators available for a given solution representation
and with a setting (denoted ’All’) for which an autoadaptation
mechanism [24]was used. The probability of crossoverwas changed
in the range Pcross ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Similarly, mutation
operators were selected and mutation probability was selected from
the range of values Pmut ∈ {0.02, 0.04, 0.06, 0.08, 0.10}.

The results of parameter tuning for the bi-objective problem are
summarized in Table 2 which presents, for each solution represen-
tation and each algorithm, the best population size Npop and (in
the case of the MOEA/D) other parameters, the best crossover and
mutation operators and their probabilities.

A similar summary for the three-objective problem is presented
in Table 3. Note, that the MOEA/D requires the population size for
a three-objective problem to be a triangular number, because of
the way in which weight vectors used for problem decomposition
are arranged. For this reason in this round of tests slightly larger
populations were used with Npop ∈ {55, 105, 210, 528}.

From the operator selection and parameter tuning phase of the
experiments some conclusions can be drawn regarding the best
crossover operators for each of the representations. For the N+P
(Number of firefighters + Permutation) representation the best
crossover is the Position Based Crossover (PBX) operator [32]. For
the T (Time step) representation the best crossover is the MinCross
operator proposed in this paper. For the P (Permutation) represen-
tation in three out of four cases the LOX operator performed best,
however, when the NSGA-II algorithm was used for the bi-objective
problem, the autoadaptation mechanism (’All’) produced the best
results. There is no mutation operator that performed best in all
cases, however the two best choices were to use the autoadaptation
mechanism with all the mutation operators (’All’) or the Scramble
mutation alone.

3.3 Comparison of solution representations
and evolutionary algorithms

This phase of experiments was aimed at finding the best solution
representation and evolutionary algorithm for solving the Param-
eterless Firefighter Problem. In the experiments each of the two
algorithms (the MOEA/D and the NSGA-II) was used with each
of the three solution representations (Permutation (P), Number of
firefighters + Permutation (N+P) and Time step (T)).

The parameters for each of these six cases were set to the best
parameters obtained in Section 3.2 and the best set of genetic op-
erators was used. Each solution representation and algorithm pair
was tested on 30 instances of the Parameterless Firefighter Problem
for the number of vertices Nv = 1000, . . . , 10000. The maximum
running time given in Table 1 was used as the stopping condition.
For each of the 30 sets of nondominated solutions produced by
a given algorithm with one of solution representations the value of
the hypervolume indicator was calculated and the median from 30
runs was calculated.
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Table 2: The best algorithm parameters, crossover and mutation operators and crossover and mutation probabilities for the
bi-objective Parameterless FFP.

Representation Algorithm Parameters Crossover Pcross Mutation Pmut

Permutation (P) MOEA/D Npop = 50 T = 29 δ = 0.7 nr = 6 LOX 1.0 Scramble 0.02
NSGA-II Npop = 200 All 1.0 All 0.08

Number of firefighters MOEA/D Npop = 100 T = 29 δ = 1.0 nr = 2 PBX 1.0 All 0.10
+ Permutation (N+P) NSGA-II Npop = 200 PBX 1.0 All 0.08

Time step (T) MOEA/D Npop = 500 T = 29 δ = 0.8 nr = 2 MinCross 0.5 Scramble 0.10
NSGA-II Npop = 500 MinCross 1.0 Scramble 0.06

Table 3: The best algorithm parameters, crossover and mutation operators and crossover and mutation probabilities for the
three-objective Parameterless FFP.

Representation Algorithm Parameters Crossover Pcross Mutation Pmut

Permutation (P) MOEA/D Npop = 55 T = 29 δ = 1.0 nr = 8 LOX 1.0 All 0.06
NSGA-II Npop = 55 LOX 0.8 Scramble 0.10

Number of firefighters MOEA/D Npop = 105 T = 29 δ = 0.6 nr = 2 PBX 1.0 Displacement 0.08
+ Permutation (N+P) NSGA-II Npop = 55 PBX 1.0 Inversion 0.10

Time step (T) MOEA/D Npop = 210 T = 13 δ = 0.9 nr = 2 MinCross 0.5 All 0.08
NSGA-II Npop = 55 MinCross 1.0 Inversion 0.10

Results for the bi-objective problem
Median results for the bi-objective problem are presented in

Table 4 with the best (largest) value marked in bold.
From the values presented in Table 4 it is clear that the best

hypervolume values were obtained by the MOEA/D algorithm us-
ing the N+P (Number of firefighters + Permutation) representation.
To confirm that this result is statistically significant the following
statistical testing procedure was performed for the values obtained
for each graph size Nv separately. For 30 hypervolume values ob-
tained using the best-performing algorithm and each of the other
algorithms a paired Wilcoxon test [33] was performed yielding
a p-value pi for i = 1, 2, 3, 4, 5 (one p-value for each algorithm other
than the best performing one). From these p-values the Family-Wise
Error Rate (FWER) was calculated as 1 −∏5

1(1 − pi ). This FWER
value is the upper bound of the probability that for at least one of
the compared algorithms the null hypothesis was wrongfully re-
jected (that is, that this algorithm actually performs equally well or
better in spite of the observed evidence to the contrary). Low values
of FWER confirm the high statistical significance of the observed
superiority of the MOEA/D algorithm using the N+P (Number of
firefighters + Permutation) representation over the other algorithms.
Indeed, the highest FWER was 9.031 · 10−4 obtained for Nv = 1500
and this value is lower than 0.001. Thus, it can be concluded that
the MOEA/D algorithm using the N+P (Number of firefighters +
Permutation) representation really produces the best results for
the bi-objective Parameterless Firefighter Problem. On the other
hand, it is worth noticing, that for each number of graph nodes
Nv the second-best result was obtained by the NSGA-II algorithm
using the same representation. Therefore, it is reasonable to assume
that the N+P (Number of firefighters + Permutation) representa-
tion is indeed the best solution representation for the bi-objective
Parameterless Firefighter Problem.

Results for the three-objective problem
The results of a similar analysis performed for the three-objective

problem are presented in Table 5.
Clearly, it is not possible to select the best performing algorithm

for the three-objective problem, because both the MOEA/D and
the NSGA-II managed to produce the best results for certain graph
sizes Nv . However, the results allow to choose the best solution
representation which in the case of the three-objective problem is
the N+P (Number of firefighters + Permutation) representation -
the same as for the bi-objective problem. For the three-objective
problem the FWER values are much higher than in the case of the
bi-objective problem, and for many graph sizes Nv the statistical
significance cannot be confirmed. Combined with the results for
the bi-objective problem, however, the results presented in Table 5
strengthen the conclusion that N+P is the best representation.

4 CONCLUSIONS
In this paper a Parameterless Firefighter Problem was proposed,
motivated by the fact that the number of graph nodes protected
per a time step Nf has a strong impact on the difficulty of the
Firefighter Problem instances. In order to allow optimization al-
gorithms find good trade-offs between the Nf parameter and the
number of graph nodes lost to fire the classical FFP was reformu-
lated so that the number of graph nodes protected per a time step
Nf is encoded in problem solutions. To achieve this, three differ-
ent solution representations were proposed, one in which the Nf
value is represented as a decision variable and two in which it is
determined when the solution is decoded. The proposed solution
representations were used with two multiobjective evolutionary
algorithms: the MOEA/D and the NSGA-II and tested on Param-
eterless Firefighter Problem instances with the number of nodes
between 1000 and 10000.
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Table 4: Median hypervolume values from 30 runs attained by each solution representation and evolutionary algorithm for
each graph size Nv for the bi-objective Parameterless FFP. The best (largest) value in each row is marked in bold.

Nv
Permutation (P) Nf + Perm. (N+P) Time step (T) Family-Wise

MOEA/D NSGA-II MOEA/D NSGA-II MOEA/D NSGA-II Error Rate
1000 982056.5 970671.5 985410.5 983029.5 967695.5 964810.0 3.620 · 10−5
1250 1533545.0 1492356.5 1541137.5 1537235.5 1508588.5 1506578.5 1.272 · 10−4
1500 2176013.5 2084052.0 2198477.5 2190384.0 2144016.5 2141100.0 9.031 · 10−4
1750 2945761.0 2794630.5 3000800.0 2972935.0 2933085.0 2932196.0 7.014 · 10−5
2000 3803169.5 3640489.5 3919922.0 3880674.0 3834869.0 3834609.0 1.269 · 10−5
2250 4785438.5 4579605.0 4959531.5 4903556.0 4857046.0 4854262.0 1.269 · 10−5
2500 5827676.5 5553248.5 6113465.5 6035517.5 5968693.0 5970898.0 9.541 · 10−6
5000 22169505.5 20620213.0 24414291.5 24235753.0 23959927.5 23847147.0 8.672 · 10−6
10000 81740030.5 75604814.0 97776179.0 97347454.5 95761864.0 89395384.0 8.672 · 10−6

Table 5: Median hypervolume values from 30 runs attained by each solution representation and evolutionary algorithm for
each graph size Nv for the three-objective Parameterless FFP. The best (largest) value in each row is marked in bold.

Nv
Permutation (P) Nf + Perm. (N+P) Time step (T) Family-Wise

MOEA/D NSGA-II MOEA/D NSGA-II MOEA/D NSGA-II Error Rate
1000 953610516.0 935232586.5 968258603.5 889652125.5 893483867.5 730113850.0 0.0520
1250 1814368668.5 1756130281.0 1870850430.0 1671479941.5 1525211913.0 1388050477.5 0.0176
1500 3095128423.5 2889177852.5 3211499922.0 2796835187.0 2434920616.5 2255950641.5 0.0979
1750 4594296873.0 4446420416.5 4879166742.0 4326787175.0 3622807875.0 3545163978.5 0.0040
2000 6297965177.0 6035160940.5 7102332970.0 5868730658.5 5048301232.5 5124557726.0 0.1360
2250 8813502087.5 8191912579.5 9531708081.0 8289174146.5 7072694162.5 7238768842.0 0.0463
2500 11752739503.0 10608788569.0 12327819503.5 11145561694.5 9312510155.5 9482696949.0 0.0635
5000 63707019954.5 65787632113.0 71052731810.5 78642727320.0 68584248762.5 69371815103.5 0.1959
10000 448701138974.0 446261858669.0 512978666127.5 560541442074.5 519234500104.5 529539412451.0 0.0157

For the bi-objective Parameterless FFP the best results were
obtained by the MOEA/D algorithm using the N+P (Number of
firefighters + Permutation) representation. Statistical testing con-
firmed high statistical significance of this result. Also, the second-
best results were obtained by the NSGA-II algorithm using the
same representation. Therefore, it can be concluded that the N+P
(Number of firefighters + Permutation) representation is indeed
the best solution representation for the bi-objective Parameterless
Firefighter Problem.

Also, the three-objective Parameterless FFPwas studied, inwhich
the total number of defended nodes has to be minimized in addition
to the minimization of the number of the burnt nodes and the
minimization of the number of nodes defended per a time step
Nf . For this problem the best results were also obtained using the
N+P representation, some using the MOEA/D and some using the
NSGA-II.

Further work may include testing other metaheuristics with the
proposed solution representations for the Parameterless FFP. Es-
pecially, Estimation of Distribution Algorithms (EDAs) may be of
interest, because different probabilistic models may be applied to
different solution representations. The proposed solution repre-
sentation may also be useful in studies comparing the Firefighter
Problemwith other optimization problems involving threats spread-
ing in graphs, such as epidemics prevention [27] or prevention of
bankruptcies, for example using the threshold propagation model

by Burkholz et al. [5]. In both these problems the amount of re-
sources used to stop the threat (vaccine doses or financial reserves,
respectively) is often represented as one of the objectives and not as
a constraint imposed per a time step. Therefore, the Parameterless
FFP may be better suited for tests of optimization methods involv-
ing the FFP and these two problems than the original formulation
for which the value of the Nf parameter has to be predetermined
for each problem instance.
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