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ABSTRACT
Surrogate models are invaluable tools that greatly assist the process
of computationally expensive analyses and optimization. Engineer-
ing optimization reaps the benefit from surrogate models in order
to perform expensive optimization that could potentially be compu-
tationally intractable in the pre-high-performance computing age.
Moreover, surrogate models provide a means to allow engineering
design exploration with high-fidelity computer simulations. De-
spite their wide use and substantial research progresses, there are
still some key issues and challenges that need to be addressed by
researchers. Most of these issues stem from the growing complexity
of engineering design optimization and exploration in real-world
problems. In other words, the sophistication of the problem that we
have to tackle increases faster than that of computing power and
technology. It is thus imperative to have accurate and yet computa-
tionally efficient surrogate models that are suitable for real-world
engineering problems. In this paper, we discuss key issues and
challenges of the application of surrogate models in engineering
design optimization and exploration. This paper is directed toward
general readers, in which we aim to present general discussions
regarding the effectiveness, issues, and future of surrogate-based
optimization and exploration in engineering.
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1 INTRODUCTION
Computational design optimization and exploration methodology
have played an increasingly bigger role in engineering. An optimiza-
tion aims to produce optimal designs that improve the performance
over the baseline designs so as to gain benefits such as lower op-
erating cost and higher efficiency. On the other hand, the aim of
design exploration is to gain knowledge, insight into, and physical
understanding of the system that eventually lead to a better design
process. Optimization and exploration go hand-in-hand to produce
both optimized design solutions and also important design insight.
In many instances where exhaustive real experiments are not possi-
ble, computer simulations that can help predict design performance
become an indispensable component in design optimization and
exploration. However, an accurate optimization design and process
requires high-fidelity computer simulations, which can make the
implementation of population-based optimization methods such
as genetic algorithms computationally impractical. To that end,
it is now common to deploy surrogate models, i.e., mathematical
models that can provide cheaper evaluations of the input-output
relationship of a system, in such computationally expensive tasks.

Surrogate-based optimization (SBO) has been demonstrated in
various engineering fields, ranging from aerospace, chemical, me-
chanical, and environmental engineering, to name a few. Research
activities in its method and algorithmic development goes hand-in-
hand with those in the engineering applications. The engineering
community normally works by a problem-driven philosophy, i.e.,
the optimization method should be able to deal with various com-
plexities of the current real-world problems at hand. On the other
hand, other communities such as evolutionary computation and ap-
plied mathematics communities primarily focus on the method and
algorithmic development with fewer concerns on actual real-world
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challenges faced by the engineering community. Both research di-
rections are equally critical, and have seen significant development
in recent years. We note, however, that there are still gaps between
the two research communities. The algorithmic development might
not be directly applicable to real-world problems. Likewise, not all
complexities in real-world problems are adequately addressed by
the existing methods. We strongly believe that identifying these
gaps is the first key step to bridge these two different research com-
munities, which can in turn further accelerate the advancement
of the engineering optimization and exploration and their applica-
tions. As an example, researchers typically assume that all solutions
will return objective function values, while in reality some of these
solutions might fail due to convergence issues. To that end, it is
important to raise awareness regarding the key issues, concerns,
and challenges faced in typical engineering design optimization
and exploration problems.

The main objective of this paper is to summarize the key issues
and challenges concerning the applications of SBO techniques in
real-world problems. Instead of focusing on a particular field of
application, we look into the common pitfalls and challenges that
are applicable to various engineering disciplines. We write this
paper to address both research communities, that is, we hope that
this paper will introduce the key issues in engineering design opti-
mization and exploration to researchers who work in algorithmic
development and also applications. We certainly hope that this
paper can help researchers identify the key research focus in the
field of SBO and its implementations, and to set the directions of
the future research.

2 SURROGATE-BASED METHODS
In this section, we discuss the common applications of surrogate
models in engineering design analyses. Although our main discus-
sion focuses on engineering design optimization and exploration, it
is also important to briefly examine other applications of surrogate
models to give readers an awareness of the other functionalities
of surrogate models in engineering. We then also discuss how sur-
rogate models can be used within various optimization algorithm
frameworks for aiding design optimization and exploration.

2.1 Applications of surrogate models
In general, surrogate models of lower complexity that are inexpen-
sive to evaluate and approximate accurately a large-scale model can
greatly facilitate computationally intensive analysis tasks at hand.
Such analyses include optimizations, which are typically performed
iteratively, or by relying on population-based algorithms. Other
examples include analyses that involve Monte Carlo simulations
that require many thousands of scenarios to characterize the ef-
fects of the uncertainty in the system. These analyses, when using
the large-scale model, are intractable. The prediction of surrogate
models aids designers in performing a wide range of analysis with
an affordable number of computer simulations.

2.1.1 Design optimization and exploration. One of the most im-
portant applications of surrogate models is design optimization.
In design optimization, surrogate models are used to model the
relationship of the input variables and the objective and constraint

functions, in which the exact relationship is difficult or even impos-
sible to obtain. Often, real-world engineering optimization problems
involve computationally expensive computer simulations or, in few
cases, expensive physical experiments. The use of approximation
models in engineering optimization is relatively old and can be
traced back to structural optimization community. According to
Viana et al. [107], the use of surrogate models in engineering opti-
mization and exploration started to flourish after the publication of
Sacks et al. seminal paper in the design and analysis of computer
experiments [90].

Additionally, surrogate models are also invaluable tools in as-
sisting design exploration, to gain the knowledge, insight, and
physical interpretation that can be very useful in the design en-
deavor [30, 73]. Surrogate models can also be coupled with global
sensitivity analysis tools such as the Sobol’ method [98] to iden-
tify the impact of each design variable to the output. This method
can provide information on the importance ranking of the inputs,
based on how much their variations affect the variation of the out-
put. Multi-objective optimization and design exploration can work
hand-in-hand in the form of multi-objective design exploration
(MODE) [73]. In this approach, design exploration is applied both
in the global space and also among the non-dominated designs.
Exploration of non-dominated designs sheds a light on the trade-off
between optimal designs, which is a key information for engineers.

2.1.2 Uncertainty quantification and sensitivity analysis. Other
important applications of surrogate models in engineering are un-
certainty quantification (UQ) and global sensitivity analysis (GSA).
Instead of treating the system deterministically, we treat the inputs
and outputs as random variables. In UQ, we aim to quantify the
uncertainty in the output as a function of the random inputs. On the
other hand, the goal of GSA is to quantify the contribution of each
random variable to the output variation, by taking into account
the interactions between inputs. Monte Carlo simulations are com-
monly used to perform UQ and GSA. These simulations generate
an ensemble of random realizations by running the model deter-
ministically for different sets of random inputs. Using surrogate
models can significantly reduce the number of required function
evaluations, from the number of function evaluations required to
perform the Monte Carlo simulation to the number of samples re-
quired to construct the surrogate models. When the uncertainty
is described via probability theory, the surrogate model should be
accurate in the entire domain of the random space. In some SBO
practice, on the other hand, the surrogate modeling accuracy might
only be emphasized in the vicinity of the optimal solution.

One popular surrogate model in UQ and GSA is the polynomial
chaos expansion (PCE) method [12, 19, 101, 109]. PCE is powerful,
as it is theoretically convergent (under certain conditions), and its
polynomial coefficients directly provide the statistical moments
and sensitivity indices. Kriging is also frequently used, e.g., in UQ
of airfoil [96] and composite material [71]. A combination of PCE
and Kriging has also been explored, as was applied in the computa-
tional dosimetry [51]. As far as we know, other surrogate models
besides PCE and Kriging have not been widely used in UQ and
GSA, although more careful observation is needed to confirm this
hypothesis.
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2.1.3 Structural reliability Analysis. Surrogate models are also
used in structural reliability analysis to compute the probability
of failure. In this respect, the surrogate model is used to classify
the problem space into a feasible and infeasible region. In struc-
tural reliability analysis, the surrogate models need to be accurate
primarily near the limit state function region, i.e., the boundary be-
tween the feasible and infeasible domain. Neural-network was one
popular surrogate model for such an application [40, 100]; however,
recently, PCE [39, 66] and Kriging [26] (also its polynomial-chaos
Kriging variant [92]) are paving their way in this field. Kriging
is particularly attractive, owing to the availability of uncertainty
structures. Lu et al. recently developed an improved kriging with ex-
tremum response surface method for structural dynamic reliability
and sensitivity analyses [64].

2.2 Classification of surrogate-based
optimization techniques

In the following discussion, we classify SBO into several categories
based on how surrogate models are used in the optimization proce-
dure. Each classification is described briefly below. Note that this
discussion is limited to those where surrogate models are directly
involved in optimization procedures. Other approaches, such as the
use of surrogate models to assist in the derivation of multipoint
objective function formulations [58, 59], are beyond the scope of
this paper.

2.2.1 Decoupled methods. This is the simplest approach, where
the surrogate models and optimization algorithms are fully decou-
pled. The surrogate models are typically used to approximate the
objective function of the optimization, and the constraints when we
deal with constrained optimizations. In this case, any optimization
algorithms such as metaheuristics and local search can be applied
to find the optimum of the surrogate models. The optimum of the
surrogate model is then evaluated and when the sequential up-
date is adopted, the loop of surrogate building and optimization
is repeated again until one runs out of budget. In addition to its
simplicity, the choice of the surrogate modeling method and op-
timization algorithm are independent of each other in this case.
Some application examples that used decoupled techniques are
axial compressor blade optimization [91] and composite laminate
design [72].

2.2.2 Surrogate-driven methods. In this category, the surrogate
models are intrinsically built in the optimization procedure. One
example is the Bayesian optimization technique which relies on
the sequential updates of probabilistic surrogate models to find
the optimal solution. The popular expected improvement-based
efficient global optimization (EGO) [49] is one form of Bayesian
optimization technique. EGO is a popular algorithm in the engi-
neering community and has found its usages in disciplines such
as robotics [14], aerospace design [34, 47, 54], and petroleum en-
gineering [18]. Trust-region methods can also be classified as a
surrogate-driven method since they rely on approximation models
to solve the non-linear programming (NLP) problems [3, 4, 88].
This approach relies on the use of a local surrogate model (typi-
cally a quadratic function) to approximate the objective function
around the current best solution. The algorithm then computes the

step size and the improvement direction, followed by construct-
ing a local surrogate in the new “trust region.” The level of trust
is determined by assessing the improvement, i.e., whether it is to
subtle or even produces a negative improvement. Note that the tech-
niques mentioned above might involve some internal optimization
procedures (e.g. optimization of acquisition function in Bayesian
optimization). This internal optimization procedure is independent
of the surrogate-driven approach discussed here.

Gaussian processes and Kriging models are the most commonly
used surrogate models for the Bayesian optimization approach [55,
95]. Viana et al. proposed to import the uncertainty structure of
Kriging so that other non-probabilistic surrogates can be used in
EGO algorithms [106]. Radial basis function (RBF) is also widely
used as a surrogate model for surrogate-driven techniques, some-
times as a cheaper alternative to kriging, thanks to its interpo-
lating capability and also the ability to model highly non-linear
functions. Gutmann’s optimization method is one of the earliest
surrogate-driven techniques that utilizes RBF [32]. Following Gut-
mann’s work, many RBF-based methods that specifically handle
expensive problems were developed [36, 86, 87].

2.2.3 Surrogate-assisted methods. Unlike surrogate-driven tech-
niques, surrogate-assisted techniques depend on surrogate models
to aid the operators in other optimization techniques (e.g., meta-
heuristics such as evolutionary algorithms). Surrogate models play
an important role in such algorithms but their role is not as princi-
pal as in surrogate-driven techniques. One prominent example is
memetic algorithms that are assisted by surrogate models in local
search. The surrogate-assisted memetic algorithm has been applied
in multi-objective coastal aquifer management [99], car design [57],
and airfoil optimization [76], to name a few. Other metaheuris-
tics also reap benefits from surrogate models, which include the
evolutionary algorithm [114], differential evolution [69], evolution
strategy [50], and particle swarm optimization [102]. Readers are re-
ferred to a paper by Jin [48] for a more comprehensive review of this
topic. Some advantages of surrogate-assisted techniques, particu-
larly the population-based algorithms, are the parallelizability of the
function evaluations. In the multidisciplinary optimization (MDO)
community, however, surrogate-assisted metaheuristics have not
been commonly used, due to the scarcity of the open source solvers
and commercial implementation of such techniques.

2.3 When should we use surrogate models?
In this section, we would like to discuss about the common design
problems where using surrogate models is desirable. We also wish
to highlight the conditions where surrogate models give an edge
compared to other classes of optimization methods (e.g. model-free
metaheuristics and gradient-based methods).

2.3.1 When the budget of function evaluations is low to moder-
ate. The effectiveness of using surrogate models largely depend on
the cost of running the full-model function evaluation, the cost of
constructing the surrogate model, and the available computational
budget (time and resources). In the case of inexpensive function
evaluations, it is better to deploy non-surrogate methods such as
metaheuristics or multi-start local search. Likewise, surrogate mod-
els are not required when the objective and constraint function
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are evaluated by cheap and very low-fidelity solvers or analyti-
cal models. Surrogate models are the most effective when we deal
with computationally costly high-fidelity function evaluations with
limited computational time and computing power.

2.3.2 When the dimensionality is low to moderate. Although
there is a good progress in high-dimensional and gradient-enhanced
surrogate models, the current use of conventional surrogate models
is still limited to problems with low to moderate dimensionality.
That is, surrogatemodel construction and usages still suffer from the
"curse-of-dimensionality". Approximating very high-dimensional
problems (with thousands or even millions of decision variables [1])
still imposes serious challenges in surrogate modeling construction.
Nevertheless, research is progressing in this direction, as will be
further discussed in Section 3.2.

The definitions of low, moderate, and high dimensionality de-
pend on the problem and discipline. As a rule of thumb in a general
surrogate modeling context; we define low dimensional problems
when the number of variables is lower than 10, moderate from
10-50, and high when the dimensionality is higher than 50. Most
surrogate models are adequate for low-dimensional problems but
the efficiency decreases as we add more design variables [107].
Fortunately, such a weakness of conventional surrogate models
has long been realized. Researchers are working on increasing the
efficiency of surrogate models in moderate to high-dimension by
introducing techniques such as gradient-enhanced surrogate mod-
els, high-dimensional model representation, and dimensionality
reduction. It is worth noting that one advantage of surrogate-based
optimization is that it can be used with and without gradient infor-
mation.

2.3.3 When design exploration is one of the main goals. Design
exploration, as the name suggests, involves the exploration of var-
ious configurations and designs [30, 73]. Frequently, at the pre-
liminary design stage, fewer design variables are consider to gain
insight into the problem. Surrogate models play a key role when
exploring the design space is an issue. Using surrogate models that
are constructed based on high-fidelity models enables an accurate
design exploration even at the preliminary stage. The accuracy of
the surrogate models, of course, needs to be validated prior to the
usage. Although standard optimization can also assist the design
exploration process (e.g., by investigating multiple local optimum
designs) surrogate models can provide insight into the effect of
changing variables or parameters without running extra computer
simulations. This feature is not typically available with optimization
alone. Surrogate models can also give access to a quick global sen-
sitivity analysis, that helps designers in identifying the importance
of each design variable [46, 47].

2.3.4 When the design process relies on physical experiments.
Surrogate models can also be conveniently deployed in physical-
experiment based optimization and design exploration. This is par-
ticularly relevant when running computer simulations is too expen-
sive due to the complex physical phenomenon, e.g., as in unsteady
flow in flapping wing [16, 17]. In fact, we believe that SBO is the
only efficient method to solve physical-experiment based problems.
In such cases, computing the gradient information is almost im-
possible due to the noise and high cost. Surrogate models enable

physical experiment-based optimization and exploration by pro-
viding approximation models that filter the experimental noise.
However, we still need to be careful on choosing the SBO algorithm
for physical-experiment based optimization. This is mostly because
the majority of SBO algorithms are developed to solve computer
simulation-based problems, with different sets of characteristics
than those of the physical-experiment based case (e.g., deterministic
outputs).

3 KEY ISSUES AND CHALLENGES
In this section, we discuss some key issues and challenges that
are typically encountered by engineering optimization community
when tackling real-world problems using surrogate models.

3.1 Computational budget
The selection of the suitable optimization method largely depends
on the computational budget and the problem dimension. The com-
putational budget itself depends on many factors, including the
computing power and the model fidelity. Here, we assume that the
computational budget is analogous with the number of available
function evaluations.

Some SBO algorithms are specifically designed for a low budget
(e.g. EGO) or moderate budget (e.g. surrogate-assisted memetic
algorithms). Having more budget is beneficial especially in design
exploration and multi-/many-objective cases since we can have a
more accurate representation of the input-output relationship and
the design space. The use of the standard Bayesian optimization
procedure with Kriging surrogate model is prohibitive when a
large number of function evaluations is required (e.g., more than
1000). This is in particular due to the exponential training time of
Kriging, and the problem is further exacerbated when more than
one kriging model is required. With some modifications, however,
the surrogate-driven SBO can also be used with a large budget (e.g.,
by clustering [108]).

Surrogate-assisted metaheuristics are more suitable for moderate
budget problems. The evolutionary operators of surrogate-assisted
metaheuristic are also powerful in the sense that they enhance
diversity and exploration, which are important features for solving
multi- and many-objective optimization problems. With a moderate
budget, it is possible to cover more region in the objective space
with more points, allowing for a better design exploration process
through data mining technique.

3.2 Dimensionality and non-linearity
The non-linearity of the problem notably affects the effectiveness
of optimization algorithms. For example, the COBYLA algorithm,
which uses a linear approximation, is not suitable for highly non-
linear problems. If, say, we falsely assume that the function is linear,
the optimization progress would fail to find the optimum point.
Researchers typically assume that the problem is nonlinear and
deploy methods that can specifically handle nonlinear functions.
In this respect, modern surrogate models such as Kriging, RBF
and support vector regression (SVR) [25] are more suitable. Note
that there are also some real-world situations where the input-
output relationship cannot be precisely captured by a single global
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surrogate model (e.g. discontinuous response); in such situations,
we can use techniques such as the mixture of experts [8, 60].

However, algorithms that rely on global surrogate models will
encounter significant challenges if the black-box function are ex-
tremely non-linear (e.g. Rastrigin function). On the other hand,
some techniques which include surrogate-assisted memetic algo-
rithms rely on local surrogate modeling, thus are more capable
of handling extremely non-linear problems by capturing the lo-
cality of the optimization problems. Interestingly, although we
typically make an assumption that the problem is non-linear, some
real-world problems are indeed linear or near-linear and can be
approximated well with less complex models (e.g. polynomial re-
gression). It is suggested that, if possible, one performs preliminary
analyses regarding this issue [22]. One can also use cross-validation
to determine the most suitable surrogate model, especially when a
global surrogate model is used.

It is worth noting that most of the current state-of-the-art surro-
gate models are designed to handle problems with low to moder-
ate dimensionality. Nevertheless, we can exploit the optimization
problem’s hidden structures so as to make surrogate models more
effective in high-dimension. In most cases, some variables will have
little or no contributions to the optimum solution. It is therefore
imperative to prune such variables out of the optimization process,
to eliminate the unnecessary complexity of the computation. The
idea of dimensionality reduction stems from this issue, which led
to the development of dimensionality reduction assisted surrogate
models [13, 104]. When the problem is expensive, one can employ
tools such as the active subspace which can determine the directions
that contribute most to the problem [22].

3.3 Paralellization
With the advent of parallel computing, parallelization is also one
of the key issues in SBO. There are basically two parallelization ap-
proaches in computer simulations: the first one is to parallelize the
solvers, e.g. parallel computational fluid dynamics (CFD) computa-
tion, and the second one is to run the multiple function evaluations
parallely. With parallelization in one function evaluation, a single-
update method such as the conventional Bayesian optimization can
be directly used. However, it is worth noting that a linear speedup
due to the parallelization is impossible to achieve. Metaheuristics
that are assisted by surrogate models are easier for parallelization
since they primarily work with the population-based principle. On
the other hand, sequential-based SBO strategies such as Bayesian
optimization and RBF-based methods need to be modified to en-
able evaluating multiple function evaluations at the same time
(see [31, 53, 106, 112] for examples).

One potential challenge with parallel optimization is when the
calculation times for different designs vary widely. This is typical
in cases that involve unsteadiness, e.g., unsteady flow simulation,
or fluid-structure interaction. The parallel optimization algorithms
need to be modified when handling such problems to maximize
the use of parallel computational resources. For a more in-depth
discussion, readers are referred to a good review of parallel function
evaluations for optimization algorithms by Haftka [33].

3.4 Multi-fidelity surrogate modeling
Fidelity can be interpreted as the extent to which one simulation
scheme is closer to the truth. The different levels of fidelity are
typically defined based on how closely the models represent the
system’s physics [111]. Although there might be various levels of
fidelity, for simplicity, here we classify the fidelity into high- and
low-fidelity. Low-fidelity simulations can be obtained by reducing
the number of mesh elements, using simpler governing equations,
and partially converged simulation. In computational optimization,
high-fidelity simulations are typically more expensive but more
accurate than low-fidelity simulations. A multi-fidelity surrogate
model aims to find the right balance between the two levels of
fidelity, by combining a large number of low-fidelity function simu-
lations with fewer high-fidelity simulations. The main aim is to find
the balance between accuracy and computational cost. Some multi-
fidelity surrogate models that have been applied in engineering
are multi-fidelity Kriging [35], PCE [76], and support vector regres-
sion [44]. A multi-fidelity surrogate model has also been combined
with evolutionary algorithms and applied to antenna design [61].
A good review of multi-fidelity models is given by Fernandez et
al. [27].

However, it is worth noting that one issue of multi-fidelity surro-
gate modeling is the proper selection of the low-fidelity simulation.
It is possible that the low-fidelity simulations are not helpful in
aiding multi-fidelity surrogate modeling, for example, if the trend
of the low-fidelity simulation is inconsistent with that of the high-
fidelity simulation. Therefore, it is important to perform preliminary
analysis on the correlation between the low- and high-fidelity sim-
ulations prior to formulating the multi-fidelity approach [76, 103]

3.5 Robust and reliability based design
optimization

The aim of robust optimization is to find optimal solutions that
are robust in the presence of uncertainty. In real-world engineer-
ing design, uncertainties could come from the variations in design
condition (e.g., disturbances in velocity and temperature), manufac-
turing error, and even uncertainties in the computer simulations
themselves (i.e., model form uncertainties), to name a few [9]. Ro-
bust optimization can also be defined as an optimization process
that aims to design a product or system that performs well in the
design and off-design conditions (e.g. different flight conditions
for aircraft design). Notice that the design variables could also be
uncertain.

On the other hand, reliability-based design optimization aims
to find solutions that are optimal and also satisfy the constraint
in the probability of failure [10, 11]. Note that both frameworks
can be combined into robust and reliability-based design optimiza-
tion (RBDO). In such tasks, there are two parts where surrogate
models can be useful. First, surrogate models can be used as the
tool for evaluating the robustness (i.e., UQ) and the reliability of a
design (i.e., structural reliability analysis) to replace the expensive
Monte Carlo simulation (MCS). One popular surrogate model-based
technique for reliability computation is the active Kriging-MCS (AK-
MCS) [26]. This method uses Kriging to sequentially generate new
samples in the limit state region by exploiting the uncertainty struc-
ture of Kriging. In order to reduce the overall computational cost for
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both robust optimization and RBDO, it is also possible to combine
the design and random variables into one space. In such a case,
only one surrogate model is needed [15, 70]. The outputs from UQ
and reliability computation are typically the statistical moments
(i.e., mean and standard deviation) and the probability of failure,
respectively, that are used as the merit indicator of a design in the
optimization process. Second, an outer loop consisting of SBO can
be used in a manner similar to that of a standard deterministic
optimization to optimize the statistical moments while satisfying
the probability of failure.

Robust optimization and RBDO are computationally intensive
processes since they couple optimization, uncertainty analysis, and
reliability computation. Therefore, when the problem is not sensi-
tive to uncertainties, performing them might not be well-justified
computationally. If necessary, the performance of the deterministi-
cally optimized design can be checked post-optimization. However,
RBDO is suggested if the design will encounter significant distur-
bances from the nominal condition.

3.6 Constraint handling
Most real-world problems are formulated as a constrained optimiza-
tion problem. To that end, it is necessary to equip SBO with the suit-
able constraint handling capabilities. The presence of constraints
might also change the Pareto front of multi- and many-objective
optimization problems. For Bayesian optimization, constraints are
typically handled with special techniques such as the probability of
feasibility [93] or the modified version that gives a chance for solu-
tions near the boundary of the feasible domain to be selected [6].
Basudhar et al. proposed the use of support vector machines (SVM)
to approximate the boundary of the feasible domain. This method
is also capable of reducing the number of constraints surrogates to
just one [7]. There also exist several RBF-based methods that are
equipped with constraint handling capabilities [83, 84].

The complexity of constrained problems increases as the number
of constraints increase; furthermore, there is a high chance that the
percentage of the feasible region will also decrease. Consequently,
the complexity of surrogate-driven methods that need extra sur-
rogate models to model the constraints (e.g., the probability of
feasibility) also grows with the increasing number of constraints.
To handle this, Zhang et al. investigated several constraint aggre-
gation methods for SBO of an aircraft wing [113]. Note that the
method proposed by Basudhar et al. can also handle this problem
by SVM [7].

For surrogate-assisted techniques, the constraint handling should
be facilitated in both the primary algorithm (see Mezura and Coello
for a review of constraint handling on metaheuristics methods [68])
and the corresponding operators that use surrogate models (e.g.
local search in memetic algorithms). For decoupled techniques,
the constraint handling purely depends on the selected optimiza-
tion framework. Surrogate models can be used to approximate the
constraint functions too in this case.

3.7 Noisy optimization
Computer simulations are deterministic, where the same inputs
will always produce the same outputs. The noise that is typically
present in physical experiments is therefore irrelevant in such a

setting. However, numerical “noise” might still exist as artifacts
of the numerical scheme. Such numerical noises might yield an
undesirable effect on interpolating surrogate models (e.g. overfit-
ting). In Bayesian optimization literature, the surrogate models and
infill criteria should be modified to take into account the effect
of noise [43, 81, 94]. Some specialized mechanism have also been
developed to enhance surrogate-based optimization techniques so
as to handle noisy problems [37, 52]. When decoupled techniques
are used, the constructed surrogate models should also consider the
impact of noise. Thus, regression, instead of interpolating, models
should be used in the presence of noise.

It is worth noting that noisy optimization is not equivalent to ro-
bust optimization (a.k.a optimization under uncertainty). In robust
optimization, uncertainty in design variables or design parameters
are considered but the simulation itself might be deterministic (ro-
bustness is evaluated by using several deterministic simulations).
However, in noisy optimization, the function evaluation might be
corrupted by noise but the design variables or design parameters are
treated deterministically. Considering both cases simultaneously
would significantly increase the optimization problem complexity,
since it is difficult to distinguish the impact of noise and uncertain
variables/parameters.

3.8 Failed and untrustworthy simulations
Failed simulations can return no valid function values, which im-
poses serious problems when they are used in an optimization
procedure. In surrogate-assisted methods, particularly those that
are based on metaheuristics, the presence of failed simulations is
not a big problem since such solutions can be excluded from the se-
lection process (e.g., by giving a very large value for minimization).
When surrogate models are not used in a sequential process, e.g., for
the global sensitivity analysis and design exploration purposes, the
failed simulations can be discarded once they are identified. How-
ever, the presence of failed simulations imposes a serious problem in
sequential surrogate-driven optimization since it might terminate
the optimization process prior to reaching its optimum value.

One simple solution to tackle this problem is by performing a
random simulation to continue the optimization process; however,
there is still no guarantee that we will not revisit the failed region.
Forrester suggested to impute the values of the prediction added
by the standard deviation when using kriging as the surrogate
model [29]. Such an approach is inapplicable for non-probabilistic
surrogate models (e.g., SVR). Moreover, when users are unable
to modify the optimization code, dealing with failed simulations
becomes more challenging. In that case, users have to stop the
optimization, put a random sample, and then continue the optimiza-
tion process. This is inconvenient especially if the users want the
optimization process to be fully automatic. When dealing with a
black-box optimization code, the best that the users can do is to
impute some artificial values to the failed simulations. We then
suggest that more research should be dedicated to the imputation
of failed simulations in surrogate-based optimization. Treatment of
missing data is a specific subject of study itself and researchers can
borrow the idea from the statistical research community to handle
missing data in surrogate-based optimization [38, 105].
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Another possible scenario is the existence of sampling points
that return untrustworthy outputs. Such untrustworthy outputs
might occur due to errors in meshing, where the simulation can still
return a value, albeit invalid. Detecting this kind of outputs is more
difficult than identifying failed simulations, so great care needs to
be taken. Experts in the problem can identify such untrustworthy
simulations by observing the outputs, for example, if the output
is too high or too low and seems to be unrealistic. Untrustworthy
outputs can also be identified by outlier detection schemes as done
by Martinez et al. [67] in the context of Bayesian optimization.

3.9 Multi- and many-objective optimization
In contrast to single-objective optimization, multi- andmany-objective
optimization are particularly useful when engineers/researchers
want to perform exploration and trade-off between competing ob-
jective functions. Typically, multi-objective refers to two or three
objective functions, while many-objective considers more than
three objective functions [28, 42]. One simple way to use surrogate
models in multi-/many-objective optimization is to construct sur-
rogate models for each objective function and then optimize the
surrogate models using algorithms such as NSGA-II (i.e. decoupled
techniques); in this case, we fully trust the model. Such a framework
has been applied to the optimization of composite laminate [72], cy-
clone separator [97], andmicrochannel heat sink [41], to name a few.
Another advantage of this method is that the function evaluations
are easily parallelizable. However, when the input-output relation-
ship is highly non-linear, it is not reliable to fully trust the model.
In that case, the multi-objective Bayesian optimization (MOBO) is
one potential sequential approach that carefully adds new solutions
to construct the Pareto front. Similar to its single-objective coun-
terpart, MOBO typically uses the Kriging model and its uncertainty
structure. MOBO, with various infill criteria, has been applied to
engineering cases such as aerodynamic design [77] and chemical
reactor design [78], to name a few. Other iterative surrogate-based
methods for multi-objective optimization are the RBF-based Gap
Optimized Multi-objective Optimization using Response Surfaces
(GOMORS) [2] and the Multi-Objective Constrained Stochastic op-
timization using Response Surfaces (MOCS-RS) [85].

In contrast to multi-objective optimization, many-objective opti-
mization with surrogate models has not yet been widely explored
and used in engineering design optimizations. This is mainly due to
the increased problem complexity as a consequence of the increase
in the number of objectives. There have been some recent develop-
ments on methods that can specifically handle many-objective op-
timization problems. As an example, the Kriging-assisted reference
vector evolutionary algorithm (K-RVEA) can solve many-objective
problems with computationally expensive simulations [21]. This
method has been demonstrated to optimize a blast furnace with
eight objectives [20].

3.10 Utilizing derivatives information
Some numerical codes provide direct information of derivatives that
can be used to enhance the prediction accuracy of surrogate models.
The first-order derivative (gradient) information is frequently used
while higher-order derivatives are rarely used. Some approaches use
the second-order derivative (Hessian) [89, 110]. Some CFD codes

are equipped with a routine to evaluate the gradient for an arbi-
trary number of variables, primarily via the adjoint method [45].
Typically, the evaluation of gradient via adjoint takes only one addi-
tional CFD simulation for an arbitrary number of variables, which
explains its popularity in the aerodynamic optimization community.
However, the presence of noise in the gradient information can
significantly affect the performance of a gradient-based optimiza-
tion. Another alternative is to utilize gradient-enhanced surrogate
models that can filter out the noise in both function response and
gradient. The effectiveness of gradient-enhanced surrogate models
have been demonstrated in the optimization of turbomachinery
components [5].

There exist various gradient-enhanced extensions of surrogate
models. Arguably, one of the most popular gradient enhanced surro-
gate models is the gradient-enhanced Kriging (GEK) [63]. However,
the gradient-enhanced version of PCE [79], and RBF [74], can also
be found in literature. Gradient-enhanced surrogate models are
highly useful for high-dimensional modeling to leverage the curse-
of-dimensionality. However, the gradient information itself should
be effectively computed, which can be done by employing the ad-
joint or automatic differentiation method [82] (the latter typically
costs about 4-5 times of the original function evaluation for an
arbitrary number of variables).

When gradient information is utilized, it is worth noting that
noise could also exist in the gradient values. Similar to that of
function response, the accuracy of gradient-enhanced surrogate
models also depends on the presence of gradient noise and how this
noise is taken into account during the construction of surrogates.
To the best of our knowledge, there are only few methods explicitly
designed to handle gradient noise. In this respect, GEK can be
further extended to handle the noise in gradient by introducing a
second regression factor that alters the diagonal matrix [24]. De
Baar et al. shows that the extended GEK is capable of reducing
approximation error as compared to the standard GEK that only
uses one regression factor applied to the response.

3.11 Benchmarking of optimization algorithms
Benchmarking is important to examine the strengths and weak-
nesses of various optimization algorithms. It can help users decide
the most suitable algorithm for the problem at hand. Since not
all characteristics of real-world problems can be fully replicated
by artificial problems, benchmarking with real-world problems is
important to give us insight into the performance of optimization al-
gorithms when handling real-world complexities. Some studies that
proposed new optimization algorithms also performed such a study
after benchmarking with artificial problems, e.g., the comparison
of K-RVEA, ParEGO, MOEA/D, and RVEA on free-radical poly-
merization [21]. Although there are some existing studies on the
comparison of surrogate models for various real-world problems,
e.g., ground water remediation process [65], wing design [75], and
turbomachinery design [80], these studies compared the approxi-
mation capability of surrogate models and not the surrogate-based
optimization strategies. Some studies that focus on comparison
of various surrogate-based optimization algorithms or strategies
in real-world problems can be found in Han et al., [62], Zuhal et
al. [115].
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Unfortunately, despite its importance, studies to compare various
optimization algorithms on real-world problems are still limited,
mainly because such problems are typically not publicly available.
It is therefore imperative to establish a library of benchmarking
problems based on real-world problems that are accessible to re-
searchers. The comparison does not really need to be performed
with computationally expensive simulations. Instead, benchmark-
ing can be done with low-fidelity computer simulations (which are
non-algebraic problems) so that multiple independent runs can be
executed. It is worth noting that the use of high-fidelity simula-
tions in optimization problem does not necessarily translates to
complex optimization problems. One interesting publicly available
test suite is the set of CFD-based problems developed by Daniels
et al. [23]. These test problems are suitable for comparing various
surrogate-based optimization algorithms since they are based on
solving PDEs (e.g. fluid flow equation).

4 THE FUTURE OF SURROGATE-BASED
METHODS

Considering their usefulness and wide use in many engineering
disciplines, we project that surrogate models will continue to be
a key element in advancing engineering design optimization and
exploration. We expect to see further growth and development in
terms of the form and types and surrogate models. In the past, linear
and polynomial models were the most popular forms. However, at
present, there is a great interest in surrogate models such as RBF,
SVR, and Kriging [107] that are more suitable for non-linear func-
tions. We also need to note that polynomial regressions in the form
of PCE have found its popularity in the UQ and SA communities.
Despite its origin from UQ and SA community, PCE (in particular
its non-intrusive version) is a surrogate model that can be virtually
used in many disciplines and applications.

As noted by Viana et al. [107], the complexity of the problems
that the engineering community has to tackle grows faster than
that of surrogate modeling technology. We expect that SBO will still
hold an important role in the far future. As the computing power
grows, we become more capable of tackling problems that were
previously too expensive to perform. For example, CFD with Euler
solver was considered as a high-fidelity technique back in the 1970s.
Today, however, solving the Euler equation of a three-dimensional
model can be executed with a personal computer within one day.
This basically implies that our definitions of high-fidelity and low-
fidelity simulations change over time. Regardless of the changes
in the scope and definition of what constitutes as a high-fidelity
model, we are confident that surrogate models will continue to lend
themselves to help make running computationally intensive tasks
that involve high-fidelity models intractable.

The curse-of-dimensionality in surrogate modeling remains an
open issue. While gradient information has been shown to be help-
ful in leveraging this problem, it is not always readily available in
all computational cases. Researchers still work towards tackling the
curse-of-dimensionality without relying too much on the gradient
information, and works are still underway. There have also been
some attempts to couple surrogate models with methods that could
reduce dimensionality such as the partial least squares [13] and the
principal component analysis [56]. However, high-dimensionality

problems are typically only tackled in the later stage of design
and optimization. In design exploration and preliminary optimiza-
tion, engineers typically focus on a manageable number of design
variables for an easier interpretation of various designs. Therefore,
obtaining higher accuracy surrogate models and expensive opti-
mization in low to moderate dimensions are still topics that are
highly relevant in the near and far future.

5 CONCLUSIONS
In this paper, we review and discuss some key issues in engineering
design optimization and exploration using surrogate models. The
main objective of this paper is to introduce the common issues
and challenges that are typically faced by engineering optimization
community to general readers. The classification of SBO based on
the role of the surrogate model in the optimization process was
also discussed. Discussions on particular situations and conditions
where the use of surrogate models was more beneficial than other
optimization techniques were also given. We also discussed some
particular aspects that were not so widely addressed outside the en-
gineering optimization community, such as the failed simulations,
gradient-enhanced surrogate models, and multi-fidelity simulations.
From the discussion, we argue that surrogate models will continue
to play an important role in design and optimization. We are pro-
gressively tackling more complex problems (e.g. RBDO) by still
relying on the surrogate model as the key technology.

We also argue that interaction between communities who are
working in algorithmic development (e.g., evolutionary computa-
tion and machine learning) and those in engineering and applica-
tions should be encouraged. This is necessary to accelerate the re-
search pace and also for the development of better problem-solving
procedures in the context of design optimization and exploration.
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