
Toward Human-Like Summaries Generated from Heterogeneous
Software Artefacts

Mahfouth Alghamdi, Christoph Treude, Markus Wagner
School of Computer Science, The University of Adelaide, Adelaide, Australia

ABSTRACT
Automatic text summarisation has drawn considerable interest in
the field of software engineering. It can improve the efficiency of
software developers, enhance the quality of products, and ensure
timely delivery. In this paper, we present our initial work towards
automatically generating human-like multi-document summaries
from heterogeneous software artefacts. Our analysis of the text
properties of 545 human-written summaries from 15 software en-
gineering projects will ultimately guide heuristics searches in the
automatic generation of human-like summaries.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;

1 INTRODUCTION
Since the advent of automatic text summarisation in 1958 [6], sum-
marisation techniques have been applied in various areas. In recent
years, automatic text summarisation has drawn considerable inter-
est in the area of software engineering due to the large number of
software artefacts created or updated by developers. These arte-
facts include bug reports [9], code elements on Stack Overflow [10],
classes [8], and methods [11].

The rise of openly available software and source code and the in-
crease in collaborative development are facilitated by the existence
of code repository services. GitHub is the leading collaborative de-
velopment platform with more than 96 million repositories hosted
and over 200 million pull requests, as of October 2018. There are
multiple reasons for GitHub’s success over other collaborative plat-
forms. The main reason is the fact that GitHub offers more than a
simple source code hosting service. It also provides developers and
researchers with a dynamic and collaborative environment that
supports peer reviews, commenting, and discussion [3].

GitHub introduced a built-in search engine to allow developers
to search within a project repository. This can help developers get
an overview of their project activity in order to progress their work.
However, the search results typically contain a large amount of
heterogeneous text from many different software artefacts. For ex-
ample, in the Node1 project repository, the search results for the
1https://github.com/nodejs/node, accessed on 30 March 2019.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326814

phrase “test case” contain 217 commits, 2,000 issues, and 224 source
code files. This leads to several challenges in understanding devel-
oper activities regarding the search phrase. Thus, the developer
is compelled to manually read through the returned artefacts to
understand what has been communicated. This is extremely dif-
ficult to do when the developer is working under a limited time
frame. A solution to this issue is automatic summarisation which
can generate a short summary of the original text found in these
heterogeneous software artefacts.

Two main approaches have been developed for the automatic
generation of summaries [4]. The abstractive approach creates a
summary by building a semantic representation of the source text.
In contrast, the extractive approach creates a summary from a sub-
set of existing sentences. The advantage of using the extractive
techniques over the abstractive one is its capability to handle prob-
lems, such as semantic representation, natural language generation
and inferences, which can be difficult for the abstractive technique
to cope with [1].

To the best of our knowledge, there is no existing approach in
the context of software engineering to create multi-document sum-
maries produced from heterogeneous software artefacts within a
given time frame, yet past work has shown that developers desire
such an approach [12]. In the first step toward our ultimate goal of
generating human-like summaries from heterogeneous software
artefacts, we analyse a total of 545 human-written summaries pro-
duced on a weekly basis by 53 students from 15 GitHub projects
to understand general properties of these summaries. The gener-
ated summaries were written in response to the question: If a team
member had been away, what would they need to know about what
happened this week in your project?. A Slack bot was used to au-
tomatically ask this question on a weekly basis and to record the
responses. Students were working in teams of three or four in their
undergraduate capstone projects with clients from local industry
toward a Bachelor degree (Courses #1 and #3) or with clients from
academia toward their Master’s degrees (Course #2).

In the future, we plan to make use of the characterisations from
this corpus of human-written summaries for our extractive sum-
marisation approach. As we need to solve a subset selection prob-
lems, i.e., which sentences from which artefacts produced in a given
time window should be selected, this problem can be classified as
a Search-Based Software Engineering problem [5]. To solve this
problem, the characterisation of the students’ summaries will guide
the search in at least two conceivable ways:
(1) In a single-objective formulation, e.g., to minimise the cosine

distance between an automatically generated summary and an
“average” student summary.

(2) In a many-objective optimisation problem, where the differ-
ent features are objectives in a high-dimensional space and the
student summaries provide a target region to focus search on [2].

1701

https://github.com/nodejs/node
https://doi.org/10.1145/3319619.3326814

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Mahfouth Alghamdi, Christoph Treude, Markus Wagner

Figure 1: Characteristics of the student summaries based on text features and grouped (from left to right) by courses, project
teams, and weeks. The axes do not have any particular meaning in projections like these.

2 HUMAN-WRITTEN SUMMARIES
As the student summaries are supposed to guide us in the future
to create human-like summaries, let us investigate our dataset to
observe possible hidden biases and changes over time; note that
both are purely observational. First, we calculate for each of the
545 summaries 27 features related to readability metrics, lexical fea-
tures, and information theoretic entropy to analyse all summaries.
Then, we visually inspect our 27-dimensional characterisation. To
enable this, we use t-distributed Stochastic Neighbour Embedding
(t-SNE) [7] to project the data-points into 2D. t-SNE’s reduction
process attempts to preserve the distances in the high-dimensional
space as much as possible.

Figure 1 shows the results of grouping the summaries by weeks,
courses, and teams. To facilitate the interpretation, we have added
(before employing t-SNE) to each grouping the respective Euclidean
average as each group’s centre. Consequently, the projections un-
avoidably vary slightly.
Insights per grouping: In the following, we highlight a few interest-
ing observations. The summaries of the students grouped by courses
are shown on the left in Figure 1. These courses are taught to grad-
uate students (Course #2) and undergraduate students (Course #1
and Course #3). Also, the student projects involved in these courses
are categorised as industrial projects (Course #1 and Course #3) and
non-industrial projects (Course #2). It is apparent from the distribu-
tion of the summaries that Course #2 sits apart at the bottom and
far from other groups while the two other courses are close to each
other at the top. The distribution of these courses reveals that the
summaries generated by the graduate students whose projects are
categorised as non-industrial projects have different text properties
while the two other courses have similar text properties, such as
length of the summaries, readabilities metrics, and entropy. This
variation in the summary properties can be attributed to many fac-
tors, including type of project (industrial/non-industrial projects),
education level (undergraduate/graduate students), and writing
style (students in Course#2 are less likely to be native speakers).

Similarly, in the middle of Figure 1, the summaries are grouped
by teams from each course. Summaries produced by Teams #5 and
#6 have similar text properties. In the same manner, Teams #4,
#11, and #14 have similar text properties, but they belong to two
different courses (Course #1 and Course #3, respectively—although
these courses are different instances of the same course offered
in different years). Teams #5 and #8 have the highest and lowest
average values respectively across all teams in term of some of

the features calculated. By inspecting the members of Team #5,
we found that most of the team are non-native speakers unlike
Team #8, and thus features calculated such as word count, average
sentence length, and unique words are less compared to features
calculated for members of Team #8.

Summaries written in later parts of the semester appear to have
fewer development activities compared to the initial weeks where
the students have much work to do to develop their projects. This is
reflected in the features calculated from their summaries and shown
on the right in Figure 1. Besides, different summaries formed by
the students who belong to different teams seem to have similar
text properties in different weeks. For example, Weeks #1 and #2
have text properties that are very close to each other. We note the
same behaviour in Weeks #10 and #13.
Conclusion: Our approach of utilising t-SNE to interpret the stu-
dents’ summaries data at different grouping levels using the 27
features allows us to identify summaries that can serve as “gold
standard” summaries. We will use these to evaluate our future work
on extractive summarisation techniques.

REFERENCES
[1] M. Allahyari, S. A. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,

and K. Kochut. 2017. Text Summarization Techniques: A Brief Survey. CoRR
abs/1707.02268 (2017).

[2] S. Chand and M. Wagner. 2015. Evolutionary many-objective optimization: A
quick-start guide. Surveys in Operations Research and Management Science 20, 2
(2015), 35–42.

[3] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. 2012. Social Coding in GitHub:
Transparency and Collaboration in an Open Software Repository. In Proc. of the
Conf. on Computer Supported Cooperative Work. 1277–1286.

[4] U. Hahn and I. Mani. 2000. The Challenges of Automatic Summarization. Com-
puter 33, 11 (2000), 29–36.

[5] M. Harman and B. F. Jones. 2001. Search-based software engineering. Information
and Software Technology 43, 14 (2001), 833–839.

[6] H. P. Luhn. 1958. The Automatic Creation of Literature Abstracts. IBM Journal
of Research and Development 2, 2 (1958), 159–165.

[7] L. v. d. Maaten and G. Hinton. 2008. Visualizing data using t-SNE. Journal of
Machine Learning Research 9 (2008), 2579–2605.

[8] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker.
2013. Automatic generation of natural language summaries for java classes. In
Proc. of the Int’l. Conf. on Program Comprehension. 23–32.

[9] S. Rastkar, G. C. Murphy, and G. Murray. 2014. Automatic Summarization of Bug
Reports. IEEE Trans. on Softw. Engg. 40, 4 (2014), 366–380.

[10] P. C. Rigby and M. P. Robillard. 2013. Discovering Essential Code Elements in
Informal Documentation. In Proc. of the Int’l. Conf. on Softw. Engg. 832–841.

[11] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. 2010. To-
wards Automatically Generating Summary Comments for Java Methods. In
Proc. of the Int’l. Conf. on Automated Softw. Engg. 43–52.

[12] C. Treude, F. Figueira Filho, and U. Kulesza. 2015. Summarizing and Measuring
Development Activity. In Proc. of the Meeting on Found. of Softw. Engg. 625–636.

1702

	Abstract
	1 Introduction
	2 Human-written summaries
	References

