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ABSTRACT

This work presents interesting multi-point search algorithms
exploiting several surrogate models, implemented in Mi-
namo, the multi-disciplinary optimization platform of Ce-
naero. Many types of surrogate models are used in the litera-
ture with their own strengths and weaknesses. More generally,
each one models differently a given problem and provides its
own representation of the reality. The idea of this paper is
to exploit simultaneously different types of surrogate models
in order to catch automatically their strengths and to out-
shine some of their weaknesses. This strategy is based on
a multi-point enrichment at each iteration, each candidate
point being provided by one kind of surrogate model and/or
criterion. This strategy can be tuned by selecting different
infill criteria, based on different surrogate models, in order
to improve more specifically different aspects such as feasi-
bility, exploration and/or exploitation. The performance of
this surrogate-based optimization framework is illustrated on
well-known constrained benchmark problems available in the
literature (such as GX-functions and MOPTA08 test cases).
Good performance both in terms of identification of feasible
regions and objective gains is demonstrated.

CCS CONCEPTS

• Theory of computation → Online learning algo-
rithms; Active learning; • Computing methodologies
→ Machine learning approaches; Modeling methodologies; •
Mathematics of computing → Evolutionary algorithms.
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1 INTRODUCTION

A globally effective approach to optimization problems based
on computationally expensive high-fidelity computations lies
in the exploitation of surrogate models. They act as cheap-
to-evaluate alternatives to the original model reducing the
computational cost, while still providing improved designs. A
wide variety of techniques are available to build these models,
such as Radial Basis Function Networks (RBFN) or Kriging,
which all have their advantages and drawbacks, see [11]. The
underlying principle of Surrogate-Based Optimization (SBO)
consists in accelerating the optimization process by essen-
tially exploiting surrogates for the objective and constraint
evaluations, with a minimal number of function calls to the
high-fidelity model for keeping the computational time within
affordable limits [10]. The SBO design cycle considered in
this contribution consists of several major elements as shown
in Figure 1.
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Figure 1: Online surrogate-based optimization frame-
work.

Key to efficient SBO is above all the exploitation of a
useful accuracy level as a compromise for fast but sufficiently
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reliable surrogate models. Surrogate-based approaches can be
categorized as online or offline approaches, according to how
the model interacts with the simulation and the optimizer.
The advantage of the considered optimization strategy is its
online modeling framework in which a model is created and
is adaptively improved during the course of the optimization,
while in an offline approach, the optimization is performed
based on an a priori trained model. It is therefore beneficial
to consider an online SBO context where the surrogate models
are refined at each iteration, because a dynamic training of the
surrogates during the optimization is much more efficient than
having to rely on static surrogates. This online SBO, carried
out by Minamo (see [27]), consists on several steps. First of
all, a Design of Experiments (DoE) is defined using an a priori
space filling technique LCVT (Latinized Centroidal Voronoi
Tessellations). The objective is to extract as much information
as possible from a minimum number of experiments for a
pertinent knowledge base over the design space. After the
evaluation of the DoE by the high-fidelity models, the next
step is then the online SBO process. The surrogate models are
trained based on the available information in the database,
and an evolutionary optimization step is launched to generate
new best candidates for the given optimization problem.
These candidates are then evaluated by the high-fidelity
models and their accurate performance is checked afterwards.
Finally, the new candidates are added to the database and
the online SBO is repeated until a satisfactory performance
is achieved.

Two important questions are induced from this surrogate-
based optimization scheme :

(1) how can we use the approximation models to suggest
new, improved designs in order to balance exploration,
exploitation and feasibility ?

(2) how to know which kind of meta-model is the more
appropriate to resolve our problem ?

1.1 Infill sampling criteria

Recently, Yondo et al. [37] provide a comprehensive and
present-day overview of surrogate-based optimization steps,
like design of experiments, choice of the type of the surro-
gate models and infill criteria. Wang and Shan [36] give an
overview of the meta-modeling techniques.

The first objective of infill sampling criteria (ISC) aims to
extract knowledge from the surrogate models to find potential
interesting areas for model refinement in order to strike a
balance between model exploitation and exploration (and
possibly feasibility). The goal with an infill search criterion is
therefore to extract a maximum information from a minimum
number of samples by balancing between :

• exploiting regions of the design space where the surro-
gate model indicates there might be a minimizer;

• exploring regions that are under-sampled and of high
estimated surrogates’ error;

• searching for feasible regions, i.e. regions where all
constraints are satisfied.

One of the more popular approaches to select update
points is the maximization of the Expected Improvement
(EI). This criterion has been used by a number of authors
for solving a variety of problems ; notably, in the Efficient
Global Optimization (EGO) algorithm developed by Jones
et al. [15], the generalized EI [29, 30], the weighted EI [32]
and multi-objective EI [16]. Further studies have adapted EI
to find multiple update points [12, 30], which is the topic of
this study.

Parr et al. [22] provide a review of single update infill
criteria for constrained problems showing that a probabilistic
approach to constraint handling outperforms the penalty
approach on a number of problems. This probabilistic ap-
proach, suggested by Schonlau [30], uses a product of the
EI of the objective function and the probability of feasibility
calculated from the constraint functions (see e.g. [24]). Parr
et al. [21] treat the EI and the probability of feasibility sep-
arately and explicitly consider trade-offs between them by
using multi-objective optimization. Similarly, Féliot [31] uses
a sequential Monte Carlo techniques to compute and optimize
the constrained EI extended for multi-objective optimization.

1.2 Multi-point strategy

In today’s industrial setting it is commonplace for paral-
lel computing architectures to be available to the designer
and this option is very valuable in surrogate-based opti-
mization. The updating strategy can be parallelized in the
sense that several points can be evaluated by the simulation
and added to the database at each design iteration. Fur-
thermore, mono-point infill search criteria generally suffers
from the complexity of combining and adjusting exploita-
tion/exploration/feasibility in a unique point. It is therefore
interesting to work on strategies that can add more than one
point per design iteration in an online optimization scheme.

Using multiple updates is far from a new idea, having been
notably explored by Schonlau [30]. With the availability of
parallel computing becoming commonplace, formulation of
multiple update infill criteria has received further attention
in past years [35]. Ginsbourger et al. [12] have provided an
extension to Schonlau’s early work by providing a sound
analytical expression for finding multiple updates based on
the EI.

Some works highlight the benefits of using a probabilis-
tic approach to handle inequality constraints when selecting
single updates [22]. Motivated by these finding, some exist-
ing methods used to select multiple updates are modified
to handle constraints using a probabilistic approach. By ex-
ploiting a smart blend of interpolation/regression (RBFN)
and classification (Probabilistic Support Vector Machines
(PSVM)), interesting mono- and multi-point infill sampling
criteria have been proposed, to improve the evolutionary
algorithm’s ability to quickly reach feasible zones in order
to tackle the challenges of highly constrained problems, see
[2, 4].
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1.3 Exploiting surrogate models

Surrogate modeling is at the core of the proposed strategy.
The surrogates being problem dependent may produce unre-
liable results, if a wrong surrogate is selected. Many works
have been done on the use of multiple surrogates with suc-
cess to enhance the robustness of the optimization process,
see e.g. [1, 28, 33]. Most of these approaches are based on
either the building of several types of surrogate models and
the selection of the best ones (based on quality metrics) or
the aggregation of different types of surrogates by weight-
ing them with a “quality” factor. These approaches help to
overcome the a priori choice of type of surrogate models, see
e.g [8, 13, 20, 34]. Viana and Haftka [35] notably propose an
algorithm for adding several points per optimization cycle
based on the use of multiple surrogates. They proposed an
approach that enables running the EGO algorithm with mul-
tiple surrogates simultaneously. Recently, Dong et al. [9] use
dynamically three types of surrogate models (Kriging, RBF
and Quadratic Response Surfaces). A multi-point infilling
criterion is presented to capture the new sample points on the
three models per iteration by using a score-based strategy.

The purpose of this paper is to use multi-point strategy
with multiple surrogate models based on multiple instance of
evolutionary algorithms. In the next section, some reminders
on basic concepts (surrogate models and infill criteria) are
exposed. Our proposed multi-point strategies exploiting dif-
ferent surrogate models and infill criteria are described in
Section 2.3. Then Section 3 shows the performance of the
proposed strategies on well-known benchmark problems. Fi-
nally Section 4 gives some conclusions and perspectives for
this work.

2 MULTIPLE SURROGATES-BASED
OPTIMIZATION STRATEGY

The idea of this work is to define infill criteria that can use
the information from several kinds of surrogate models, or
to consider several times the same criterion but based on
different surrogate models. These strategies are promising
because each surrogate model can induce its own representa-
tion of the real expensive function and by combining them, it
can profit from complementary information of the surrogate
models. As explained in the introduction, the advantages of
combining several surrogate models have already been stud-
ied via selection or aggregation of surrogate models strategies
but are generally limited to one instance of the optimization
algorithm. The idea of our strategy is to exploit the infor-
mation yield by multiple surrogate models in a multi-point
strategy within multiple instance of evolutionary algorithms
(EAs). In order to define our strategy, we will first remind
some basics concepts on surrogate models and infill criteria.

2.1 Surrogate models

In this study, we will consider two different surrogate models :
auto-Tuned Radial Basis Function (TRBF) network and
Kriging. RBF are linear models expressed as follows [5] :

y(x) =

n∑
i=1

wi h (||x− ci||2, σi), (1)

where n is the number of points in the database, the model y
is defined as a linear combination of n radial basis functions,
wi’s are the weights, h is called the hidden unit function
or the basis function, ci’s and σi’s denote, respectively, the
centers and the widths of the basis functions. The parameter
σ is a parameter controlling the smoothness of the interpo-
lation. The goal of the approximator is to find the weights
wi minimizing the error between the real outputs and those
predicted by the model. The considered auto-tuned RBF
model implements a tuning so as the surrogate models are
generated without having to prescribe the type of basis func-
tion (multiquadric or Gaussian) and hyper-parameter values
(fixed and variable widths heuristics), see [27].

The mathematical form of a Kriging model is

y(x) = µ(x) + Z(x) (2)

where x is an m-dimensional vector (m design parameters),
see [11]. The ”global trend” µ(x) approximates globally the
design space. Ordinary Kriging assumes a constant but un-
known mean : µ(x) = µ. The second term of Equation (2),
Z(x), represents the local deviation from the global trend
and is expressed using a stochastic process with zero mean
and covariance

cov(Z(xi), Z(xj)) = σ2R(xi, xj),

where σ2 is the process variance and R(xi, xj) is the correla-
tion function between points xi and xj defined by

R(xi, xj) = exp

(
−

m∑
k=1

θk|xi,k − xj,k|pk
)
,

where 0 < θk ≤ ∞ is the kth element of the correlation pa-
rameter denoted by θ and pk = 2 in our study. The parameter
θk is essentially a width parameter that affects how far a
sample point’s influence extends.

The best choice for the values of vectors θk can be obtained
by maximizing the following likelihood function

− 1

2

(
n lnσ2 + ln(det(R))

)
, (3)

over the domain θk > 0. Maximizing the likelihood func-
tion (Equation (3)) is a multi-dimensional and multi-modal
optimization problem. In this work, in order to reduce its
computational training cost, the Kriging hyper-parameters
are estimated by a BFGS local optimizer instead of a global
optimizer like an evolutionary algorithm (EA).

2.2 Constraints management within an
SBO framework

At each design iteration of an SBO process, new candidate
points are generally selected based on an Infill Sampling
Criterion (ISC) in order to extract a maximum of information
from a minimal number of samples, aiming to promote a
balance between exploration, exploitation and feasibility.
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In highly constrained problems, one of the key ingredients
towards the eventual location of the global optimum first lies
in the identification of the potential feasible region(s). For
this purpose, most classical constraint handling techniques [6]
are based on penalty functions penalizing unfeasible samples,
but suffer from necessary penalty parameters tuning. To
efficiently search the feasible domain, Deb [7] has proposed a
constrained tournament selection that unconditionally favors
feasible (and successful) samples without any required tuning.
This constraint handling technique works as follows :

• when two individuals are compared, the feasible one is
always preferred to the unfeasible one ;

• if both individuals are feasible, the one with the best
objective function value is chosen ;

• if both individuals are unfeasible, the one with the least
violation of the constraints is preferred.

The most classical ISC used with Kriging surrogate model
is the Expected Improvement (EI) which benefit from the
variance provided by the surrogate itself. Let fmin be the best
sampled function value after n evaluations of the function
y = f(x). For simplicity, we will leave out the dependence on
x in this section, notating the predicted value ŷ(x) as ŷ and
the Kriging variance σ̂2(x) as σ̂2. Then the EI is defined as

EI =

{
(fmin − ŷ)Φ(z) + σ̂ϕ(z), if σ̂ > 0
0, if σ̂ = 0

(4)

where ϕ(·) and Φ(·) denote the probability density function
and the cumulative distribution function of the standard
normal distribution, respectively, and z is defined by :

z =
fmin − ŷ

σ̂
.

The Probability of Feasibility (PF) has been proposed by
Schonlau [30] in order to deal with constraints. The criterion
is similar to the probability of improvement for the objective.
We denote by ĝ(x) the Kriging prediction on the constraint.
Suppose that the uncertainty in the predicted value at a
position x can be described in terms of a normally distributed
random variable G(x) with mean ĝ(x) and variance σ̂2(x).
The PF gives the area of the distribution G(x) that is below
the constraint limit gmin, i.e. :

P [H(x) < gmin] = Φ

(
gmin − ĝ(x)

σ̂(x)

)
where H(x) = gmin −G(x) is a measure of feasibility, ĝ(x) is
the Kriging prediction of the constraint function and σ̂2(x)
is its associated Kriging variance, see e.g. [10]. Therefore,
the PF gives an indication of possible feasible regions in the
domain.

The Constrained Expected Improvement (CEI) can there-
fore be defined as the product of EI of the objective and the
probability of feasibility of the constraint, see [21, 23] :

CEI = EI(x) ∗ P [H(x) < gmin].

A suitable infill criterion for constrained problems is then
obtained by maximizing the CEI. The criterion can easily be
extended to several constraints by using the total probability
of feasibility, which is given by the product of the individual
probability of feasibility of each constraint.

2.3 Proposed multi-point strategies

Two infill criteria have been considered in this work :

• Deb’s constraint tournament selection criterion [7] ;
• Constrained expected improvement (CEI) [23].

The main idea of our multi-point surrogate-based optimiza-
tion framework is to perform two EAs in parallel either based
on different types of surrogate models or based on different
infill criteria. The principle of our multi-point strategies is
illustrated in Figure 2. In these strategies, two points will
be evaluated at each iteration. In future work, it should be
interesting to compare with a strategy selecting only one
point of the two points using a quality criterion based on the
surrogate models in order to evaluate only this point with the
real function, as proposed in [3]. In our study, the EA which
is considered to optimize the surrogate models is a real-coded
genetic algorith with traditional line and box recombination
crossover operators and mutation operators that randomly
disturb parameters values with a probability of 0.01.

User-defined
Specifications

Design of
Experiments

Database

Surrogate Model

Evolutionary
Algorithm

+
Infill Criteria

Surrogate Model

Evolutionary
Algorithm

+
Infill Criteria

Expensive
Simulation

Quality
Check

Best solution

Optimization Framework

No

Yes

Figure 2: Parallel multi-point strategy in online
surrogate-based optimization framework.

The following mono- and multi-point strategies will be
compared in Section 3.

• MonoTRBF : Mono-point strategy using an auto-tuned
RBF (TRBF) meta-model and Deb’s constraint tour-
nament selection to deal with contraints (framework
of Figure 1) ;

• MonoCEI : Mono-point strategy using a Kriging model
and CEI as infill strategy (framework of Figure 1) ;

• MultiCEI : Multi-point strategy with two evolutionary
algorithms, the first one exploiting Deb’s constraint
tournament selection with a TRBF model, the second
one based on CEI infill criterion with a Kriging meta-
model. This strategy combines MonoTRBF and MonoCEI

strategies (framework of Figure 2) ;
• MultiMeta : Multi-point strategy with two evolutionary
algorithms, both searches are based on Deb’s constraint
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tournament selection but with either a TRBF model
or a Kriging model (framework of Figure 2).

These strategies have also been compared to basic selection
and aggregation of surrogate models strategies. They are not
presented in this paper for lack of space and also because it
has been shown that the multi-point strategies with multiple
surrogate models outperform these selection and aggregation
strategies.

3 NUMERICAL RESULTS

In this section, the different mono- and multi-point strategies
described above are compared on well-known constrained
benchmark problems available in the literature (such as GX-
functions defined in e.g. [18, 26]). In order to achieve a fair
comparison, the different strategies are executed in the same
conditions : 100 independent runs, started from an initial
database (LCVT) of size n+1, n being the number of design
variables. The results are presented on different graphs for
each test case :

• a graph showing the evolution of the objective function
(mean of 100 runs with 95% confidence interval). At
each iteration, the best point from the optimizer which
satisfies all the constraints and which has the minimal
objective value is extracted and used to compute the
mean. Therefore, this graph depicts the curve only for
feasible points (respecting all the constraints) ;

• a graph showing the evolution of the number of violated
constraints (mean of 100 runs) when it is relevant.

Furthermore, performance profiles (introduced in [19]) give
information about the global trend of the different strategies
on the whole set of benchmark problems. They act as principle
that an algorithm solves the problem (each of test cases) when
the objective function (mean here) passed a fixed threshold.
Two kinds of thresholds are considered. The large threshold
(LargeThres) allows to identify the strategies which gives the
best performance in an approaching phase of the optimum
zone while the fine threshold (FineThres) is more interesting
for the final convergence of the algorithm, for the fine-grained
search of the best optimum. Since the feasibility concept is
not present in the original version of these profiles, each run
has been considered independently so that one run will solve
the problem if the objective of a feasible point is lower than
the given threshold.

Note that all graphs are drawn based on the number of
iterations. This is an conscious choice because as a reminder,
we put ourselves in the context where the simultaneous costly
evaluation of several points is possible ; otherwise multi-point
strategies are less relevant.

Figures 3-6 show the objective function and the constraint
violation evolution (when it is relevant) on the analytical
constrained optimization problems GX. For lack of space in
this paper, evolution graphs are only shown on some inter-
esting cases but the following GX functions are considered
in the performance profiles for the global comparison : G1,
G2 (10D with plog transformation), G3MOD (20D with plog

transformation), G5MOD, G6, G7, G8, G9, G10, G13MOD,
G16, G18, G19 and G24.

On these benchmark problems, the MultiCEI strategy
reaches faster feasible zones and obtains a better objec-
tive function convergence than the mono-point strategies
MonoTRBF. On the other hand, the MultiMeta strategy allows
to quickly identify the feasible zone with a good convergence
of the objective function. It also obtains better results than
the mono-point strategies on all benchmark problems. The
association of TRBF and Kriging models seems to be very
effective and very complementary, taking advantages of the
strengths of both types of models.

Furthermore, Figures 7-8 allow to compare globally the dif-
ferent strategies on the whole set of benchmark problems via
the performance profiles. The performance profiles represent
the part of solved problems for a given budget, fixed by the α
parameter, representing a multiplier of the needed number of
iterations such that the best version solves the problem. For
example, Figure 7 indicates that MultiMeta strategy solved
first 60% of problems (in a fine way) (α = 1) and that it
has solved 80% of problems in a budget equal to twice the
minimum budget (limited here to 100 iterations). To simplify,
look at the profile for α = 1 gives the strategies which are
faster and the more efficient and look at α = ∞ shows the
strategies which are the more robust (no matter the budget).
Then we can observe that both multi-point strategies are
very interesting compared to mono-point strategies, in terms
of efficiency as well as robustness. Concerning the MonoCEI

strategy, even if it can bring good performance punctually
(as seen on G7 problem notably), it seems to be less efficient
than the MonoTRBF, which can explain that the MultiCEI

strategy is slightly behind the MultiMeta strategy.
Finally, Figures 6(a) and 6(b) compare the proposed multi-

point strategies with respect to mono-point strategies in
terms of number of functions evaluations, if a parallel com-
puting system is not available. These results show that our
multi-point strategy MultiMeta allows to quickly converge
also in terms of number of functions evaluations while being
also very interesting in terms of confidence interval.

The proposed strategies have also been compared on the
MOPTA08 automotive problem, a benchmark test defined by
Jones [14] which enables to assess the efficiency of optimiza-
tion algorithms in a highly constrained, high-dimensional
design space. The MOPTA08 case is representative for a
complex multi-disciplinary mass minimization problem that
takes into account vehicle crash performance, noise vibration,
harshness, and durability. It defines a design space with 124
parameters, for an optimization problem with a single ob-
jective and 68 inequality constraints. Note that it is many
times larger than test problems typically used by researchers
in surrogate-based optimization. Note that the MOPTA08
problem is build based on Kriging surrogate models so by its
nature, solving this problem by a Kriging-based optimization
strategy (such as MultiCEI) is a little bit biased.

In the literature, the expectations for the benchmark are
to find a feasible solution, respecting all constraints, that
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Table 1: Comparison with state-of-the-art results for
MOPTA08 problem starting from an initial database
with 125 unfeasible points.

Algorithms Best objective value Mean number of
without including iterations/evaluations

initial feasible point to reach a feasible point

MonoTRBF 261.24 70.05 / 195.05
with 275 evaluations

MultiCEI 225.46 8.480 / 141.96
with 425 evaluations

MultiMeta 230.47 19.44 / 163.88
with 425 evaluations

COBRA 228 243 / 367.5
(4 runs)[25, 26] with 751 evaluations

achieves at least 80% of potential mass reduction in less
than 1800 evaluations. For the original benchmark problem,
Jones [14] provides one feasible initial point (with an objective
value of 251.0706). Since for real-world industrial applications,
feasible points are typically not always available, the real
challenge is to investigate the performance of our strategies if
only unfeasible initial points are considered. For this purpose,
a DoE of 125 points has been generated without including the
feasible initial point, and the optimization has been launched
in these unfavorable conditions.

Figure 9 shows the convergence in terms of objective func-
tion and constraint violations (mean of 50 independent runs
with 95% confidence interval) for the MOPTA08 problem.
The mean number of iterations to reach a feasible point with
our strategies is very competitive compared to state-of-the-art
results presented in [17, 25, 26], see Table 1. As observed pre-
viously on analytical benchmark problems, the MultiCEI and
MultiMeta multi-point strategies can help to reach faster the
feasible region and here with a good evolution of the objective
function convergence compared to the classical mono-point
strategy.

4 CONCLUSIONS

An interesting SBO framework, exploiting simultaneously
different types of surrogates and different infill criteria has
been presented. More specifically, the information retrieved
from these distinct types of surrogates has been conjointly
used in order to provide efficient infill sampling criteria that
extract a maximum of knowledge from a minimal number
of evaluations. This helps to promote an enhanced balance
between exploitation, exploration and feasibility, which may
be considered as the Graal quest for SBO.

The performance of the proposed parallel multi-point SBO
framework has been illustrated on recognized constrained
benchmark problems available in the literature. Good per-
formance both in terms of identification of feasible regions
and objective gains has been demonstrated compared to
mono-point strategies.

In future, it would be interesting to use more diverse surro-
gate models in our multi-point strategies, like e.g., Random
Forest or Support Vector Regression. Further research will
focus on the development of multi-point strategies with mul-
tiple dynamic search zones within the SBO process.

(a) G1 - Evolution of the objective function

(b) G2 - Evolution of the objective function

(c) G6 - Evolution of the objective function

(d) G7 - Evolution of the objective function

Figure 3: Evolution of the optimization in terms of
design iterations for the G1, G2, G6 and G7 test
cases.
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(a) G8 - Evolution of the objective function

(b) G10 - Evolution of the objective function

(c) G16 - Evolution of the objective function

(d) G19 - Evolution of the objective function

Figure 4: Evolution of the optimization (objective
function) in terms of design iterations for the G8,
G10, G16 and G19 test cases.

(a) G6 - Evolution of the number of violated
constraints

(b) G7 - Evolution of the number of violated
constraints

(c) G10 - Evolution of the number of violated
constraints

(d) G16 - Evolution of the number of violated
constraints

Figure 5: Evolution of the optimization (number of
violated constraints) in terms of design iterations for
the G6, G7, G10 and G16 test cases.
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(a) G6 - Evolution of the objective function

(b) G10 - Evolution of the objective function

Figure 6: Evolution of the optimization in terms of
functions evaluations for the G6 and G10 test cases.

Figure 7: Performance profiles (fine threshold) of the
different strategies on the GX test cases. Percentage
of solved problems with respect to α.
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Figure 8: Performance profiles (large threshold) of
the different strategies on the GX test cases. Per-
centage of solved problems with respect to α.

(a) Evolution of the objective function

(b) Evolution of the number of violated con-
straints

Figure 9: Evolution of the optimization in terms of
design iterations for MOPTA08 test case (based on
50 independent runs starting from an initial data-
base with 125 unfeasible points).
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