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ABSTRACT

Google’s Android platform dominates the smartphone world, but
this tremendous popularity has led to an appealing target for ma-
licious actors. This is especially troublesome because the diverse
nature of Android devices, and the modifications that are made by
each manufacturer, make consistency in system software difficult
across all devices. As new attack and evasion behaviours emerge,
security researchers work to create more sophisticated detection
systems. Many of these systems are based on machine learning
approaches. An especially promising avenue that is being actively
researched is the use of evolutionary systems, where detectors are
bred, rather than built. In this paper, we examine two such evo-
lutionary systems, training them on established datasets before
comparing their performance on large, unknown datasets. Our ex-
periments demonstrate that these systems are effective in predicting
contemporaneous and evolved malicious applications, and meet or
exceed the results of a state-of-the-art, rule-based system.
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1 INTRODUCTION

In the world of smartphones, two operating systems dominate:
Google’s Android platform and Apple’s iOS [5]. While iOS is re-
stricted to Apple devices'and tightly controlled by the company,
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Android is available on devices from many manufacturers, and fre-
quently modified to suit their purposes. This flexibility and resulting
variability, combined with the large install base, creates many op-
portunities for malicious actors to exploit the platform [2]. The
number of malicious applications for Android are steadily increas-
ing and evasion techniques are becoming evermore sophisticated
[19].

Accordingly, the security community has responded by employ-
ing a variety of techniques to detect these malicious applications
before they can infect the devices of users. Using machine learning
approaches has been successful [3] [12] [8] [17], as detectors need
to be able to make reasonable predictions about current and future
samples.

One area in particular that has shown promise is solutions that
evolve, rather than build, detection systems. By employing evolu-
tionary techniques such as genetic algorithms, detectors can be
sufficiently nuanced to accurately discern malicious and benign
applications [11] [10].

Taking this idea a step further, research has been conducted
to create an “arms race” by evolving Android malware alongside
malware detectors [2] [15], which can make even more accurate
predictions about potential future malware.

In this paper, we evaluate an evolutionary and a co-evolutionary
system against a state-of-the-art, rule-based system, namely Assem-
blyline. The evolutionary systems are trained on well-established
malicious Android datasets, as well as benign applications, before
being tasked with identifying large, unknown datasets. The results
indicate that co-evolutionary solutions are indeed more capable
than similar evolutionary solutions, and that both evolutionary
and co-evolutionary systems are competitive with rule-based static
analysis on the datasets employed.

The rest of this paper is organized as follows. We begin by sur-
veying related research in Section 2. Following this, we discuss
the detection systems and the datasets used in Section 3. We then
present and comment on the results of the experiments in Section
4. Section 5 concludes our observations and suggests directions for
future work.

2 RELATED WORK

Machine learning approaches are being actively employed to im-
prove the performance of malware detectors, both on desktop com-
puters and mobile devices. We begin by reviewing more general
machine learning based approaches before focusing on evolutionary
mobile malware detection.

1https://www .apple.com/ios/ios-12/
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David et al. introduce a malware detection system, DeepSign,
that is idempotent to small scale changes in malware samples [3].
DeepSign employs deep neural networks, inspired by work in com-
puter vision to recognize the same object from many angles and in
different environments. In a sandbox, the behaviour of the appli-
cation is recorded and represented as a vector which indicates the
presence of the top unigrams. This vector is then fed to the deep
belief network (DBN), where it is mapped through many layers
to produce the malware signature. The trained DBN model could
classify 98.6% of the testing data correctly. The authors also employ
Support Vector Machine (SVM) and k-Nearest Neighbour (k-NN)
classifiers as a comparison, which perform less successfully at 96.4%
and 95.3%, respectively.

Milosevic et al. employ many different machine learning algo-
rithms to identify malicious Android applications [12]. They use
Android permissions and source code as features for evaluating
the performance of classification and clustering. The classification
algorithms applied include SVM, C4.5 Decision Trees, Random
Forests (RF), Bayesian Networks, JRip, and Logistic and Linear Re-
gression. Clustering is done through a bag-of-words model, where
unigrams are extracted from the merged source code and simple
k-means, Farthest-First, and Expectation-Maximization algorithms
are applied. They also apply ensemble learning by grouping vari-
ous algorithms and determining the result through majority voting,
though the performance gains here are statistically insignificant.
The classification approaches are very successful, with the highest
F-scores for permissions and source code being SVM at 87.9% and
95.1%, respectively. The clustering approaches are not as effective,
failing to achieve F-scores greater than 82.3%.

Liu et al. build a system for classifying and clustering malware
using ensemble voting [8]. They begin by creating an image rep-
resentation of each malware binary, as well as extracting trigram
opcodes and imports. After reducing the dimensionality of features
using information gain, the samples are passed through a variety of
classifiers, such as RF, k-NN, Gradient-Boosting (GB), Naive Bayes,
Logistic Regression, SVM, and Decision Trees. A label is assigned
through a weighted combination of these results. The samples can
then be clustered into malware families using the shared nearest
neighbour algorithm. Their experiments show that this is a highly
effective approach, with a best accuracy of 98.9% in classification
achieved with RF, while clustering new malware attains an accuracy
of 86.7%.

Ucci et al. undertake a comprehensive review of machine learn-
ing techniques for mobile malware analysis [17]. Specifically, they
identify trends in the objectives, features, and algorithms of mal-
ware analysis. Especially of interest to us is their summation of
the current state for predictions of future variants of malware. The
authors specifically note that this is an area that lacks investiga-
tion and more research may yield useful information. Evolutionary
solutions are well suited to this, as they have the ability to evolve
new solutions.

Meng et al. perform an extensive study into the successes of
commercial, academic, and online app store anti-malware tools
(AMTs) for Android by creating a system called Mystique [11]. The
approach focuses on codifying attack and evasion features into
basic reusable components. By choosing these features through an
evolutionary algorithm, effective malware can be generated. Their
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effectiveness is judged by their maximizing aggressiveness while
minimizing evasiveness and detectability. These evolved malware
are significantly harder to detect, with their tested detection rate
dropping from an average of 73.3% to 11.96% when comparing the
unevolved and evolved malware on a variety of detectors. They then
include dynamic loading as an evasion technique in their follow up
work [19].

Martin et al. develop an evolutionary malware detection system,
MOCDroid, that is designed to be hardened against malware ob-
fuscation [10]. It does so by analyzing third party import terms in
Android applications, as these are difficult to obfuscate without
breaking compatibility. After extracting import terms using a de-
compilation tool, the import statements are clustered in a similar
manner to text mining, using the k-means algorithm. A classifier is
trained on these clusters to maximize accuracy and minimize false-
positives. This results in malicious and benign models, to which
fresh samples can be compared. The resulting classifier is very
successful, with accuracy rates of up to 95.2% and false-positives
rates as low as 1.7%. Ten malware detection engines are used as a
baseline, which never exceed 83% accuracy.

Bronfman-Nadas et al. strive to create a simulated competition,
An Artificial Arms Race, between malware and detectors [2]. Here-
after, we refer to this system as ArmsRace. The goal of each compo-
nent of ArmsRace is in opposition to the other, where the malware
attempt to be undetectable and the detectors attempt to identify
these undetectable applications. The malware are built in a similar
fashion to Mystique, as an evolutionary computation technique is
employed to maximize and minimize particular malicious aspects
of the application by selecting appropriate features. The detectors
are created using linear genetic programming, and represented as a
sequence of instructions. By having these components work against
each other in a feedback loop, an adversarial relationship is formed
where they cannot be optimal simultaneously. The detectors cre-
ated in this process are as accurate as comparable detectors without
co-evolution (92%), but are much less complex, employing fewer
features and instructions [2].

Sen et al. craft a fully automated co-evolution system, where mal-
ware are generated from existing samples and a detection system is
implemented with genetic programming, to develop robust evasion
and detection capabilities [15]. After converting Android applica-
tions to smali, the assembly language for the Android Runtime,
genetic programming is employed to evolve the applications. These
are then repackaged and deployed in an emulator for fitness evalu-
ation. The detection system takes into account 146 features, such
as API calls, permissions, and other static attributes. The detection
systems are then evolved with genetic programming, with an eye
on minimizing false-positive rates. These co-evolved anti-malware
tools are highly effective, detecting 100% of the testing samples and
performing similarly well on unseen data (91.3% — 99.4%), with an
acceptable false-positive rate (7.4%).

Given the successes of the evolutionary approaches in this re-
search, we focus on the ArmsRace and MOCDroid systems in our
pursuit to extend the malware families they are capable of detect-
ing. These solutions perform similarly well, and both have publicly
available source codes [2] [9]. In addition, choosing these solu-
tions provides us the opportunity to compare evolutionary and
co-evolutionary detection systems.
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3 METHODOLOGY

In this section, we describe the detection systems and datasets
employed in these experiments.

3.1 Detection Systems

3.1.1  MOCDroid. As previously mentioned, MOCDroid is an
evolutionary malware detection system that is designed to be hard-
ened against malware obfuscation [10]. This is a significant concern
in static analysis, as obfuscation is an effective tool to avoid detec-
tion.

By analyzing third party import terms in Android applications,
MOCDroid can group commonly used import terms into specific
behaviours. These third party import terms are essential to coun-
teracting obfuscation, because they are difficult to mask without
breaking compatibility with any external libraries.

The process begins with decompilation of the application using
Jadx?. Jadx reproduces the source code to the application, and from
these files the import terms can be extracted.

MOCDroid views every application as a document, and each
import as a term in that document. In doing so, the generated term-
document matrices can be used as input to the Text Mining Package
in R, where the output is a number of clusters.

This clustering is done with the k-means algorithm. The authors
employed Model-Based and Partition Around Metoids PAM clus-
tering, but found the results inferior to k-means. They also employ
a sparse parameter to remove isolated terms that contribute only
noise to the clustering process. This parameter and the cluster size
are varied in order to determine the best combination.

The resulting malware and benignware term sets are then used
as inputs to a genetic algorithm. This algorithm aims to create
malicious and benign models. MOCDroid employs these models as
comparisons to make predictions about new data samples. A new
sample is judged to be a member of whichever model it shares the
most clusters with.

The encoding of the individuals in the genetic algorithm is a
binary vector, divided into malicious and benign segments, where
a set bit corresponds with the presence of a cluster of import terms.
The classifier is trained by modifying the presence of clusters in
the model. The genetic algorithm has multiple objectives: maxi-
mize accuracy, and minimize false-positives. The authors elected
to prioritize accuracy in case of conflict.

3.1.2  ArmsRace. ArmsRace hypothesizes that a simulated com-
petition between malware and detectors is an effective way to
evolve sophisticated malware detection systems [2]. In addition,
the process yields a shareable data set for other researchers in the
field.

The detectors are built in an evolutionary computation frame-
work employing linear genetic programming, a form of supervised
learning. The detection programs are represented as a linear se-
quence of instructions for a virtual programmable machine. These
instructions allow the programs to do such basic actions as read
from input, read / write to memory, and perform simple mathe-
matical operations. Since there are many individuals in any given
generation, a gradient of feedback is achieved. In this way, more

Zhttps://github.com/skylot/jadx

1653

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

nuanced feedback is available to guide selection, as opposed to a
simple binary result for a single detector.

To benchmark the detectors outside of the co-evolution system,
linear genetic programming and a C5.0 decision tree were also
implemented. These models are then used for feature selection.
They began by examining all possible Android permissions, before
faceting to the most relevant 15. In addition, 8 code features are
also considered by the detectors. These features are representative
of the structure and use of code in the malicious applications.

For the malware generator, a framework inspired by Mystique
was implemented [11]. In this generator, a malware template is
built by selecting aggressive or evasive features to achieve multiple
objectives. Aggressiveness is to be maximized, while evasion and
detectability is minimized. These objectives are satisfied through
an evolutionary process facilitated by the Indicator-Based Evolu-
tionary Algorithm (IBEA). The researchers designed ArmsRace to
focus on privacy leakage malware.

After constructing both components, the authors combined them
into a co-evolution system, where a feedback loop is formed be-
tween the detectors and malware. As these components are direct
adversaries, they cannot be optimal simultaneously. This dynamic
is similar to the conditions that exist in the real-world between
malware and anti-malware authors.

3.1.3 Assemblyline. Assemblyline is an open-source tool devel-
oped by the Canadian Centre for Cyber Security to detect and ana-
lyze malware [13]. It is designed for flexibility, being able to operate
as a single node application or scale to a large cluster. Assemblyline
is also highly extendable, through its customizable services and
API, which can be accessed through the provided Python library
or any HTTP-capable client. As Assemblyline is developed by the
“Government of Canada’s centre of excellence in cyber security”
[13], and used by the cyber security community in Canada, we
considered it to be a state-of-the-art system.

Akin to its name, Assemblyline operates as a modular framework
for analysis, where many services can operate on files they are
specifically designed to analyze. The system ships with over 30
services, and users are encouraged to build and deploy their own
services. Assemblyline raises alerts if the ingested file is determined
to be malicious. Files are ranked with an integer, according to
the severity of the malicious features. Files scored less than -1000
are certain to be benign, and files scored greater than 1000 are
certain to be malicious, with lesser degrees of certainty in between.
This ranking system allows for a triaged approach to malware
analysis, drawing attention to more dangerous files. The threshold
for determining a file to be likely malicious and raising an alert is
set to 500 by default.

The system also provides a web interface that displays pertinent
analysis information to the user, as well as aggregable tags. To avoid
unnecessary work, Assemblyline fingerprints each file it analyzes
and skips duplicate files by default.

For Android applications, Assemblyline provides APKaye. This
service is capable of disassembling APK files and checking a number
of rules to determine maliciousness. Some of the service actions
include checks for the presence of scripts and binaries, irregularities
in the signing certificate, dangerous permissions in the Android
manifest, suspicious SDK targets, and string analysis.
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For further scrutiny, APKaye can optionally convert the Android
.dex files into . jar files, which are then passed to the Espresso
service for Java archive analysis. We elected to focus on APKaye in
this research, so this functionality was not employed.

3.2 Datasets

3.2.1 Android Malware Dataset (AMD). AMD is an extensive,
labelled dataset produced by the Argus Lab of the University of
South Florida [18]. The set consists of 24,553 malicious samples
from 2010 to 2016, divided into 135 varieties from 71 families.

Each variety and family is labelled according to the composition
of the malware, installation and activation methods, the type of
information to be stolen, privileges, command and control (C&C)
specifics, evasion techniques, persistence, and monetization ap-
proaches.

The authors also document [18] the evolution of Android mal-
ware through the time period of the dataset, and indicate the domi-
nant behaviours observed.

3.2.2 CICAndMal2017 (UNB). This dataset is a collection of 426
malicious and 1,700 benign applications collected from 2015 to
2017 by researchers at the University of New Brunswick (UNB)
[7]. The malicious samples are split into four categories (Adware,
Ransomware, Scareware, SMS Malware) and 42 families.

In addition to providing the APK files, the authors also ran each
malicious sample on real Android smartphones and captured net-
work traffic during installation, before restart, and after restart.
From this, more than 80 features are available in the form of CSV

files.

3.2.3 Drebin. The Drebin dataset contains 5,560 malicious APKs
representing 179 malware families [1] [16]. These files were gath-
ered from 2010 to 2012 by researchers at the Technische Universitat
Braunschweig.

The malware family labels are available, in addition to features
extracted from the Android manifest and disassembled code. Such
features include permissions, hardware / app component requests,
intents, restricted / suspicious API calls, and network addresses.

3.24 F-Droid. F-Droid is an online app store for Android which
focuses on the distribution of free and open-source software [4].

For the evaluation of the ArmsRace system [2], the researchers
collected over 600 applications, with multiple versions per appli-
cation in some cases, for a total benignware count of 1,339. We
employed this dataset in our research.

3.2.5 Genome. The Android Malware Genome Project was the
first large dataset of malicious Android samples released to the
research community [20]. Forty-nine different malware families are
represented in 1,260 samples, which were collected from 2010 to
2011 by researchers at North Carolina State University.

In their paper, the researchers identify many qualities of the
malware, such as the installation and activation methods, and their
malicious payloads. This dataset was utilized by ArmsRace in their
evaluations [2], so we employed it in our research.

3.2.6 Google Play. The Google Play Store is the official app
store for the Android platform, with a variety of free and paid
applications available for download [6].
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System Training Datasets # of Malware Apps  # of Benign Apps
MOCDroid Genome / F-Droid 300 300
MOCDroid Drebin / F-Droid 300 300
MOCDroid Drebin / Google Play 300 300
MOCDroid Genome / Google Play 300 300
ArmsRace  Genome / F-Droid 420 420
ArmsRace  Drebin / F-Droid 420 420
ArmsRace  Drebin / Google Play 420 420
ArmsRace  Genome / Google Play 420 420

Table 1: Evolutionary Detectors Training Datasets

The ArmsRace system collected a dataset for evaluations from
the Google Play Store [2], so we also employed a sample of 1,085
apps in our research.

3.2.7 VirusShare. VirusShare is an online repository of mali-
cious files crowdsourced by members of the security community
[14]. As of writing this paper, more than 33,000,000 samples for a
variety of platforms are available for download.

Given that the project is not commercially or academically sup-
ported, the collection is distributed in large chunks via torrents. For
the purposes of our experiments, we acquired 35,397 APKs from
two torrents, dated 2013 and 2014.

In the following evaluations, we use Drebin, F-Droid, Genome,
and Google Play as datasets for training and testing the evolutionary
detectors. AMD, UNB, and VirusShare are then engaged as large,
unknown datasets for evaluating the performance of the detectors.
Since these unknown datasets were compiled and released after the
training datasets, we use them to determine how well the models
generalize to ‘future’ adversaries. For the purposes of comparison,
we also evaluate every dataset with APKaye in Assemblyline.

4 EVALUATIONS

To effectively evaluate the chosen detectors, they were each trained
and tested on a variety of malicious and benign samples. By em-
ploying datasets which differ from the original evaluations of the
aforementioned systems, we can evaluate how their performance
is affected by the chosen dataset.

After training, the best results were selected from each malicious
and benign combination for MOCDroid and ArmsRace. Then, each
detector was evaluated against the AMD, UNB, and VirusShare
datasets. These datasets are newer, and much larger than the train-
ing and testing sets, and should therefore be illustrative of the
broader potential of each detector. Every dataset is also assessed
with Assemblyline. These results are presented in Subsection 4.4,
and the process is graphically depicted in Figure 1. Training dataset
combinations and the number of malware / benign apps are given
in Table 1.

It is important to note that since each detector uses a different
decompiler, each fails on some samples in each dataset. This is why
the sets are different sizes for each detector, and differ from the total
samples acquired. The exception here is VirusShare, which had a
large number of corrupted files (approximately 10,000), but still
contains over 20,000 valid samples. These corrupted files are unable
to be successfully decompiled by any of the detection systems.
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Figure 1: The experiment process.

These failures, on the whole, are relatively infrequent and do not
compromise the results.

4.1 MOCDroid

These evaluations of MOCDroid endeavoured to be as close to re-
search in [10] as possible. To achieve this, we used the same param-
eters / parameter combinations as given in [10]. In [10], MOCDroid
is trained and tested on samples from the Aptoide App Store and
VirusShare, whereas we trained and tested on Drebin, F-Droid,
Genome, and Google Play.

Table 2 shows the results on unseen test data of the different
dataset combinations where each test dataset has 300 malware
and 300 benign apps. The best results are bolded in this table, and
others. These results are consistent with what was reported in [10].
Accuracy sits at approximately 95% and the false positive ratio is
less than 5% across many configurations.

Note though, that the false-positives are higher for Google Play
/ Genome (averaging 7.42%) and much higher for Google Play /
Drebin (averaging 9.92%). In addition, clustering Google Play apps
failed in R3when the sparse parameter was set to 0.99, because of a
lack of memory. These results seem to suggest that the Google Play
apps are more complicated and use riskier features than F-Droid
apps.

There is not a clear winner for sparse / cluster size combina-
tion, but this is actually a positive outcome. That is, all pairs are
reasonably effective, and any would be a decent choice for future
assessments.

To account for the stochastic nature of genetic algorithms, we
chose the most successful overall configuration (Genome / F-Droid
(0.95, 180)), and ran it an additional 10 times. Figures 2 and 3 depict
the detection rates and false positive rates, respectively. The best
results are circled in these figures, and the differences between runs
are not statistically significant. For clarity, linear regression models
for each detection and false positive rate are also presented in these
Figures as dashed and solid lines.

3https://www.r-project.org/
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Figure 3: ArmsRace / MOCDroid False Positive Rates over 10

runs.

4.2 ArmsRace

The result for ArmsRace in Table 3 follows a similar narrative to
MOCDroid. In [2], ArmsRace is primarily trained and tested on
samples from Drebin and F-Droid, whereas we trained and tested
on Drebin, F-Droid, Genome, and Google Play. Overall accuracy is
slightly up, relative to the original research [2], averaging 93.82%
over all configurations. The notable exception is the model trained
on Google Play / Drebin, which had a more difficult time identifying
benign applications (83.89%, compared to greater than 90% for all
other configurations).

As with MOCDroid, false-positives rates are higher for the mod-
els trained on Google Play applications. The converse of that is a
nearly perfect (98.89%) malware detection rate when using Google
Play for benign applications. This reinforces the assumption that
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Malware Benign Sparse/Cluster Malware Detection Benign Detection = Total Accuracy  FP Rate
Genome F-Droid 0.95/180 289/300 (96.33) 289/300 (96.33)  578/600 (96.33) 3.67
Genome F-Droid 0.96/120 275/300 (91.67) 287/300 (95.67) 562/600 (93.67) 4.33
Genome F-Droid 0.97/140 284/300 (94.67) 287/300 (95.67)  571/600 (95.17)  4.33
Genome F-Droid 0.98/180 278/300 (92.67) 294/300 (98.00)  572/600 (95.33) 2
Genome F-Droid 0.99/120 279/300 (93.00) 289/300 (96.33) 568/600 (94.67) 3.67
Drebin F-Droid 0.95/180 281/300 (93.67) 290/300 (96.67)  571/600 (95.17)  3.33
Drebin F-Droid 0.96/120 288/300 (96.00)  282/300 (94.00)  570/600 (95.00) 6
Drebin F-Droid 0.97/140 279/300 (93.00) 289/300 (96.33)  568/600 (94.67)  3.67
Drebin F-Droid 0.98/180 286/300 (95.33) 285/300 (95.00)  571/600 (95.17) 5
Drebin F-Droid 0.99/120 283/300 (94.33) 290/300 (96.67) 573/600 (95.50) 3.33
Drebin Google Play 0.95/180 287/300 (95.67) 260/300 (86.67) 547/600 (91.17) 13.33
Drebin  Google Play 0.96/120 279/300 (93.00) 281/300 (93.67) 560/600 (93.33) 6.33
Drebin  Google Play 0.97/140 274/300 (91.33) 270/300 (90.00)  544/600 (90.67) 10
Drebin  Google Play 0.98/180 278/300 (92.67) 270/300 (90.00)  548/600 (91.33) 10
Genome  Google Play 0.95/180 290/300 (96.67) 274/300 (91.33)  564/600 (94.00)  8.67
Genome  Google Play 0.96/120 281/300 (93.67) 273/300 (91.00)  554/600 (92.33) 9
Genome Google Play 0.97/140 289/300 (96.33) 284/300 (94.67)  573/600 (95.50) 5.33
Genome  Google Play 0.98/180 290/300 (96.67) 280/300 (93.33)  570/600 (95.00)  6.67
Table 2: MOCDroid Testing Results
Malware Benign Malware Detection Benign Detection  Total Accuracy FP Rate
Drebin F-Droid 168/180 (93.33) 173/180 (96.11)  341/360 (94.72)  3.89
Genome F-Droid 167/180 (92.78) 172/180 (95.56)  339/360 (94.17)  4.44
Drebin  Google Play  178/180 (98.89) 151/180 (83.89)  329/360 (91.39)  16.11
Genome Google Play  178/180 (98.89)  164/180 (91.11)  342/360 (95.00)  8.89
Table 3: ArmsRace Testing Results
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. . 100 A A A A A A |
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well established Genome and Drebin datasets, averaging 88.03%. ° ~© - Benign
The benignware detection results are not very effective, averaging ‘2 4‘1 6‘ é 1‘0

51.63% across the F-Droid and Google Play datasets. The nature
of the system, however, is to analyze files already suspected to
be malicious, so this less permissive approach is likely to be an
intended side-effect. That is, recognizing malicious files is much
more important than correctly identifying benign files.

Run Number

Figure 4: ArmsRace Detection Rates over 10 runs.
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Dataset Is Malicious? Detection Rate
AMD T 16850/23618 (71.34)
Drebin T 4649/5514 (84.31)
Genome T 1146/1249 (91.75)
UNB-Malware T 315/424 (74.29)
VirusShare T 16095/20884 (77.07)
F-Droid F 767/1337 (57.37)
Google Play F 490/1068 (45.88)
UNB-Benign F 1154/1688 (68.36)

Table 4: Assemblyline Results on all datasets employed

Testing Dataset

Training Datasets

Detection Rate

AMD Genome / F-Droid 15104/24553 (61.52)
AMD Drebin / F-Droid 21518/24553 (87.64)
AMD Drebin / Google Play 21295/24553 (86.73)
AMD Genome / Google Play ~ 16187/24553 (65.93)
UNB Ben Genome / F-Droid 1675/1700 (98.53)
UNB Ben Drebin / F-Droid 1608/1700 (94.59)
UNB Ben Drebin / Google Play 1584/1700 (93.18)
UNB Ben Genome / Google Play 1653/1700 (97.24)
UNB Mal Genome / F-Droid 153/426 (35.92)
UNB Mal Drebin / F-Droid 275/426 (64.55)
UNB Mal Drebin / Google Play 294/426 (69.01)
UNB Mal Genome / Google Play 221/426 (51.88)
VirusShare Genome / F-Droid 15193/20984 (72.40)
VirusShare Drebin / F-Droid 19775/20984 (94.24)
VirusShare Drebin / Google Play 19122/20984 (91.17)
VirusShare Genome / Google Play ~ 15147/20984 (72.18)

Table 5: MOCDroid Results on Unknown datasets

4.4 Unknown Datasets

As discussed earlier, for these evaluations, we employed the AMD,
UNB and VirusShare datasets. Given that no parts of these datasets
were used in training, we called them unknown datasets (from the
perspective of the training model).

4.4.1 MOCDroid. The best detectors based on different training
datasets for each malware / benignware combination were selected
as follows: Genome / F-Droid (0.95, 180), Drebin / F-Droid (0.96,
120), Drebin / Google Play (0.96, 120), and Genome / Google Play
(0.97, 140), where the first number in parentheses represents the
sparse parameter and the second number represents the cluster
size.

MOCDroid performs well on the AMD and VirusShare sets in
certain configurations, as can be seen in Table 5. In particular, the
Drebin / Google Play model detects 87.64% and 94.24% of the the
malicious samples, for AMD and VirusShare respectively. For both
datasets, using Drebin as the malicious training samples lead to an
average detection rate increase of almost 22%.

In addition, the UNB benignware are very accurately detected,
ranging from 93.18% with the Drebin / Google Play model to 98.53%
with the Genome / F-Droid model, averaging at nearly 96%.

Every model breaks down on the malicious UNB samples, how-
ever. The best model, Drebin / Google Play, correctly flags 69.01%
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Testing Dataset Training Datasets Detection Rate
AMD Genome / F-Droid 19279/24449 (78.85)
AMD Drebin / F-Droid 20371/24450 (83.32)
AMD Drebin / Google Play  24254/24449 (99.20)
AMD Genome / Google Play  19020/24449 (77.79)

UNB Ben Genome / F-Droid 1511/1700 (88.88)
UNB Ben Drebin / F-Droid 1642/1700 (96.59)
UNB Ben Drebin / Google Play 1249/1700 (73.47)
UNB Ben Genome / Google Play 1528/1700 (89.88)
UNB Mal Genome / F-Droid 269/425 (63.29)
UNB Mal Drebin / F-Droid 296/425 (69.65)
UNB Mal Drebin / Google Play 381/425 (89.65)
UNB Mal Genome / Google Play 324/425 (76.24)
VirusShare Genome / F-Droid 17779/20972 (84.77)
VirusShare Drebin / F-Droid 18931/20972 (90.27)
VirusShare Drebin / Google Play  20757/20972 (98.97)
VirusShare Genome / Google Play  17680/20972 (84.30)

Table 6: ArmsRace Results on Unknown datasets

of the samples, while the worst, Genome / F-Droid, only achieves a
35.92% detection rate.

4.4.2  ArmsRace. As depicted in Table 6, this system performs
excellently on the AMD and VirusShare datasets. Similar to MOC-
Droid, the Drebin / Google Play model is the most successful one,
achieving detection rates of 99.20% and 98.97%, respectively. Even
the worst configurations correctly detect 77.79% and 84.30% of the
samples, respectively. Using Drebin for training corresponds to an
average increase of almost 12% in detection rate. This increase is
not as dramatic as it is for MOCDroid, but is still noticeable.

ArmsRace scores slightly lower in accuracy on the UNB benign-
ware, relative to MOCDroid. The average score is 87.21%, with three
of the four models scoring below 90%.

The UNB malware, on the other hand, are detected much more
accurately than with MOCDroid. Three of the four ArmsRace mod-
els score above the best MOCDroid model, with the model trained
on Drebin / Google Play achieving the best score at nearly 90%.

4.4.3 Assemblyline. Referring again to Table 4, we can see that
Assemblyline lags behind the best models for the evolutionary
systems on most of the unknown datasets.

In particular, Assemblyline only manages a better accuracy than
the best MOCDroid model when classifying the UNB Malicious
dataset. Overall, the unknown datasets lead to an average of almost
15% lower detection rate in Assemblyline than MOCDroid.

This disparity is even more pronounced for ArmsRace. As As-
semblyline scores lower on every unknown dataset, the overall
average is 23% lower.

These scores are especially affected by Assemblyline’s aforemen-
tioned poor performance on benignware, but even when looking
at only the malicious unknown datasets, there is still an average
score drop of 9% and 22% compared to MOCDroid and ArmsRace,
respectively.
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5 CONCLUSION AND FUTURE WORK

After reviewing these results, we can draw conclusions in regard
to the effectiveness of evolutionary, co-evolutionary, and rule-based
detection systems on recent Android malware, as well as the datasets
that should be used for training future detection systems.

MOCDroid, an evolutionary system, is very effective on older
malicious datasets such as Genome and Drebin, and benign datasets
sourced from F-Droid and Google Play. In training, these detectors
routinely score above 90%. These results are also reflected, to a lesser
extent, in the AMD and VirusShare datasets. When more recent
malicious samples are introduced, however, MOCDroid begins to
break down, failing to achieve a score greater than 70%.

ArmsRace, a co-evolutionary system, is similarly effective on
the aforementioned malicious and benign sets, but also manages a
respectable 89% when evaluating the newer UNB Malicious samples.
This is possibly because of the focus ArmsRace places on privacy
leakage malware, which is not present in the UNB samples.

To summarize, these results seem to support the hypothesis in
Ucci et al.’s recent survey [17] that evolutionary / co-evolved so-
lutions may be well suited for detecting new variants of malware,
because they are more able to adapt to new malware. Furthermore,
our results show that both the ArmsRace and MOCDroid systems
are competitive with the state-of-the-art, rule-based system, As-
semblyline.

Looking at the influence of the training and testing datasets,
Genome is beginning to show its age. The MOCDroid and ArmsRace
detectors trained on Drebin score consistently higher than their
Genome counterparts. This is not entirely unexpected, as malware
evasion practices have evolved significantly since Genome was
released [19].

Prior to these evaluations, VirusShare was considered to be a
more ambiguous set, as the anonymous crowd-sourcing nature
of the repository makes sample attribution impossible. AMD, on
the other hand, is a relatively well known academic data set. The
assumption was that this would be reflected in the detection rates
of malware and benign apps, where VirusShare would be harder
to identify. Tables 5 and 6 suggest otherwise. VirusShare seems to
be a more predictable set than AMD. This might suggest overlap
occurring between the training / testing datasets and that malware
and benign apps behaviours in the training datasets seems to be
similar to the ones in the VirusShare dataset. Further analysis is
necessary to understand these behaviours.

Moreover, we would like to dig deeper into other malware fam-
ilies and evaluate rule-based, non-evolutionary learning, evolu-
tionary and co-evolutionary detector models on such datasets for
future work. Increasing the variety of training datasets may lead
to increased stability in the machine learning models. Also, we
would like to study the detection approaches used in this paper
against deep learning based detection systems and explore hybrid
approaches for adapting to new variants of malware.
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