
Toward Self-Learning Model-Based EAs
Erik A. Meulman

Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

Delft University of Technology

Delft, The Netherlands

E.A.Meulman@student.tudelft.nl

Peter A.N. Bosman

Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

Delft University of Technology

Delft, The Netherlands

Peter.Bosman@cwi.nl

ABSTRACT
Model-based evolutionary algorithms (MBEAs) are praised for their

broad applicability to black-box optimization problems. In practical

applications however, they are mostly used to repeatedly optimize

different instances of a single problem class, a setting in which

specialized algorithms generally perform better. In this paper, we

introduce the concept of a new type of MBEA that can automati-

cally specialize its behavior to a given problem class using tabula

rasa self-learning. For this, reinforcement learning is a naturally

fitting paradigm. A proof-of-principle framework, called SL-ENDA,

based on estimation of normal distribution algorithms in combi-

nation with reinforcement learning is defined. SL-ENDA uses an

RL-agent to decide upon the next population mean while approach-

ing the rest of the algorithm as the environment. A comparison

of SL-ENDA to AMaLGaM and CMA-ES on unimodal noiseless

functions shows mostly comparable performance and scalability to

the broadly used and carefully manually crafted algorithms. This

result, in combination with the inherent potential of self-learning

model-based evolutionary algorithms with regard to specialization,

opens the door to a new research direction with great potential

impact on the field of model-based evolutionary algorithms.

CCS CONCEPTS
•Theory of computation→ Stochastic control and optimiza-
tion; • Computing methodologies→ Reinforcement learning;

KEYWORDS
Estimation of distribution algorithms, machine learning, reinforce-

ment learning, black-box optimization

ACM Reference Format:
Erik A. Meulman and Peter A.N. Bosman. 2019. Toward Self-LearningModel-

Based EAs. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3319619.3326819

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3326819

1 INTRODUCTION
Model-based evolutionary algorithms (MBEAs) are often applauded

for their broad applicability to usually difficult optimization prob-

lems, especially in a black-box setting. In practical applications

however, MBEAs are frequently used to repeatedly solve instances

of the same problem class. It stands to reason that the construction

of a more specialized algorithm for such an application can (sig-

nificantly) improve performance. The development of specialized

algorithms however is a laborious and expensive endeavor that re-

quires expertise of both the algorithms and the application itself. A

method to automatically generate specialized versions of algorithms

for specific applications, without the need for application-specific

expertise, could therefore be very promising. This holds especially

when applied to MBEAs, since these algorithms already have an

inherent potential to deal with many real-world issues, such as

noise, lack of gradients, and multiple objectives.

Traditionally, specialization of existing MBEAs to a specific ap-

plication is pursued using parameter tuning. This approach uses

optimization techniques to find appropriate values for algorithm pa-

rameters, such as population size, threshold values and smoothing

factors, to achieve better performance on a given problem class. Al-

though parameter tuning can lead to better performing parameters,

the parameters themselves can often only influence the optimiza-

tion on a global level, such as managing robustness to local optima

and premature convergence. They however cannot exploit local

geometric structures specific to the problem class. To exploit such

geometric structures, the behavior of the algorithm itself has to be

adapted to the problem class.

One way to automate the adaptation of algorithm behavior is to

use machine learning techniques. Andrychowicz et al.[1] showed

promising results by applying supervised learning to gradient de-

scent to improve performance on specific fitness function classes.

A closely related self-learning direct-search approach for contin-

uous black-box problems was presented by Chen et al.[3], which

showed comparable performance to Bayesian optimization. In this

paper, we address the question of whether such a machine learning

approach could be used for automated improvement of MBEAs as

well.

The paper focuses on single-objective estimation of normal dis-

tribution algorithms (ENDAs). The ENDA framework concerns

the maximization of a black-box objective function f : Rd → R,
also called the fitness, where d ∈ N is the function dimensionality.

A generational time-step starts by sampling a population from a

normal distribution

P (t) =
(
xi ∼ N

(
µ(t), Σ(t)

))
i ∈[n]

(1)

1495

https://doi.org/10.1145/3319619.3326819
https://doi.org/10.1145/3319619.3326819

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic E.A. Meulman et al.

µ(t)

mean

Σ(t)

covariance
matrix

P (t) =
(
N(µ(t), Σ(t))

)
i ∈[n]

sample population
F (t) = (f (xi))i ∈[n]
evaluate fitness

f : Rd → R
fitness

H (t) = H (t−1) | |(µ(t), Σ(t), P (t), F (t))
accumulate history

µ(t+1) = µ̂(H (t))
mean function

Σ(t+1) = Σ̂(H (t))
covariance function

Figure 1: A schematic representation of a single step in the
ENDA framework.

with mean vector µ(t) ∈ Rd , positive definite covariance matrix

Σ(t) ∈ Rd×d , population size n, and where [n] denotes {1, . . . ,n}.
The fitness of the population is evaluated to a fitness vector

F (t) = (f (xi))i ∈[n]. (2)

The mean vector, covariance matrix, population and fitness vector

are then accumulated with the same data of earlier steps to form a

history,

H (t) = H (t−1) | |
(
µ(t), Σ(t), P (t), F (t)

)
. (3)

The mean and covariance functions, denoted by µ̂ and Σ̂ respec-

tively, then take the history to calculate a new mean vector and

covariance matrix with the goal to maximize the expected fitness

of an individual in the following populations. In traditional ENDAs,

the mean and covariance functions would include selection of fitter

individuals and subsequent maximum likelihood estimation based

on, among others, the selected individuals. The ENDA framework

is schematically summarized in Figure 1. Well-known MBEAs that

also use the normal distribution as a model are AMaLGaM[2] and

CMA-ES[5].

In this paper, we explore the applicability of machine learning

techniques to ENDAs for the purpose of developing algorithms that

learn to (optimally) adapt themselves instead of relying on a priori

designed expertise-driven existing algorithms. We proceed by intro-

ducing a proof-of-principle method to incorporate reinforcement

learning in the existing ENDA framework to automate algorithm

optimization. To study the impact and potential of the proposed

approach, we analyze the resulting algorithm and compare its per-

formance with existing ENDAs.

The remainder of this paper is organized as follows. In section 2

we analyze the three paradigms of machine learning and substanti-

ate the choice of reinforcement learning as paradigm for the rest

of the paper. Section 3 introduces a basic framework for reinforce-

ment learning and proceeds to apply this framework to the mean

function of an ENDA resulting in a proof-of-principle self-learning

ENDA, SL-ENDA. In Section 4 we empirically explore the impact of

two key components of SL-ENDA to its performance and present

an empirical performance comparison between SL-ENDA and two

well-known MBEAs, AMalGaM and CMA-ES. The design decisions,

results and possibilities for further research are discussed in Section

5. Section 6 concludes with the most notable results and concepts

presented in this paper.

2 MACHINE LEARNING TECHNIQUES
To optimize the behavior of ENDAs, as defined above, with respect

to an objective function class, only the set of mean and covariance

functions have to be considered, since those two functions fully

define the behavior. We mostly disregard the covariance function so

that we can focus on the analysis of machine learning techniques

without the inherent difficulties resulting from the constrained

nature of a covariance matrix, such as its positive definiteness. We

believe however that this analysis could be extended to provide for

automated learning of covariance functions, since we use little to

no properties of the mean function itself.

2.1 Three paradigms of machine learning
Machine learning can roughly be subdivided in three paradigms: un-

supervised learning, supervised learning and reinforcement learn-

ing [10]. Unsupervised learning studies the task of finding patterns

in data without any feedback[10]. Well-known unsupervised learn-

ing tasks include clustering and anomaly detection. Since we do

have a feedback signal, namely the population fitness of the vari-

ous populations, and unsupervised learning is not directly able to

form a mapping from histories to means as required, unsupervised

learning is not evidently applicable to learning a mean function.

Supervised learning concerns learning a function that maps an

input to an output based on example input-output pairs[10]. In our

case to obtain the input-output pairs, we could use existing algo-

rithms and record their optimization paths. However, this would

ultimately at best yield a clone of the source algorithm. In other

words, it is not a priori known what mean should be returned based

on a supplied history. Hence, we do not have the required input-

output pairs. As a result, supervised learning is not a natural fit to

learn the mean function and we will therefore, for now, disregard

it. It is noteworthy that the approach of Andrychowicz et al.[1]

to improve performance of gradient descent did use supervised

learning. However, their learning mechanism heavily relies on the

gradient of the objective function, which is generally unknown in

black-box optimization.

Reinforcement learning (RL) is learning what to do - how to map

states to actions - so as to maximize a scalar reward signal. RL is not

based on input-output pairs but rather on learning which actions

yield the most reward by trying[14]. To model the mean function

in the RL context we let the history be the state, the mean be the

action and the average population fitness be a key part of the scalar

reward signal. The resulting RL agent will maximize the average

population fitness by learning how to map histories to a new mean,

which is exactly what we want to achieve. Reinforcement learning

thus seems a natural fit to our goal and we will therefore use it in

our proof of principle.

3 LEARNING THE MEANWITH RL
3.1 Placing the ENDA in an RL framework
Formally, RL considers an agent repeatedly interacting with an

environment over the course of several episodes. At the start of

every interaction the environment is in some state which is passed

1496

Toward Self-Learning Model-Based EAs GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

to the agent. The agent responds with an action according to its

policy, which is roughly a mapping from states to actions. The state

is changed by the action in an, to the agent, a priori unknown way.

Based on the “goodness” of the new state, the environment then

returns a scalar reward to the agent. By interacting repeatedly with

the environment in this way the agent can change its policy so as

to maximize its expected discounted cumulative reward,

E

[T∑
t=0

γ t r (t)

]
, (4)

where T < ∞ is the number of interactions for a given episode,

γ ∈ [0, 1] is a discount factor and r (t) is the reward at interaction

t . To allow the agent to optimize its behavior, it has to explore

different behaviors, therefore the policy generally is stochastic.

To apply this formalism to the mean function, µ̂, we will consider
the rest of the algorithm, including the current fitness function f ,

to be the environment. The history, H (t) ∈ H, is the state, the new

mean, µ(t+1), is the action, and an interaction is a single time-step

in the ENDA framework. To make the policy adjustable and sto-

chastic, we will use a parameterized distribution based on a neural

network, which is further detailed in subsection 3.2. However, since

neural networks cannot have domains with variable dimensional-

ity
1
, we cannot pass the history directly to the policy. Therefore

the history will be transformed to a constant dimensionality space

by a preprocessor,
ˆξ : H→ Rmin

, before being passed to the policy.

Consequently, the action, a ∈ Rmout
, sampled from the policy will

have to be passed through a postprocessor, ρ̂ : H × Rmout → Rd ,

to obtain the new mean, µ(t+1) ∈ Rd . The pre- and postprocessor

allow the policy to operate in a space that is different from the

solution space, which we call the agent space. This enables us to

introduce invariances to the agent space, potentially leading to bet-

ter generalization and faster learning. This notion and the design

of the agent space will be further explored in subsection 3.3. As

a consequence of the pre- and post processor, the policy will be a

parametrized distribution over the preprocessed histories and the

actions, π : RD × Rmin × Rmout → R, where D is the number of

parameters of the policy. Lastly, to specify to the agent that we

want to maximize the fitness function, we will have to design an

appropriate reward function, r̂ : H→ R. In addition to specifying

the goal, a properly designed reward function can also guide the

agent to that goal. The details of the reward function design are

presented in subsection 3.4. The mean function is schematically

summarized in Figure 2.

To maximize the expected discounted cumulative reward (4) we

use a well-known RL algorithm called Proximal Policy Optimization

(PPO) [12]. We will approach PPO as a black box, altering the

policy parameters so as to maximize (4). This makes the resulting

framework easily adaptable to advances in the field of RL.

To specialize the resulting mean function to a particular problem

class, we define a problem class, F , to consist of a set of func-

tions and a predefined distribution over those functions. We start

with a random policy parameter vector θ ∈ RD and repeatedly

sample a function, f ∼ F . We run the ENDA with the mean func-

tion, as specified above, on each sampled fitness function in turn.

During execution of the ENDA, the RL-Agent will accumulate the

1
We disregard the use of RNN encoders as described in [7]

RL-agent

ˆξ
preproc.

ρ̂
post proc.

r̂
reward fn.

µ(t+1)

r (t)

π
policyξ (t)

a(t) B
learn buffer

Rest of

ENDA

H (t) H (t+1)

Figure 2: A schematic representation of the mean function.

preprocessed states, actions and rewards in a queue like buffer, B,
of predefined size M ∈ N. Every N ∈ N interactions, the agent

updates the parameter vector θ by maximizing (4), using gradient

ascent, with respect to all interactions in the buffer. Afterwards,

the execution of the ENDA is continued with the updated policy

parameters. When the buffer is full the oldest interaction in the

buffer will be replaced by the new interaction.

Algorithm 1 presents the pseudocode of an RL-based self-learning

ENDA with the reinforcement learning mean function (light grey

shading) and the training loop (dark grey shading) as introduced

above. Without the dark shaded region and by replacing the light

shaded region with an arbitrary mean function, algorithm 1 repre-

sents the standard ENDA framework. To accommodate real-world

applications, the function sampling at line 6 can be replaced by

another process that provides objective functions. To avoid over-

fitting, the objective functions should be a good representation of

the function class under investigation. The rest of the section will

detail the implementation of the policy, pre- and post processor

and reward function.

3.2 The policy
The policy is the parametrized distribution from which an action

is sampled based on the preprocessed history. Since the domain

of the fitness function is unbounded and continuous in nature, we

use a Gaussian policy. This entails that the policy distribution is a

multivariate normal with its mean and covariance matrix calculated

by a function approximator. To avoid the difficulties of learning a

valid (i.e. positive definite) full covariance matrix, we will assume

a diagonal covariance matrix for the policy distribution. As a con-

sequence the policy cannot efficiently explore correlations in the

agent space. However, if the agent space is properly normalized,

which will be discussed in subsection 3.3, this effect can become

negligible. In accordance with existing literature the function ap-

proximator is a neural network[9]. This allows approximation of

non-linear continuous functions while having an analytic gradient

through backpropagation, which is necessary to apply gradient

ascent to optimize (4). The network topology in this work consists

of a series of fully connected hidden layers, leading into two parallel

fully connected layers of sizemout of which the outputs are the

mean and log variances of the exploration distribution. A schematic

1497

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic E.A. Meulman et al.

Algorithm 1: RL-based self-learning ENDA

Input: n, µ(0), Σ(0), Σ̂,F ,π , ˆξ , ρ̂, r̂ ,M,N ,Tmax

1 θ ← randomInit(); // init policy parameters

2 B ←Queue(max_len = M); // init buffer

3 tRL ← 0;

4 tlearn ← 0;

5 while tRL < Tmax do
6 f ∼ F ; // sample function from class

7 µ ← µ(0);

8 Σ← Σ(0);

9 H ← ();

10 tEA ← 0;

11 while EA stopping criterion is not met do
12 P ← (xi ∼ N(µ, Σ))

n
i=1; // sample population

13 F ← (f (xi))
n
i=1; // evaluate fitness

14 H ← H | |(µ, Σ, F , P); // append history

15 if tEA > 0 then
16 r ← r̂ (H ,a); // calculate reward

17 B ← B.put(ξ ,a, r); // add interaction to buffer

18 tlearn = tlearn + 1;

19 if tlearn == N then
20 θ ← learn(π ,θ ,B); // update params.

21 tlearn ← 0

22 ξ ← ˆξ (H); // preproc. history

23 a ∼ π (θ , ξ); // sample action from policy

24 µ ← ρ̂(H ,a); // postproc. action

25 Σ← Σ̂(H); // calculate new covariance

26 tEA ← t + 1;

27 tRL ← tRL + 1;

28 return θ ;

. . .ξ

Neural network

N(µa , Σa)
exploration
distribution

µa

log(diag(Σa))

a

Figure 3: A schematic representation of the policy of SL-
ENDA.

representation of the policy and general network topology is given

in Figure 3. It is crucial to understand that the exploration distribu-

tion is part of the mean function and therefore different from the

population distribution of the main ENDA framework.

3.3 The pre- and post processor
The main goal of the preprocessor is to keep the dimensionality of

the policy domain constant. This is necessary because the neural

network can only handle a domain of constant dimensionality.

Additionally, the preprocessor allows the agent to operate in a

different space than the solution space. Such a transformation to an

agent space can be used for normalization, which can increase the

numerical stability of the learning process of the RL-agent[8], as

well as to force invariances on the resulting mean function, which

extends the validity region of the algorithm [5], and lastly, to reflect

prior knowledge about the function class it will be used on, for

example by inverting a known rotation or elongated axis.

To ensure constant dimensionality, we use a truncated version

of the optimization history consisting of the last k ∈ N populations

and fitness vectors. We let k ≥ 2 to preserve a temporal component

in the preprocessed history. The transformation is then performed

on a per ENDA time-step basis. To ensure the time-steps are relat-

able to each other, each population and fitness vector is transformed

with respect to the most recent population and fitness vector. For

example, suppose we are currently at time-step t ∈ N and we want

to transform time-step τ ≤ t . Since we assume nothing about the

fitness function, we use a standard normalization technique for

scalar data,

F̃ (τ) =
©«
F
(τ)
i − F

(t)

std(F (t))

ª®¬
n

i=1

, (5)

where F
(t)

is the average and std(F (t)) is the standard deviation of

F (t). For the populations we consider two transformations in this

work:

TSI The translation and scale invariant (TSI) transformation

uses the mean, µ(t), and the biggest eigenvalue of the popu-

lation covariance matrix, λt
max
= | |Σ(t) | |∞, to transform the

individuals in the population,

P̃
(τ)
TSI
=
©«
x
(τ)
i − µ

(t)√
λ
(t)
max

ª®®¬
n

i=1

. (6)

TRSI The translation, rotation and scale invariant (TRSI) trans-

formation uses the mean, µ(t) and the square root of the

inverse of the population covariance matrix, (Σ(t))−
1

2 , to

transform the individuals in the population back to the

space where the current population is standard normally

distributed,

P̃
(τ)
TRSI
=

((
Σ(t)

)− 1

2

(
x
(τ)
i − µ

(t)
))n

i=1
. (7)

Note that both transformations transform the populations to a

space where the current population is normalized, in the sense

that in any direction the variance is at most 1. The transforma-

tions, however, do not impose any normalization guarantees on the

previous populations. This is an effect of the need for relatability

between populations in the agent space. Also, the transformations

do not encode any prior knowledge about any function class and

can therefore be used to train on any function class.

Altogether, a preprocessed history consists of the last k popula-

tions and fitness vectors transformed using TSI or TRSI. For extra

structure, the individuals in a population and the fitness vectors

are sorted with respect to solution fitness. Then, all transformed

and sorted populations and fitness vectors are flattened to form one

real-valued vector of dimensionality n · (d + 1) · k , where if t < k
the vector is padded with zeros.

1498

Toward Self-Learning Model-Based EAs GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Lastly, the post processor inverts the transformation applied to

the populations by the preprocessor to transform the action from

the agent space to the solution space. The action will therefore be

a d-dimensional real-valued vector. In the case of the TSI space the

post processor is

ρ̂TSI

(
H (t),a

)
=

√
λ
(t)
max
· a + µ(t), (8)

where λ
(t)
max

is the maximum eigenvalue of the population covari-

ance matrix of time-step t . The post processor for the TRSI space
is

ρ̂TRSI

(
H (t),a

)
=
(
Σ(t)

) 1

2

a + µ(t). (9)

3.4 The reward function
The reward function allows the environment to specify a goal for

the agent. In the case of ENDAs we want to construct populations

with high expected fitness. We consider maximization of fitness

(instead of minimization) mostly to simplify the expressions of the

introduced reward functions, which is maximized by convention.

Hence, we want to find µ∗ ∈ Rd and Σ∗ ∈ Rd×d such that

µ∗, Σ∗ = argmax

µ,Σ∈Rd×Rd×d
E [f (x)|x ∼ N(µ, Σ)] , (10)

where E is the expected value operator. Additionally, we would like
to find these µ∗ and Σ∗ in as little time-steps as possible.

Since the RL-agent tries to maximize the cumulative discounted

reward, as defined in (4), we have to define the reward function in

such a way that the expected fitness is maximized when the cumu-

lative discounted reward is maximized. In this work we consider

three reward functions:

Fitness reward Since the average population fitness, F
(t)
, is

the maximum likelihood estimate of the expected value in

(10), it is natural to define the reward function as

r̂
fit.
(H (t)) = F

(t)
=

1

n

n∑
i=1

F
(t)
i . (11)

This reward function has the property that it is neither scale-

nor translation invariant. This could lead to difficulties with

function classes containing scaled or translated fitness func-

tions.

Normalized fitness reward Alternatively, the average popu-

lation fitness can be normalized,

r̂
norm.fit.

(H (t)) =
F
(t)
− ˆfmin(H

(t))

ˆfmax(H (t)) − ˆfmin(H (t))
. (12)

Since the maximum fitness value is not a priori known and

the minimum often doesn’t even exist, they have to be esti-

mated. The maximum is estimated by the maximum fitness

value encountered until the previous time-step,

ˆfmax(H
(t)) = max

τ ∈[t−1]
i ∈[n]

F
(τ)
i . (13)

The current fitness vector is not included in the maximum to

ensure that improving the current maximum is encouraged

over remaining at the current maximum. The minimum is

estimated by the maximum of three terms,

ˆf
initial
(H (t)) = min

i ∈[n]
F
(0)

i , (14)

ˆf
decayed

(H (t), β) = βt min

τ ∈[t−1]
i ∈[n]

F
(τ)
i

+ (1 − βt) ˆfmax(H
(t)), (15)

ˆf
window

(H (t),w) = min

τ ∈{t−w, ...,t−1}
i ∈[n]

F
(τ)
i , (16)

where β ∈ (0, 1) andw ∈ [t − 1] are parameters. The initial

term, (14), provides a constant baseline that cannot be influ-

enced by the agent. The decayed term, (15), encourages the

agent to stay increasingly closer to the current maximum,

allowing early exploration and punishing late stage diver-

gence. The window term, (16), allows the minimum to stay

relatively close to the current population fitness, ensuring

that a change in fitness stays significant.

Differential reward The differential reward, defined as

r̂
diff.
(H (t)) =

F
(t)
− F
(t−1)

maxτ ∈[t−1]
i ∈[n]

F
(τ)
i − F

(t)
, (17)

looks at the improvement in average population fitness since

the previous time-step (numerator), relative to an estimation

of the current precision (denominator). The reward canmath-

ematically be derived from the assumption F
(t)
> F

(t−1)
,

which could lead to problems with multi-modal functions.

4 EXPERIMENTS
In this sectionwe empirically compare the performance of SL-ENDA

to that of AMaLGaM [2] and CMA-ES [5]. However, to get a good

grasp on the potential of self-learning MBEAs we first empirically

select the most performant reward function and agent space from

the functions and spaces proposed in section 3. We start however

with a description of the experimental set-up.

4.1 Experimental set-up
During experimentation a covariance function based on AMaLGaM

is used, where the anticipatedmean shift is replaced by an additional

mean-shift term in the covariance function, much like the rank-one

update found in CMA-ES, to make it fit in the ENDA framework.

The population size for all tested algorithms is set to n = 20+ 10 ·d ,
which is larger than the recommended population size, but since we

are establishing feasibility, we leave parameter tuning for further

work.

The Proximal Policy Optimization (PPO) algorithm is used for

the reinforcement learning agent since it is a well-known algorithm

with good performance for continuous state/action agents[12]. The

policy is a multivariate normal distribution with a diagonal co-

variance matrix. The parameters for the policy distribution are

parameterized using a neural network consisting of 2 fully con-

nected layers, each with 128 units and ELU activation, leading into

2 parallel layers of d units resulting in the mean and log standard

1499

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic E.A. Meulman et al.

deviation vectors for the normal distribution of the policy. In prelim-

inary experiments this network was found to work, but thorough

exploration of other network topologies is encouraged for further

research.

To train the agent, function classes have to be defined to sample

objective functions from. All function classes tested here have a

base function fb : Rd → R, that define the underlying properties
of the class. The base functions tested in this paper are the sphere

(f1), ellipsoidal (f2) and Rosenbrock (f8) function as specified in the

BBOB 2010 noiseless function definition[6]. All base functions are

translated such that their optimum is located in 0 ∈ Rd .
For any b ∈ {1, 2, 8} the function class based on fb is defined as

Fb = {(x) 7→ −fb (Rx + a) : R ∈ SO(d),a ∈ B(0, 100)} , (18)

where the minus is added to account for maximization with ENDAs

and minimization in BBOB, SO(d) is the d-dimensional special

orthogonal group, also called the rotation group, andB(0, 100) ⊂ Rd

is the ball of radius 100 around the origin. Functions are sampled

from Fb by uniformly sampling a and R from B(0, 100) and SO(d),
respectively.

After training on the function class for a, per experiment speci-

fied, number of sampled functions, the resulting ENDA is evaluated

on a predefined set of 1000 functions sampled from the class. To

keep the ENDA static during evaluation learning is disabled by

ignoring lines 1-6, 15-21 and 27-28 in algorithm 1.

We define the runtime as the number of objective function eval-

uations to reach an average population fitness, F , such that the

precision, (maxx ∈Rd f (x)) − F , is smaller than some ε > 0 as cen-

tral measure of performance and call it the runtime. The algorithms

are initialized with mean 0 ∈ Rd and the identity matrix as covari-

ance matrix. Optimization of an objective function, i.e. an EA run,

is terminated when a threshold precision εmax ≪ ε is reached or

after 1000 generations, i.e. this describes the stopping criterion on

line 11 of algorithm 1.

The implementation in Python 3.6 used to produce the results in

this section is publicly available.
2
PPO was implemented using the

Tensorflow library and based on the OpenAI baselines library [4].

All experiments were performed on a 64-core (4 x 16-core AMD

Opteron(tm) Processor 6386 SE) server running Fedora 28.

4.2 Reward function analysis
As stated earlier, the definition of the reward function is one of

the most crucial parts of an environment. Not only does it specify

to the agent what its goal is, a good reward also guides the agent

towards that goal, significantly improving sample efficiency and

the stability of the learning process.

Figure 4 shows the performance of SL-ENDA equipped with the

differential, fitness and normalized fitness reward, as introduced

in subsection 3.4, after training on 10
3
, 10

4
and 10

5
functions (left

to right), sampled from the 2-dimensional Rosenbrock function

class. The vertical axis indicates runtime until the precision on the

horizontal axis is first achieved. The lines mark an average over

1000 sampled functions and the shaded area is the corresponding

99% confidence interval. The lines are terminated on the highest

2
https://github.com/realtwister/LearnedEvolution

 10 1 10 7 10 13
0

2

4

6

ru
nt

im
e

1e3 1000

 10 1 10 7 10 13

precision

10000

 10 1 10 7 10 13

100000

Differential Fitness Normalized fitness

Figure 4: Runtime until precision is achieved by SL-ENDA
equippedwith differential, fitness and normalized fitness re-
ward on the 2-dimensional Rosenbrock function class.

 100 10 3 10 6
0

1

2

3

4

ru
nt

im
e

1e3 1000

 100 10 3 10 6

precision

10000

Translation scale Translation scale rotation

 100 10 3 10 6

100000

Figure 5: Comparison of runtime vs. precision of the TSI-
and TRSI-space on the 2-dimensional Rosenbrock function
class after learning for 103, 104 and 10

5 functions.

precision that was achieved for at least 10% of the sampled functions.

The TRSI agent space is used throughout the experiment.

After 1000 functions, although all three rewards show compara-

ble convergence speeds, the differential reward on average achieves

a higher precision. This indicates that all three reward functions

specify a similar goal early on, achieving high precision. However,

the differential reward more efficiently guides the agent to such

high precision achieving behavior. This can be observed by the fit-

ness reward only achieving a precision of 10
−2

after training on 10
4

functions. Superior guidance can also be concluded from the fact

that the differential reward is mostly converged after 10
4
functions,

which can be observed from the nearly identical curves at the 10
4

and 10
5
training functions mark. Additionally, the behavior learned

under the differential reward shows a higher convergence speed

than both the fitness and the normalized fitness reward. We can

therefore conclude that the differential reward outperforms both

the fitness and normalized fitness reward.

4.3 Agent space analysis
To find the most performant agent space we compare the use of

TRSI- and TSI-space, as introduced in subsection 3.3. The experi-

mental procedure is comparable to the reward function comparison

1500

https://github.com/realtwister/LearnedEvolution

Toward Self-Learning Model-Based EAs GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

in the previous section. The algorithm is equipped with the differ-

ential reward function throughout this experiment.

Figure 5 shows that the TRSI-space results in a precision of at

least 10
−7

after training on only 10
3
functions while the highest

achieved precision with TSI-space is 10
−2
, which is achieved af-

ter training on 10
5
functions. The faster convergence in RL-time

confirms that the addition of invariances, such as the rotation in-

variance in the TRSI-space, can significantly decrease the number

of functions needed to learn a policy that achieves high precision.

Additionally, Figure 5 does not indicate any penalty with regards

to EA-time convergence speed as a result of the introduced rota-

tional invariance. Based on these results we conclude that the use

of TRSI-space leads to the best performance and we will therefore

use it throughout the rest of the paper.

4.4 Performance comparison with existing
algorithms

Following the BBOB standard we consider the runtime complexity

with respect to the dimensionality of the problem as performance

measure to compare SL-ENDA to AMaLGaM and CMA-ES. To

keep the comparison as transparent as possible, both AMaLGaM

and CMA-ES were implemented in the ENDA framework. For the

implementation of AMaLGaM, Bosman et al.[2] was followed as

closely as possible. The only major deviation from the pseudocode

in the paper is the replacement of the anticipated mean-shift, which

cannot be implemented in the ENDA framework, by an additional

mean-shift term in the covariance function, much like the rank-

one update found in CMA-ES. For the implementation of CMA-ES

the GECCO 2013 CMA-ES tutorial slides
3
were used as source and

could directly be implemented in the ENDA framework without

alterations.

Figure 6 shows the runtime until precision 10
−4

is reached by

the three algorithms on the sphere (a), ellipsoid (b) and Rosenbrock

(c) function class, as described above, for problem dimensionality

d ∈ {2, 3, 4, 5, 10}. The figures show the runtime averaged over

1000 sampled functions. The 99% confidence interval is given by

the shaded area. SL-ENDAwas trained on 2·105 functions uniformly

sampled from the function class it is evaluated on.

On all three function classes and for all tested dimensionalities

SL-ENDA is able to find the optimum and achieve at least 10
−4

precision. On average the implementations of both AMaLGaM and

CMA-ES have a lower runtime. This result however, is not sta-

tistically significant for AMaLGaM in the tested dimensionalities.

The fact that for all three function classes SL-ENDA achieves com-

parable, same order of magnitude, runtime as AMaLGaM and in

some cases CMA-ES, shows that self-learning MBEAs can, tabula

rasa, learn optimization behavior that comes near that of existing,

broadly used algorithms.

SL-ENDAs perceived scalability on both sphere and ellipsoid is

polynomial, between linear and quadratic. This is slightly worse

than the perceived linear scalability of AMaLGaM. It is important to

note that the population size, n = 20+ 10 ·d , is not the advised pop-
ulation size for either AMaLGaM or CMA-ES. This can explain the

3
http://www.cmap.polytechnique.fr/~nikolaus.hansen/gecco2013-CMA-ES-tutorial.

pdf

unexpected scalability behavior of CMA-ES with respect to AMaL-

GaM. In additional experiments, not shown here, with the recom-

mended population size of CMA-ES, n = 4+ ⌊3 · ln(d)⌋, its expected
linear scalability on sphere was observed. Considering Rosenbrock,

the perceived scalability of SL-ENDA is non-polynomial. A possible

explanation for this behavior is the relatively high constant term in

the population size, which could result in a relatively high runtime

on low-dimensional functions. Disregarding the result for the 2-

dimensional case would yield an approximate quadratic scalability.

Altogether, SL-ENDA is truly outperformed here, scalability-wise,

by both CMA-ES and AMaLGaM.

5 DISCUSSION
The results in this paper show that the proposed algorithm, SL-

ENDA, is able to improve its optimization behavior on a problem

class based on earlier optimization of problems in that class. How-

ever, this was only shown for the problem classes induced by the

sphere, ellipsoidal and Rosenbrock functions. To make truly quan-

titative statements about SL-ENDA, benchmarking, on for example

BBOB, is advised. This will also enable more complete compar-

isons with existing algorithms. Furthermore, the performance of

SL-ENDA on multi-modal and noisy functions is, at the time of

writing, an open question, which could be answered by the afore-

mentioned benchmarking.

One could argue that the RL-agent in SL-ENDA could simply

learn to calculate a weighted average of the current population,

which would in principle be sufficient, for example AMaLGaM

does this by taking the average over selected solutions. However,

since the agent has access to multiple consecutive populations,

it is theoretically able to exhibit much more advanced behavior

by recognizing the local structure of the objective function and

changing its direction and step-size on a per generation basis.

It would be very interesting to look at the learned optimiza-

tion behavior of self-learning MBEAs, both to understand their

inner workings and to uncover potential new insights in black-

box optimization itself. Such analyses could for example entail the

qualitative comparison of the optimization paths of SL-ENDA and

existing algorithms on the same objective function, as well as the ef-

fect of different reward functions on such paths. Additionally, both

quantitative and qualitative analysis should be used to research the

generalization of self-learned specialized algorithms to objective

function classes they were not trained on. This could lead to in-

sights in shared underlying structures of different function classes

and the degree to which the developed self-learning algorithms are

able to specialize.

This paper shows that self-learning MBEAs can be designed and,

given the observed learning ability even in the restricted setting

of this first paper on this topic, are a potentially powerful new

technique. It should however be clear that the work reported here

is a proof-of-principle, showing what key components are and the

importance of their proper design (e.g. TSI-space vs. TRSI-space and

differential reward vs. average fitness reward). An important next

step in this space is the development of a reinforcement-learning-

based covariance function. To develop such a function, the highly

constrained and high-dimensional space of positive definite ma-

trices has to be explored. Additionally, the difference between the

1501

http://www.cmap.polytechnique.fr/~nikolaus.hansen/gecco2013-CMA-ES-tutorial.pdf
http://www.cmap.polytechnique.fr/~nikolaus.hansen/gecco2013-CMA-ES-tutorial.pdf

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic E.A. Meulman et al.

2 3 4 5 10
dimension

 103

 104

 105

ru
nt

im
e

SL-ENDA

CMA-ES

AMaLGaM

(a) Sphere (f1)

2 3 4 5 10
dimension

 103

 104

 105

ru
nt

im
e

(b) Ellipsoid (f2)

2 3 4 5 10
dimension

 103

 104

 105

ru
nt

im
e

(c) Rosenbrock (f8)

Figure 6: Comparison of runtime scalabilityw.r.t. problemdimension of SL-ENDA,CMA-ES andAMaLGaM for function classes
Sphere (a), Ellipsoid (b) and Rosenbrock (c). Plots show runtime until fmax − F < 10

−4 versus the problem dimensionality in
log-log scaling. Markers and shaded interval denote the mean and 99% confidence interval over 1000 sampled functions per
dimensionality, respectively. Grid lines show linear (dashed) and quadratic (dotted) scaling.

Euclidean distance of positive definite matrices and the “natural”

distance measure of covariance matrices with respect to probability,

as described in [15], have to be taken into account. Lastly, we have

to take into account that the reward function is possibly much less

trivial for the covariance function, since the main goal of the co-

variance matrix is to manage the exploration vs. exploitation trade

off, which is not easily captured in a scalar feedback signal.

As seen in the comparison of the agent spaces, a particular

choice of space can significantly impact the learning time of the

agent. It is therefore promising to research the application of self-

learning embeddings, such as for example a recurrent neural net-

work embedding[7], to embed the optimization history for algo-

rithms such as SL-ENDA. Such embeddings also open the door

to population-size and dimension-agnostic algorithms. Another

area in which this work can be extended upon, is pretraining the

policy of the agent by supervised learning on optimization paths

generated by existing algorithms. Preliminary testing that we did

in the context of this paper showed that this technique can lead

to significant learning time reduction. It should however be noted

that pretraining has the potential to reduce final performance, as

shown by silver et al. [13].

As an alternative to SL-ENDA, we could parameterize the mean

function with a neural network and, using a black-box optimization

method, maximize a performance measure, like the reward function,

over a set of functions sampled from the function class. In theory

this would be a more “pure” approach to optimizing the behavior

of the ENDA, since we can then directly optimize the performance

measure under consideration. Such an approach does, however, not

allow behavior optimization to proceed on a per ENDA-generation

basis, which makes it far less sample efficient but potentially more

robust to multi-modal functions. Salimans et al. showed that using

classic evolution strategies on general RL benchmarks can match

the performance of conventional RL-algorithms [11]. This approach

was found to be highly parallelizable, but it needed at least 3x as

much data to achieve matching performance. Applying the ideas of

Salimans et al. to self-learning ENDAs is left for further research.

Finally, we note that throughout this paper, due to its natural fit,

reinforcement learning was used as main machine learning para-

digm. However, there are ways, unexplored in this paper, to apply

other paradigms to MBEAs. A good example is the indirect super-

vised learning approach introduced by Andrychowicz et al. [1]. The

approach uses the chain-rule in combination with the gradient of

the objective function and back propagation, to calculate a parame-

ter update of a neural network that encodes the optimization step of

a gradient descent scheme. The approach could be adapted, by for

example approximating the gradient numerically, to train the mean

function of self-learning MBEAs. This example shows that there

are many unexplored ways to apply machine learning to MBEAs,

adding to its attractiveness as a new topic for research.

6 CONCLUSION
We have introduced a framework that uses reinforcement learning

to, tabula rasa, learn to adapt the model-governing parameters of a

model-based evolutionary algorithm to achieve efficient optimiza-

tion. The results show that self-learning model-based evolutionary

algorithms can yield algorithms that, on unimodal noiseless func-

tions, have performance and scalability that comes close (same

order of magnitude) to that of existing, broadly-used and carefully

manually-engineered algorithms. This conclusion, together with

the inherent potential of self-learning evolutionary algorithms with

regard to specialization, supports the idea that self-learning model

based evolutionary algorithms offer a promising new direction for

further research that potentially has great impact on the field of

(model-based) evolutionary algorithms.

REFERENCES
[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B.

Shillingford, and N. De Freitas. 2016. Learning to learn by gradient descent

1502

Toward Self-Learning Model-Based EAs GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

by gradient descent. Advances in Neural Information Processing Systems (2016),
3981–3989.

[2] P. A. N. Bosman, J. Grahl, and D. Thierens. 2013. Benchmarking Parameter-Free

AMaLGaM on Functions With and Without Noise. Evolutionary Computation 21

(2013), 445–469.

[3] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick,

and N. de Freitas. 2017. Learning to learn without gradient descent by gradient

descent. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70. 748–756.

[4] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,

S. Sidor, Y. Wu, and P. Zhokhov. 2017. OpenAI Baselines. https://github.com/

openai/baselines. (2017).

[5] N. Hansen. 2016. The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772 (2016).

[6] N. Hansen, S. Finck, R. Ros, and A. Auger. 2010. Real-parameter black-box opti-
mization benchmarking 2010: Presentation of the noiseless functions. Technical
Report. INRIA.

[7] Y. Keneshloo, T. Shi, C. K. Reddy, and N. Ramakrishnan. 2018. Deep Reinforcement

Learning For Sequence to Sequence Models. arXiv preprint arXiv:1805.09461
(2018).

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.

Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971 (2015).
[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. 2015. Human-level

control through deep reinforcement learning. Nature 518 (2015), 529–533.
[10] S. Russell and P. Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.).

Prentice Hall Press, Upper Saddle River, NJ, USA.

[11] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. 2017. Evolution strategies as

a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017).

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.

Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den

Driessche, T. Graepel, and D. Hassabis. 2017. Mastering the game of Go without

human knowledge. Nature 550 (2017), 354–359.
[14] R. S. Sutton and A. G. Barto. 2018. Reinforcement Learning: An Introduction (second

ed.). The MIT Press. http://incompleteideas.net/book/the-book-2nd.html

[15] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. 2014.

Natural Evolution Strategies. Journal of Machine Learning Research 15 (2014),

949–980.

1503

https://github.com/openai/baselines
https://github.com/openai/baselines
http://incompleteideas.net/book/the-book-2nd.html

	Abstract
	1 Introduction
	2 Machine learning techniques
	2.1 Three paradigms of machine learning

	3 Learning the mean with RL
	3.1 Placing the ENDA in an RL framework
	3.2 The policy
	3.3 The pre- and post processor
	3.4 The reward function

	4 Experiments
	4.1 Experimental set-up
	4.2 Reward function analysis
	4.3 Agent space analysis
	4.4 Performance comparison with existing algorithms

	5 Discussion
	6 Conclusion
	References

