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ABSTRACT
In application domains like data analysis or image processing, ever-
increasing performance demands push the capabilities of computa-
tional systems to their limits. With technology scaling plateauing
out, engineers are forced to rethink their approach to system de-
sign. The research field of approximate computing provides a new
design paradigm which trades off accuracy against computational
resources. In a complex system, multiple approximation methods
can be combined to maximize the resulting benefits, but because of
error propagation in the system, doing this in a controlled manner
is challenging. To solve this problem, we propose to use concepts
developed in the field of evolutionary machine learning to optimize
approximation parameters, focusing on systems implemented on
FPGA hardware. Our approach uses the rules of a learning classifier
system to adjust approximation parameters. The resulting effects
on both the application quality and resource usage are estimated
on-the-fly and fed back to the rules with every fitness update, al-
lowing the system to be carefully tuned to specific design goals. We
illustrate the application of the proposed system to a real-world im-
age processing problem and highlight some practical implications.
As this is work in progress, we outline remaining open questions
and future directions for our research.

CCS CONCEPTS
• Computing methodologies → Rule learning; Learning set-
tings; Image processing; • Hardware → Reconfigurable logic
and FPGAs;
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1 INTRODUCTION
Growing resolution and frame rate of modern imaging systems
outpace available resources on current embedded platforms for the
efficient implementation of many complex algorithms. Depriva-
tion of the computational capability along with power and energy
restrictions in such digital image and signal processing systems ex-
tend the focus of research into the area of approximate computing.
The idea of approximate computing effectively exploits the inherent
resilience of applications to in-exactness in their computations and
brings out better performance, space, and energy efficiency on hard-
ware systems which trade off the application quality [7]. However,
the quality of such applications must always be preserved above a
certain acceptable threshold, and it is essential to identify optimal
approximation parameters which meet the quality specifications
while maximizing the resource benefits.

Countless research has been conducted on various approxima-
tion methods for field-programmable gate array (FPGA) devices
over the last decades [20]. However, only a few of them are con-
centrated on methods to optimize parameters with desired output
quality in their practical implementation. Besides, the combination
of multiple approximations, the interactions between them, and the
effects of the error propagation on the output quality also need to be
considered during the implementation of approximations in image
and signal processing pipelines. Existing approaches are mostly
limited to certain specific approximation methods [1, 30], while
our approach can accommodate various methods suitable for use
on FPGA devices. Moreover, our rule-based concept can be used to
dynamically adjust parameters during runtime.

Previous works have shown the applicability of learning clas-
sifier systems (LCSs) to the configuration [8] as well as workload
distribution [34] for embedded systems. Inspired by the results of
their research, we propose an LCS-based approach which optimizes
the parameters of multiple approximations on FPGA devices for
image processing applications. The core of the LCS is a set of rules
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with conditions and actions collectively modeling an intelligent
decision maker along with the fitness function [29]. The actions
are used to adjust the configuration of approximation parameters
and are chosen depending on conditions which reflect the current
system state and also based on fitness values generated during the
learning phase. A major benefit of this rule-based approach is that
it is not restricted to specific kinds of approximation methods and
that it can be used to optimize arbitrary combinations of approx-
imations on system level. Furthermore, the best rules trained in
the learning phase can be used to dynamically adjust parameters
during runtime without incurring high overhead.

This paper is organized as follows. Section 2 summarizes the
related work on approximate computing and the application of
LCS to FPGA technology, especially for approximate computing on
FPGA devices. In Section 3, background information on LCS-based
learning as well as an introduction to FPGA basics are provided.
The proposed approach of the LCS-based system is introduced in
Section 4, and a potential use case with multiple approximations
and optimizations on an image processing pipeline are outlined
in Section 5. Section 6 explains the expectations we have for the
proposed system and discuss remaining open questions and next
steps. Finally, Section 7 concludes our work.

2 RELATEDWORK
The error resilience of applications has been effectively exploited
with approximate computing by various researchers, especially in
image processing applications. A survey on approximate comput-
ing by Sparsh Mittal [20] lists a variety of approaches in multiple
abstraction levels which trade off computational accuracy against
benefits in energy efficiency, resource consumption, and speed. The
configurable logic block (CLB) based architecture of the FPGA has
been adequately utilized for various approximations such as approx-
imate adders [5, 21], multipliers [27, 28], dividers [3], approximation
by wire removal [33], and memorization-based approximation [24].
However, judicious selection of parameters and their optimization
are indispensable phases in FPGA-based approximations in order
to guarantee the quality specifications along with the performance
improvements. If the output quality and resource consumption of
an application strongly depend on the application state and the
current input, it might be desirable to dynamically change approxi-
mation parameters during runtime. This requires a mechanism that
should introduce as little overhead as possible to the system.

Danek et al. employed the idea of LCS to FPGA technology map-
ping problems [8]. Their work introduced a rule-based eXtended
classifier system (XCS) adaptive mapper in order to achieve good
area and performance results on heterogeneous FPGAs. The map-
per is trained on a benchmark circuit and evolves a set of generic
mapping rules during the learning phase with minimal number of
CLBs and critical signal path delays. Moreover, a reward is gener-
ated for each action which reflects the decrease in the number of
CLBs and critical path delay along with the utilization of generated
CLBs. The adaptive nature of the XCS mapper ensures that the
final rules take the global characteristics of the FPGA into account.
This work shows that an LCS can be effectively applied to optimize
the configuration of FPGA systems. However, it does not consider
any approximation methods. In the context of performance and

power optimization of System-on-Chips (SoCs), Zeppenfeld et al.
introduced the learning classifier table (LCT) [35], a simplified XCS-
based reinforcement learning technique, and used the concept for
dynamic parameterization to optimize task distribution and work-
load management in multi-core systems [34]. The LCTmonitors the
current workload of the cores during runtime, dynamically scales
core frequencies, and migrates tasks between cores to achieve opti-
mal system utilization. Their results demonstrate the applicability of
an LCS-based approach to the dynamic configuration of embedded
systems with low overhead.

Vasicek et al. introduced a two-stage approximation and opti-
mization concept which uses cartesian genetic programming (CGP)
on gate level [30]. The objective is to reduce the number of gates in
the circuit implemented on the FPGA with a tolerable error rate. To
achieve this, the CGP is applied once to the exact circuit to obtain
an optimized error-free design first and then again after introducing
a certain level of error, resulting in an area-reduced approximate
design. This approach directly approximates circuits on gate level
and is therefore not applicable to higher level approximation meth-
ods. Further, their approach completely eliminates the possibility of
dynamic adaption. Akhlaghi et al. proposed an approach that uses
gradient descent to introduce multiple approximations in a data
flow graph [1]. However, their system can only handle approximate
adders and main memory. It is also not suited for dynamic adaption.
Regarding the challenge of dynamically adapting approximation
parameters, Laurenzano et al. have presented a framework that
analyses the current input and searches for the best approxima-
tion methods and parameters to adequately process this input [17].
While this approach enables the system to fine tune the approxima-
tions to every input, it incurs high runtime overhead and is limited
to approximation methods in software.

3 BACKGROUND INFORMATION
This section provides background information on LCSs and presents
the major LCS styles. Furthermore, an introduction to the basic con-
cepts of FPGA devices and the implementation of image processing
pipelines on FPGA is given.

3.1 LCS
LCS is a methodology in evolutionary machine learning which
incorporates rule-based learning. John Holland introduced the con-
cept of LCS in 1976 [10] based on his idea of the genetic algo-
rithm (GA) [11]. The basic LCS involves multiple interacting com-
ponents and relies on simple rules [29]. These rules are typically
combinations of conditions and associated actions which are collec-
tively called a population of classifiers. Generally, rules are defined
as “IF condition, THEN action”. The driving mechanism of LCSs in-
cludes a discovery component and a learning component where the
learning component iteratively guides the discovery component to
populate a better set of finite rules for a particular problem.

In a general LCS, the environment serves as input to a system
which communicates with the classifier population through so-
called detectors to identify the matching rules from the population
and to form a match set. Appropriate actions are selected from
the match set either by random selection or deterministically us-
ing a prediction mechanism. Then, effectors perform the selected
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actions which in turn change the environment. Different LCSs ap-
ply different discovery components such as the GA or the covering
mechanism (CM) to the entire population of classifiers, to the match
set, or to the selected action set to populate new rules. A reinforce-
ment learning component is responsible for the credit assignment,
which is used to update the fitness values that describe how well
the rules apply to a problem.

Over the years, the core idea of LCS has been updated with
various modifications leading to multiple versions of the LCS [29].
Two major streams of the LCS are the Michigan-style [12] and the
Pittsburgh-style [25]. In a Michigan-style LCS, the GA operates at
the level of individual rules and the population represents a single
solution to the problem. Moreover, each rule in the population has
a fixed length. In comparison, a Pittsburgh-style LCS has variable
length rule sets which compete with each other. Each of these rule
sets is a potential problem solution learned iteratively from a set of
problem instances. Hence, this approach could not be adopted to
online systems and also needs higher computational effort. Wilson
proposed the XCS which is one of the most prominent Michigan-
style LCS [31]. Compared to earlier approaches, the XCS separates
the credit assignment component from the GA based on accuracy.
Also, the rule discovery relies on the selected set rather than the
entire population to evolve accurate and general classifiers. The
idea of LCS has been adopted in numerous applications such as
autonomous robotics [26], data mining [13, 32], traffic signal control
[6] and SoC performance optimization [8, 35].

3.2 FPGA
A field-programmable gate array (FPGA) can be used to implement
custom logic in hardware. Therefore, FPGAs are commonly used to
prototype Integrated Circuits (ICs) or to build small-series products
for which the non-recurring engineering costs of manufacturing
custom ICs are not economical. Furthermore, in contrast to custom
ICs, FPGAs can quickly be reconfigured endless times. As shown
in Figure 1, FPGAs consist of three major components: I/O blocks,
configurable logic blocks (CLBs), and the interconnect.

Figure 1: Basic FPGA Structure

I/O blocks are used to connect the FPGA to the outside world.
These blocks implement clock and reset connections for the FPGA,
as well as data interfaces such as PCIe, SATA, or other data in-
terfaces. FPGAs even support the implementation of full custom
interfaces. The actual logic is implemented in the configurable logic

blocks (CLBs). CLBs mainly consist of look-up tables (LUTs) hold-
ing combinatorial logic and flip-flops to synchronize the logic with
the clock. Finally, FPGAs also have a configurable interconnect to
connect the CLBs and the I/O blocks with each other. Consequently,
the configuration of the CLBs and the interconnect define the logic
implemented in the FPGA.

After introducing the basic structure of an FPGA, it is now possi-
ble to combine several CLBs to implement more complex logic. This
logic is implemented as register-transfer level (RTL) logic, which is
depicted exemplarily in Figure 2. In this RTL logic, the data passes
through clocked registers and the combinatorial logic between the
registers. On every rising clock, the register stores the data available
on the input of the register. The stored data then becomes available
at the output of the register. The actual calculations on the data are
being done in the combinatorial logic between the registers, while
the registers just store intermediate results. It is also possible to
build complex RTL logic which feeds data back into previous stages.
However, to keep the examples simple, more complex logic will not
be discussed further here. More information can be found in [16].

Figure 2: Example of RTL logic

This process can now also be pipelined, so that new input data
can be provided to the processing pipeline in every clock cycle.
The data will then ripple through the processing pipeline. As no
function unit is used twice, there is no need to wait for the previous
data set to be processed before feeding new data into the pipeline.

Furthermore, in comparison to traditional CPUs where data
always has to be written back into a central register bank or even to
the RAM, FPGAs can stream the data through the pipeline without
affecting any additional FPGA function units outside the processing
pipeline. Hence, FPGAs can achieve a very high throughput.

As current FPGAs integrate between 2,000 to 3,000,000 CLBs,
they can integrate very large custom logic. This enables the im-
plementation of complex processing pipelines, such as image pro-
cessing or 3D data processing pipelines. Further information about
the implementation of image processing pipelines in FPGAs can be
found in [4].

However, as image processing pipelines are extremely complex,
they require lots of FPGA resources. In order to reduce the resource
consumption, approximate computing can be applied. There are
numerous approximate computing methods available for FPGA.
For example, the bitwidth of intermediate results can be changed
to optimize the FPGA design. This method, called bitwidth scaling,
can be applied very well to FPGA applications, because, unlike
CPU architectures, FPGAs are not constrained to a fixed bitwidth.
Moreover, these approximation methods have parameters which
make the approximation method configurable. In case of bitwidth
scaling, a parameter would be the bitwidth which is used for the
various signals.
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4 PROPOSED APPROACH
We propose a novel approach to optimize the parameters of an
approximated FPGA design using an LCS which is based on super-
vised incremental learning. This section explains the new approach
and its components. An overview of the proposed approach is
shown in Figure 3.

The system is composed of different components: the approxi-
mated application and its parameters which are implemented in
FPGA, the LCT which holds all relevant data, and both the Condi-
tion and Fitness Function which work on the LCT data to train the
system. These components are explained in detail in the following.

Figure 3: System Overview

The main component of our approach is the approximated FPGA
design, called Approximated Application in Figure 3. Within
the application, multiple approximation methods might be imple-
mented for different tasks. To adjust the approximation, these meth-
ods have runtime configurable settings or parameters S . These
parameters might control different aspects of the approximation,
such as turning individual approximation methods on and off or
scaling the precision of intermediate steps in the pipeline [9]. In
order to control and tune these parameters, multiple predefined
actionsA are used. For every action, the LCT stores a fitness value F
which is updated after each iteration by the fitness function fF it ().
Dependent on this fitness value F , the next action a is chosen ac-
cordingly in the next iteration.

As the application runs on an FPGA, our approach can run many
iterations per second. Hence, it enables a fast optimization and the
exploration of very large design spaces.

The approximation parameters S , which are set by the actions,
represent the current state of the approximated cores. Hence, they
are also used to select a condition c from a set of possible conditions
C . Optionally, the selected condition can also be influenced by the
input data I or by the application state T . This application state
consists of information offered by the application to aid the learning
system in selecting appropriate actions (e.g. average intensity over
the last hundred frames in an image processing application). The
selected condition c is hence derived as:

(S,T , I ) 7→ c , c ∈ C . (1)

The actual selection of a condition is then done by the condition
function fCond ():

c = fCond (S,T , I ) , c ∈ C . (2)

For a set of conditions

C = {c1, c2, .., cn }, (3)

fCond () contains an entry for every possible condition using S , T ,
and I to select a condition:

fCond (S,T , I ) =


c1 , for predefined condition 1
c2 , for predefined condition 2
... ...

cn , for predefined condition n.

(4)

However, the predefined conditions must be constructed in a way
so that two predefined conditions can never be true at the same
time. Otherwise, fCond () would not be able to select c reproducibly
and reliably.

Then, the selected condition is used to select the subset Ac of
valid actions from a set of all possible actions A:

∀c ∈ C(∃Ac ⊆ A). (5)

To prevent starvation of any action while still ensuring a quick
convergence towards an optimal parameter set, actions are cho-
sen randomly with a certain probability P(a |c). This probability
depends on the fitness value Fc,a , which is assigned to every valid
combination of conditions and actions:

∀c ∈ C,a ∈ Ac (∃=1Fc,a 7→ P(a |c)). (6)

The fitness values together with the conditions and the actions
form the LCT, as depicted in Figure 3 and shown exemplarily in
Table 1.

As one action is always chosen for any given condition, the sum
over the probabilities for all valid actions is always 100% for all
possible conditions:

Ac∑
a

P(a |c) = 1 ,∀c ∈ C . (7)

Consequently, the probability for an action to get chosen is calcu-
lated as:

P(a |c) =
Fc,a∑Ac
ak Fc,ak

,

Ac∑
ak

Fc,ak ≥ Fc,a > 0. (8)
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Therefore, no fitness value Fc,a is allowed to be <= 0. Otherwise,
such a fitness value would always result in a zero probability of the
assigned action being chosen. Hence, the action would starve.

To calculate the fitness value Fc,a , the benefits and drawbacks
of applying the action in the last iteration of the learning system
are taken into account. This is done by the fitness function fF it (),
which decides whether it was good or bad to apply the action a
under the given condition c . If it was good to apply the action, the
fitness value will be increased, otherwise, it will be decreased. Ben-
efits of applying the action might be less power consumption, less
area usage, lower latency, or any other application specific benefit.
Drawbacks on the other hand represent the decrease in data quality
at the output of the application. These benefits and drawbacks span
the design space we are exploring with our approach. To calculate
the new fitness value Fnewc,a , we now take the old fitness value Foldc,a ,
the set of all benefits Bc,a , and the set of all drawbacks Dc,a into
account:

Fnewc,a = fF it (F
old
c,a ,Bc,a ,Dc,a ). (9)

To evaluate the output quality of the approximated application, a
reference design can be implemented in parallel to the approximated
design. This reference design, however, is optional and the quality
of the output data could also be quantified with a model-based
approach.

Furthermore, some benefits such as power consumption or area
usage might not or even cannot be measured at runtime. Instead, a
model of the benefit can be used to calculate the fitness function.
This model is part of the fitness function fF it ().

An abstract example of a learning classifier table is shown in
Table 1. This example is based on a set of conditions C = {c1...cn }
and actionsA = {a1...a7}. For every condition c , the second column
lists the subset Ac of all actions which are valid for the selected
condition. The third column then holds the calculated fitness value
accordingly.

Table 1: Example LCS Table

Condition Action Fitness

c1

a1 F11
a2 F12
a5 F15
a7 F17

c2

a1 F21
a3 F23
a4 F24
a5 F25
a6 F26

... ... ...

cn
{am : Acn }, {Fn,m }

Acn ⊆ {a1...a7}

Using this approach, we can now optimize the parameters of an
approximated FPGA design. Our approach can be used to optimize
the parameters either statically or dynamically.

When using static optimization, the approximation parameters
are learned in the first phase, called learning phase. Afterwards,
in the production phase, the parameter set is being fixed, so the
system always uses these optimized parameters.

When using dynamic optimization, the approximation param-
eters are optimized in the learning phase as explained before. In
the production phase, however, the fitness value Fc,a is not up-
dated anymore. Hence, the fitness function fF it () is not used in the
production phase. Actions are now chosen directly by the highest
learned fitness value Fc,a from each action set Ac instead of choos-
ing randomly. Consequently, all actions with lower fitness values
can now be omitted, as they won’t be chosen anyway. The set Ac
now only contains one action:

|Ac | = 1 ,∀c ∈ C . (10)

Hence, this action has a probability P(a |c) = 1 of being chosen. As
a result, the fitness values can now be completely omitted in the
production phase.

When using dynamic optimization, the influence of the input
data I and the application stateT might be especially interesting, as
this application now allows adjusting the approximation parameters
depending on the input data even in the production phase.

The proposed approach is not directly equivalent to any of the ex-
isting LCSs. However, it inherits basic concepts from the Michigan-
style LCS by using a finite rule set population that represents the
problem solution [12]. Like Zeppenfeld et al. [35], we derive proba-
bilities from the fitness values for the prediction mechanism. The
condition function plays the role of the detectors which populates
the match set rules with the relevant actions. In contrast to general
LCSs, all conditions are mutually exclusive in our approach, but
multiple different rules share the same condition. Therefore, the
resulting match set can not contain duplicate actions. Our initial
concept uses a deterministic set of rules, but we are evaluating the
possibility of integrating the genetic mechanism as well. However,
we are using reinforcement-based credit assignment to iteratively
update the fitness values of selected rules with benefits and draw-
backs to end up with an optimal rule set which can be used for
parameter adjustments at runtime.

5 DISPLAY RENDERING SCENARIO
As a suitable use case for our proposed optimization system we
consider a display rendering pipeline as employed by typical dig-
ital stills or motion picture cameras [2]. In this pipeline, a series
of tasks is performed to adapt an input image for display on a
monitor, adapting the image to the dynamic range capabilities, the
color space and the electro-optical transfer function (EOTF) of the
monitor. The pipeline contains highly non-linear functions which
cannot easily be computed in camera hardware and are therefore
implemented as look-up tables (LUTs). To reduce resource demand,
we apply approximate computing techniques and use the proposed
approach to optimize the approximation parameters.

5.1 The Processing Pipeline
The rendering pipeline is depicted in Figure 4. It consists of three
steps. The input to the system is image data in a scene-referred
encoding that relates to real-world luminances and colors captured
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Figure 4: Processing pipeline for display rendering scenario

by the camera. Each pixel consists of a triplet of red, green and blue
luminances, denoted by [RinGinBin ]

⊤.

Figure 5: Tone-mapping curve (h = 9, k = 0.6, Ia = 0.4 and
enc−1(x) = 2x ) and exemplary hierarchical segmentation
(the thick and thin vertical lines denote section and interval
boundaries, respectively)

First, a tone-mapping operator is used to map the input lumi-
nance to display luminance. The aim of this step is to create a
visually natural reproduction of the captured scene on a display
with limited dynamic range. An overview of the research on tone-
mapping operators can be found in [23]. For this example, we use a
global sigmoidal operator that is based on a model of photoreceptor
behavior [22]. The tone-mapped pixel values Ctm are calculated as

Ctm =
enc−1(Cin )

enc−1(Cin ) + (hIa )k
s + o, (11)

whereC ∈ {R,G,B} represents the luminance in any color channel,
and Ia is the adaption level in the model, which we set to the
level to which the input scene-encoding maps neutral grey. Both h
and k can be seen as user parameters used to control the overall
luminance and the contrast of the output. Because the employed
tone-mapping function is defined for linear intensities, we have to
linearize the input values by using the inverse of the logarithmic
intensity encoding (enc−1). The variables s and o are used to scale
and shift the output to the desired range.

After the tone-mapping step, the image is transformed to the
color space of the display by multiplication of the tone-mapped
color channels with a conversion matrix:

Rcol
Gcol
Bcol

 =

m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

︸                     ︷︷                     ︸
M


Rtm
Gtm
Btm

 , (12)

Figure 6: Signal flow of thematrix transformation (only one
output channel shown)

where [RcolGcolBcol ]
⊤ is the resulting triplet in the target color

space. The matrix entriesmi, j depend on the primaries of the input
encoding color space as well as those of the display color space. For
this example, we use the conversion from Alexa Wide Gamut [2]
to the Rec.709 color space [15], with the matrix

M709 =


1.6175 −0.5373 −0.0802

−0.0706 1.3346 −0.2640
−0.0211 −0.2270 1.2481

 . (13)

The last step in the pipeline compensates for the displays’ EOTF.
Corresponding transfer functions are defined in various standards
and recommendations. In IEC 61966-2-1 Amendment 1 [14], the
transfer function is defined as

Cout =

{
12.92Ccol , for Ccol < 0.0031308
1.055C1/2.4

col − 0.055 , for Ccol ≥ 0.0031308,
(14)

where C represents any of {R,G,B}. The output values Cout are
now adapted to the characteristics of a specific display type.

5.2 Hardware Implementation and
Approximation Techniques

In this example, both the input and output bitwidth of the pipeline
are set to 16 bit. In the reference implementation, the tone-mapping
and EOTF compensation are realized as full LUTs, i.e. for all possi-
ble input values the respective output is stored in memory (with
16 bit precision), taking up 131072 bytes of memory. The matrix
transformation is implemented in fixed-point arithmetic. The signal
flow for the calculation can be seen in Figure 6. All matrix entries
are stored as 24 bit values with 2 integer bits (including the sign)
and 22 fractional bits, and the output is rounded to 16 bit while no
rounding takes place in intermediate steps.

For the approximated version of the pipeline, we replace the
full LUTs with hierarchically segmented sparse LUTs as proposed
by Lee [18]. We use a two-level segmentation scheme where both
the outer segments (further denoted as sections) and the inner
segments (further denoted as intervals) are uniformly distributed.
The hierarchical scheme allows for an optimized distribution of
grid points depending on the represented function. An exemplary
segmentation of the tone-mapping LUT can be seen in Figure 5.
The function output is computed by using the most significant part
of the input to address the LUT data and subsequent interpolation
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using the remaining bits. Different interpolation methods can be
used, e.g. nearest neighbor or linear interpolation. These modules
can be further approximated by reducing the bitwidth of the stored
data.

In the matrix transformation step, we introduce multiple approx-
imation methods: reducing the precision of stored matrix values,
rounding or cutting bits in intermediate results and replacing multi-
pliers or adders with approximated units. These units often expose
further approximation parameters (e.g. the position where a carry
chain is cut in an approximate adder [19]).

5.3 Parameter Optimization Using the
Proposed System

Introducing approximation techniques like the ones mentioned
above exposes numerous design parameters. While the approxima-
tions yield benefits in terms of resource usage, they also introduce
error to the signal which needs to be controlled to ensure an accept-
able quality of service. This becomes difficult for complex systems
as multiple errors introduced to different signals may interact with
each other and propagate through the processing pipeline. It is
therefore not sufficient to optimize individual signals or modules
on their own. To account for interactions of the used approxima-
tions, we use the proposed LCS for a global optimization across the
complete pipeline by observing the errors at the final output.

We use the actions of the LCS to gradually change the system
configuration, adjusting one parameter at a time, until the system
converges towards an optimal state as guided by the fitness values.
Table 2 lists all possible actions for the approximation techniques
used in this example. Some of these actions are not necessarily
always available, depending on the current parameter configuration
S . For example, in a sparse LUT, the number of intervals in a specific
section can only be adjusted when that section exists in the current
configuration. To prevent the system from taking incorrect actions,
the LCT only lists condition-action tuples (c,a) for which the action
a is possible when condition c is true.

Table 2: Approximation parameters and corresponding LCS
actions for the rendering pipeline

Module Parameters Actions

Sparse
Luts

No. of sections Inc/Dec
No. of intervals in section x Inc/Dec
Precision of stored values Inc/Dec
Interpolation method Change

Color
Matrix

No. of bits for matrix entrymi, j Inc/Dec
No. of bits for intermediate result x Inc/Dec
Rounding method at position x Change
Implementation of arithmetic unit x Change
Approximation parameter
of arithmetic unit x

Inc/Dec/
Change

In this example we use solely the parameter configuration S
to select conditions (so that c = fCond (S), compare Equation 2).
We use the condition function to cluster the parameter space into
several subspaces by grouping ranges of parameters into the same

condition. This allows us to keep the number of conditions at a
reasonable level while still being able to record different fitness
values depending on the parameter configuration. When, as for
this example, the conditions depend exclusively on the parameter
configuration S , the optimization is strongly tied to the test set
I test for which the quality is estimated. Therefore, we use a generic
test set consisting of uniformly distributed colors to ensure neutral
conditions and to catch corner cases. Alternatively, real images with
specific content (e.g. landscapes or portraits) could be used as test
set to obtain a content-specific parameter configuration. Because
the complete processing of the test set in both the reference and
approximated implementation takes place on an FPGA, the system
can run large numbers of iterations even with big test sets within
reasonable time.

With each execution of an action, we update the corresponding
fitness value. For the example system, we consider three perfor-
mance indicators: the decrease in both memory consumption and
computational area as benefits and the loss in image quality as
drawback.

The memory consumption benefit Bmem is calculated as the
difference in memory consumption for the LUTs between the ref-
erence and approximated design:

Bmem =
∑
l ∈L

(
bitsr ef (l) − bitsax (l)

)
, (15)

where bits(l) denotes the number of bits used to store the LUT l
and the superscripts re f and ax refer to the reference and approxi-
mated implementation, respectively. L is the set of all LUTs in the
design. Regarding the computational area, we divide the system
into functional units u, and calculate the corresponding benefit
Bcomp in a similar manner:

Bcomp =
∑
u ∈U

(
CLBr ef (u) − CLBax (u)

)
, (16)

where CLB(u) denotes the number of CLBs used to implement
functional unit u andU is the set of all units.

The loss in quality is modeled with metrics derived from the
error between the reference output Cr efout and the approximated
output Cax

out . For any single pixel i in a test set I test , the error in
color channel C ∈ {R,G,B} is calculated as

∆C(i) = C
r ef
out (i) −Cax

out (i). (17)
For our qualitymodel, we use the following three derivedmetrics:

the mean squared error

Emse =
1

3|I test |

∑
C ∈{R,G,B }

∑
i ∈I test

∆C(i)2 (18)

as a general indication of quality loss, the maximum absolute error

Ewc = max
C ∈{R,G,B }

max
i ∈I test

abs (∆C(i)) , (19)

which represents the worst case error, and the absolute bias

Ebias = abs ©« 1
3|I test |

∑
C ∈{R,G,B }

∑
i ∈I test

∆C(i)
ª®¬ , (20)
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which indicates a shift in overall luminance.
The overall quality drawback estimate is a weighted sum of these

errors:

Derr = wmseE
mse +wwcE

wc +wbiasE
bias , (21)

where the weightsw give the system designer a way to control the
importance of each error type.

For the update of the fitness value associated with the condition-
action tuple (c,a), another weighting scheme is used to combine
the benefits and drawbacks into a single value representing the
reward of the last application of (c,a):

Rc,a = wmemBmem
c,a +wcompB

comp
c,a −werrD

err
c,a , (22)

where the weights w control the scale and importance of the dif-
ferent benefits and the quality drawbacks according to the overall
design goals. When the benefits outweigh the drawbacks, we want
the fitness value to increase and vice versa. To achieve this, we use
a simple update function for Equation 9:

Fnewc,a = fF it (F
old
c,a ,Bc,a ,Dc,a ) = Foldc,a α

Rc,a , (23)

where α controls the rate at which the fitness values are adapted.
In the beginning of the optimization, we have no prior knowledge
about the performance of any action. Therefore, we initialize all
fitness value with the same start value:

F initc,a = 100 ,∀c ∈ C,a ∈ Ac . (24)

When applying Equation 8 to assign choice probabilities, this auto-
matically ensures that every action a given the current condition c
is chosen with equal probability at the start.

6 FUTUREWORK
The main body of this work presents the concept for LCS-based
optimization of FPGA systems that incorporate approximate com-
puting methods, and it is work in progress. As next steps, we plan to
implement the system and evaluate its utility on use cases like the
one presented in Section 5. Furthermore, we want to address several
remaining open questions which are outlined in the following.

When using the proposed system for static optimization of an
approximated FPGA system, we expect the learned parameters
to balance the different approximations for good overall system
performance. With generic test data for the training, the quality
is controlled for any input that the application encounters in its
use, including corner cases. The model for the fitness update gives
the system designer a way to adjust the optimization according to
specific design goals. However, the choice of weights for the bene-
fits and drawbacks is strongly application-specific and might not
be immediately obvious. Experiments with different applications
and approximation methods could provide insights and guidance
for choosing these weights. Furthermore, although we expect the
proposed fitness update function to yield useful results for the ex-
emplary application, there might well be room for improvements
because of its simple nature. Such improvements can draw from
ongoing research on credit assignment in LCS [29].

The case study presented in Section 5 does not consider a dy-
namic optimization of the application. However, the method pro-
posed in this paper is designed to also support such a use case. To
do so, the condition function fcond () must also include a depen-
dency on the current input I and/or the application state T . In the
rendering pipeline, a goal could be that the system dynamically
adapts to the average intensity of the images. The application state
T could store a history of average intensity values from past frames,
which could be used to eliminate outliers. By including the history
stored in T and the current value drawn from I , the LCS could, for
example, shift more grid points in the sparse LUTs towards the
average intensity. This necessitates that in the learning phase, the
same condition function is used to find the best rules depending
on the input and application state. At runtime, the system uses the
pre-trained rules to change approximation parameters on-the-fly.
This means that only approximations suitable for dynamic adaption
can be used, and the resource overhead introduced by the dynamic
adaption mechanism must stay below the anticipated benefits.

In general, the condition function unambiguously maps the pa-
rameter configuration, the current input, and the application state
to a distinct condition. The boundaries used for this mapping cur-
rently have to be provided by the system designer, but the GA
could be used to learn optimal boundaries. Also, it must be care-
fully considered that hard boundaries resulting from the division
of the respective input spaces could lead to an oscillating system.
A possible solution to this problem could be using a hysteresis in
the condition function to prevent oscillation.

7 CONCLUSION
In this paper, we present initial ideas about a new framework for the
optimization of approximate computing parameters for FPGA sys-
tem designs based on a novel approach using an LCS. Our approach
does not only aim at the optimization of approximation parameters
in small subsets or functions of FPGA designs but also enables the
optimization of large parts of the FPGA design on system level,
including error propagation through the system. Furthermore, the
presented approach can optimize the approximation parameters
either statically or dynamically. Hence, it also allows the design of
parameter sets which can adapt to the application input even after
the learning phase has been completed.

Moreover, we illustrate the application of the proposed system to
an image processing pipeline. This scenario integrates sparse LUTs,
bitwidth scaling, different rounding methods, and approximated
arithmetic units. We propose the optimization of the approximation
parameters associated with these methods using our framework.

As part of our future work, we plan to do a proof of concept
implementation, including a thorough evaluation. Furthermore, we
plan to integrate more sophisticated calculations to the fitness func-
tion and to investigate how the condition space can be segmented
without the system starting to oscillate around the boundaries.
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