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ABSTRACT

Previous studies have proposed an objective non-invasive 

approach to assist diagnosing neurological diseases such as 

Alzheimer and Parkinson’s diseases by asking patients to perform 

certain drawing tasks against certain figure. However, the 

approach of rating those drawing test results is still very 

subjective by relying on manual measurements. By extracting 

features of the drawn figure from the raw data, which is generated 

from the digitized tablet that patients can draw on, we can use 

supervised learning to train the evolutionary algorithm with those 

extracted data, and therefore evolves an automated classifier to 

analyse and classify those drawing accurately. Cartesian Genetic 

Programming (CGP) is an improved version of conventional 

Genetic Programming (GP). As GP adapts the tree structure, 

redundancy issue exists as the tree develops more nodes with the 

evolution of the GP by mutation and crossover. CGP addresses 

this issue by using fixed number of nodes and arities, evolves by 

using mutation only. The outcome of this research is a highly 

efficient, accurate, automated classifier that can not only classify 

clinical drawing test results, which can provide up to 80% 

accuracy, but also assisting clinicians and medical experts to 
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investigate how those features are used by the algorithm and how 

each component can impact patient’s cognitive function. 
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1 INTRODUCTION 

Parkinson’s disease (PD) assessment is often related with motor 

skills test as it is recognized as a motor disorder widely [1, 2]. In 

addition, Parkinson’s disease’s non-motor symptoms, for 

example, memory function and sensory, are also common [2]. In a 

clinical drawing test, the patient will be assessed in three aspect 

through different tasks – motor skills, cognitive abilities and 

memory functions. Such drawing test is recognized by medical 

experts and is widely used currently. However, verdict on the final 

drawing result is often subjective with existential human error as 

it is measured manually. By using machine learning, an automated 

classifier can provide an objective approach on rating those 

drawing test results. 
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As a form of machine learning, evolutionary algorithm and its 

subset, genetic programming, provide a biologically inspired 

learning method through mutation and crossover from best 

currently known hypotheses in the algorithm [3]. By using 

drawing’s features as input, classification as output, we can have 

an objective method that minimise human error by analyse the 

figure with smallest details to perform automated clinical drawing 

test classification using evolutionary algorithm.  

Previous study has shown the validity of application of 

evolutionary algorithm on the assessment of bradykinesia in 

Parkinson’s disease by using finger-tapping test [4].  In the finger-

tapping test, two special devices were attached on patient’s index 

finger and thumb separately. Features were extracted from these 

devices, resulting in a well-trained classifier with an overall 

accuracy of 91.05% on both hands, providing information from 

the test result by machine learning technique [4] for further 

research on how evolutionary algorithm can measure the severity 

of bradykinesia in PD accurately as well as differentiate early 

stage of PD from normality [4]. 

Another form of neurological disease test is clinical drawing 

test, in which the patient was required to perform various drawing 

task against certain figure, for example, figure copying and 

delayed recall. Several figure tests were proposed such as Clock 

Drawing Test (CDT) and Rey-Osterrieth Complex Figure 

(ROCF). Both have been proven on being effective on assisting 

neurological disease diagnosis [5, 6], but with lack of objective 

method to rate and classify those figures because of the limitation 

of those figures.  

 

 

Figure 1: Illustration of CDT and Rey-Osterrieth Complex 

Figure, taken from [7] & [8] 

The intended experiment of applying evolutionary algorithm on 

analysing drawing data is to feed the algorithm with the features 

extracted from the raw data of the drawing result, using 

supervised learning to train the algorithm as an automated 

classifier. CDT is proven very effective on diagnosis of 

neurological deficits disease as it is harmless, easy to 

administrate, objective. Previous study by Agrell et al. [9] shows 

that it has a strong correlation between CDT and Mini Mental 

State Examination (MMSE), a questionnaire targets on 

investigation on mental state of patients [10], which is used 

extensively by clinical experts and researchers [11] in patients 

with various cognitive dysfunctions [9]. However, the shape of 

the clock makes feature extraction for the algorithm very difficult 

as the components in the figure are mostly distorted. Deep 

learning approach can address this issue by training the algorithm 

with original image file, but such approach cannot identify 

detailed features like movement disorder and hesitation. 

Compared with CDT, feature extraction from the ROCF is 

relatively easier and more accurate with its line segment structure 

rather than curves, but the test itself is too complicated to 

distinguish patients from different conditions and even from 

control group due to its difficulty to perform this drawing task. 

Thus, a figure with a simpler shape but also capable of 

distinguishing patients in various conditions as well as algorithm-

friendly is required. 

2 CLINICAL DRAWING TEST 

There are three aspects when diagnosing neurological disease – 

motor skills, cognitive abilities and memory functions. The 

clinical drawing test is divided into two sub tasks – copy and 

delayed recall. Copy task requires patients to copy a figure which 

is presented to them by hand drawing. Delayed recall asks patients 

to draw the figure they were presented after certain time according 

to their memory only. In this study, both simple figure and 

complex figure are used in separate tests.  

2.1 Simple Figure 

Simple figure test uses cube figure and the drawing task does not 

include delayed recall because this task targets on cognitive 

function and motor skills only. The test subjects are 40 pupils 

from local elementary school with their parents’ and headmaster’s 

consent with ethical approval from the Physical Sciences Ethics 

Committee, the University of York. The objective of this study is 

to conduct simple experiment with cube figure, which tests 

visuospatial ability only, in order to provide evidence for further 

studies on complex figure tests. The range of age of those pupils 

is between 7 and 11 as children in this age group have rapid 

development of cognitive skills, such as visuospatial ability [12], 

which is tend to decline with the advance of cognitive 

impairment. 

 

Figure 2: Cube figure presented to test subjects 

Each test subject in this test is required to copy the cube figure 

for three times as shown in Fig. 1 on a digitized tablet with paper 

sheet covered to minimize external disturbance on drawing 

condition. Only the raw data, hand preference and test date are 

recorded.  A total of 122 drawing samples were collected.  
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The purpose of this sub-task is to validate the possibility on 

using evolutionary algorithm to classify various drawings against 

their quality, before we can apply complex figure on actual 

neurological disease patients. Previous study has shown the clear 

relationship between children development and visuospatial 

ability [12], drawing quality tends to increase with the increase in 

child’s age because of the development of children’s visuospatial 

ability. 

2.2 Complex Figure 
Complex figure test uses a Benson figure as shown in Fig. 3. It is 

a combination of line and curve segments with higher 

requirements on line scaling and placement compared with the 

cube figure. Test subjects are 58 Parkinson’s disease patients and 

27 people in normal control group, with the age range between 48 

and 82 regardless of gender and dominant hand. In this test, 

subjects are required to perform both copy and recall task. A total 

of 162 drawing samples were collected. 

 

 

Figure 3: Benson figure presented to test subjects 

3 DATA PRE-PROCESSING 

Data from the stylus and tablet is recorded in the form of data 

stream during drawing. A set of data will be captured after a 

constant time gap, including pen positional coordinate, pen tilt 

angle and pen pressure. To feed each sample to the machine 

learning algorithm, number of features are extracted from the raw 

data. Those features are divided into dynamical and figure 

structural features. 

3.1 Dynamical Features 

Dynamical feature assesses subject’s drawing in motor skills 

aspect. Table 1 shows features extracted for dynamical discipline. 

Table 1: Dynamical Features Extracted from Raw Data 

Symbol Description 

SD(V)figure The standard deviation of figure velocity 

SD(A)figure The standard deviation of figure angle 

SD(A)horizontal The angular standard deviation of horizontal segments 

SD(A)vertical The angular standard deviation of vertical segments  

SD(A)oblique The angular standard deviation of oblique segments  

∑(T)figure Total time spent on the figure 

% pen-up The percentage of time when subject’s pen is up 

∑(T)hes-up The total time spent on hesitating when pen is up 

∑(T)hes-down The total time spent on hesitating when pen is down 

% (T)hes-up The percentage of time spent on hesitating when pen 

is up 

% (T)hes-down The percentage of time spent on hesitating when pen 

is down 

 

Standard deviation is often used to measure dispersion of a 

certain dataset; therefore, it can be used for stability measurement. 

Because there is no clear correlation between movement velocity 

and motor skills, we use standard deviation to measure the 

stability in terms of velocity. Similarly, this can be applied on 

angular data as a measurement of line segments straightness as 

Parkinson’s patient often find it difficult to draw a straight line.  

3.2 Structural Features 

Structural features are the abstract representation of the visual 

figure structure. Table 2 shows features extracted for structural 

discipline. 

Table 2: Structural Features Extracted from Raw Data 

Symbol Description 

∑(L)figure Total length of figure line segments 

W*H Size of the figure 

W/H Aspect ratio of the figure 

% horizontal The percentage of length of horizontal segments 

% vertical The percentage of length of vertical segments 

% oblique The percentage of length of oblique segments 

Nsegment Number of segments based on pen pressure break1 

 

Structural features include global and regional features. Global 

features include total length of the figure. Size and aspect ratio 

will be used for the algorithm to find a common pattern for the 

figure as well. The definition of Pen-Up is when the pen is not on 

the paper as the capture device has a pressure sensor. That means 

zero pressure reading indicates a lift of pen from the tablet. The 

portion of segments in terms of length in different angle groups 

                                                                 
1 This feature is deprecated in Benson complex figure test as the actual value varies a 

lot for figures with same drawing quality. 
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will be assessed in order to find out a distribution in portions in 

different classes. Hesitation is a crucial part of Parkinson’s disease 

assessment as it may reflect a deficit in motor skills and/or 

visuospatial ability.  

3.3 Initial Classification 

Before we can use all the samples for the algorithm, we need to 

classify these samples that will be used for supervised learning. 

Currently there are two rating schemes to apply on the drawing 

samples. 

3.3.1 Visual-based classification. A Benson-figure-test 

instruction manual [13] was published by the National 

Alzheimer’s Coordinating Center in the University of Washington 

in 2013. This instruction has proposed a rating scheme, which is 

based on the structure of the Benson figure, including various 

components in the figure as well as general placement and scale 

of the whole figure. 

 

 

Figure 4: NACC Benson test rating scheme, taken from [13] 

Apart from the eight components shown in Fig. 4, BONUS is 

available for reasonable placements of the components and 

general scale of the figure. According to this rating scheme, there 

is a total of 17 available marks. Because different figures with 

identical score has a great possibility of having completely 

different structural feature, those 17 marks is further classified 

into four classes with certain a range of score in a single class, for 

better training performance in the algorithm. 

 

Figure 5: Part of the class 1 drawings, showing wide variety of 

structures in lower class drawings 

 

Figure 6: Two similar figures with marginal marks in their 

respective class (Upper in class 2, lower in class 3) 

However, one known downside of this classification scheme is 

samples with marginal mark in different classes may be very 

similar in terms of the drawing quality as this scheme rates the 

figure based on the number of components, making it more 

difficult for the algorithm to distinguish marginal samples. 

Furthermore, especially in lower classes, figures in the same class 

may differ dramatically as shown in Fig. 5, making the algorithm 

having difficulty in finding patterns for low class drawings. 

Cube figure rating is based on Bremner et al.’s study [12]. The 

original classification scheme proposed eight classes. For this 

study, those classes are regrouped into three classes based on their 

features as the number of samples in each class is not enough for 

detailed classification training. In addition, the regrouping is 

performed according to the shared characteristics in those classes, 

which is further described in figure 8. 

 

Figure 7: Bremner’s cube classification scheme, taken from 

[12] 
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Figure 8: Regrouped cube classification scheme based on Fig. 

7 

 

Figure 9: Sample drawings from different groups 

3.3.2 Condition-based classification. Apart from using 

classification based on the Benson figure rating for the algorithm 

training, samples can be classified based on test subject’s 

condition in four classes: control group and three Parkinson’s 

stages: Parkinson’s disease-Normal Cognitive (PD-NC), Mild 

Cognitive Impairment (PD-MCI) and Dementia (PD-D), in 

ascending order in terms of severity. There are several cognitive 

tests are conducted on patients along with Benson figure test, 

including Montreal Cognitive Assessment (MoCA), a screening 

component-based assessment for cognitive disorder detection 

[14], and Clinical Dementia Rating (CDR), a numeric scale to 

measure dementia symptom’s severity. Patients are classified to 

those PD stages by their MoCA score and CDR. As different 

condition has different effects on patients and hence, the drawing 

quality, it addresses the issue induced by the visual-based 

classification that marginal samples may not be distinguished 

correctly. 

Table 3: Classification scheme for different PD stages 

Condition Stage 

MoCA > 26 PD-NC 

MoCA <= 26 && CDR < 1 PD-MCI 

MoCA <= 26 && CDR >= 1 PD-D 

 

 

Figure 10: Samples of Benson figure drawn by patients from 

different PD stages 

The application of this classification scheme on the cube 

drawing test is classifying by age. However, no demographical 

data were recorded during this test. Therefore, only visual-based 

classification will be applied on cube drawing test as the exposed 

downside of visual-classification on Benson figure has less effect 

on cube figure as the cube figure has a relatively simpler structure, 

as shown in Fig. 8, making it is safe to use for cube figure 

classification. 

4 CARTESIAN GENETIC PROGRAMMING 

Cartesian Genetic Programming (CGP) is an improved version of 

Genetic Programming (GP). It addresses the redundancy issue 

from GP which is caused by the binary-tree structure where a 

large amount of memory and computational resources are used as 

the tree expanding while the algorithm is evolving [15]. CGP uses 

a grid structure that limits the number of nodes and arities of each 

node and only evolves through mutation [15]. The actual form of 

CGP is an array of node information with node function, node 

connection and weighting. In general, CGP will take numerical 

inputs and provides outputs as computational result. Different 

criteria can be used to classify those outputs and as an evaluation 

standard for CGP. 

4.1 Evaluating CGP Performance 

In each generation, CGP will be evaluated by the classification 

accuracy on available test data set. The general process is as 

follows: 

1. Get the total number of samples in test data set N; 

2. Set Error counter as E; 

3. For each sample in data set: 

a. Feed input of current sample into CGP 

b. If the output classification mismatches the expected 

class, Error counter E increments by one. 

c. Test next sample 

4. CGP is evaluated by accuracy 1-(E/N). 
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The CGP chromosome with the highest accuracy among a 

generation will be chosen for offspring generation, until the 

maximum generation or the target accuracy is reached. As part of 

the implementation of the fitness function, there are two 

classification algorithms to select according to the algorithm 

output configuration.  

4.1.1 Simple Threshold Classifier. This classifier is used for a 

single output CGP configuration. It requires a pre-defined number 

array as thresholds. The final output will be compared against the 

thresholds. 

1. Define an incrementing integer array A(N), where N is the 

number of classes; 

2. For an individual sample with expected class C in data set: 

a. Get the numerical output W from the chromosome; 

b. If W is in the range of (A(C-1),A(C)], it’s a match, 

otherwise mismatch 

Visual representation of this classifier is shown in Fig. 11: 

 

Figure 11: Visual representation of simple threshold classifier 

4.1.2 Node Weighting Classifier. Node weighting classifier is 

an alternative solution for multiple outputs configuration as the 

simple threshold classifier can only handle single output scenario. 

The procedure is as follows: 

1. Define class numbers N; 

2. Feed inputs from a single sample into chromosome, the 

chromosome calculates N outputs to form an array A; 

3. Find the output node with maximum value M = max(A) 

4. If M is the expected class of the sample, it’s a match, 

otherwise mismatch 

 

Visual representation of this classifier is shown in Fig. 12: 

 

Figure 12: Visual representation of Node Weighting Classifier, 

showing a matching condition 

4.2 CGP Configuration 

CGP is a highly configurable and customizable algorithm. Most of 

parameters can be set prior to the training as well as the fitness 

and node function. Those set of parameters along with a random 

number seed represents a fixed evolvement process of a CGP 

under the circumstance that the data set remains unchanged. As 

the fitness is represented by the accuracy on the CGP’s verdict on 

blindfolded dataset, best generation will be the one with the 

highest accuracy without overfitting. Table 3 shows CGP 

parameters that need to be configured before training. 

Table 4: Configurable CGP parameters and description 

Symbol Description 

Nseed Random number seed for initialization 

Nthreshold Integer array for STC 

N(nodes) Number of nodes in the CGP 

N(arity/node) Number of arities for each nodes 

%mutation Mutation rate for the evolvement of the CGP 

N(inputs) Number of inputs 

N(outputs) Number of outputs 

4.3 Overfitting Prevention 

As in other machine learning algorithms, overfitting issue needs to 

be addressed in CGP as well. All data set is divided into three 

parts: Training, Validation and Testing. Training dataset will be 

used to train the algorithm. Validation dataset, as an unknown 

dataset to the current generation, will be used to validate current 

generation by using a slightly lower chromosome in the 

generation to classify validation dataset as a solution to prevent 

overfitting from the training dataset. Testing dataset is used to test 

the chromosome with completely unknown data, which will not 

affect chromosome behaviour. Portion of those datasets typically 

are 60% of overall datasets for training, 20% for validation and 

20% for testing.  

In the situation that we do not have adequate number of 

samples for testing dataset, we need to apply K-Fold cross 

validation across all datasets. A convey-belt like mechanism is 

applied to shift data between datasets. For each fold, a fixed 

amount of data will be exchanged between datasets. The number 

of data is determined that the training dataset is to be refreshed 

twice when the validation is finished as described in below: 

Ndatashift = Ntraining * 2 / K  

where K is the number of folds to be applied. 
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Figure 13: Illustration of data shift for K-fold cross validation 

on CGP 

5 TEST RESULT 

Cube and Benson figure task adapts different testing strategy. 

Cube copying task’s training strategy is to mix all three categories 

of drawings together to train the algorithm. For Benson figure test, 

the algorithm will be trained pair-wise, each with different 

Parkinson’s condition pair. For each pair, copy and recall training 

will be conducted separately as those tasks are aiming differently, 

but will share the same CGP configuration. Each pair will be 

trained 10 times with K-fold validation enabled and different seed, 

to ensure the validity of the data, which will generate 110 CGP 

execution results for each pair and drawing mode. 

5.1 Cube Copying Task 

A simple training was conducted on cube copying data. After all 

the data were separated into three parts, a total of 25 samples, with 

5 in class 1, 10 in class 2 and 10 in class 3 are used as testing 

dataset. Hence, K-fold validation is not applied as there’s enough 

data for testing and validation. Table 5 shows the parameter used 

for CGP for the cube copying test: 

Table 5: CGP configuration for Cube Copying Test 

Symbol Value 

Nseed 1234 

N(nodes) 20 

N(arity/node) 5 

%mutation 8% 

N(inputs) 9 

N(outputs) 1 

 

With this configuration, the algorithm managed to evolve a 

chromosome with a training accuracy of 68.5% and validation 

accuracy of 68%. Test dataset reaches an accuracy of 76%, which 

is good enough to conduct further test on Benson figures 

considering the lack of samples, but the training and validation 

scores can be further improved by using K-fold cross validation 

and using extra features from the Benson figure test to the cube 

copying test. By using simple threshold classifier, two threshold 

values were set at 100 and 200. Fig. 14 shows the ascending trend 

of training accuracy. 

 

Figure 14: Illustration of CGP fitness evolution during 

training 

 

Figure 15: Chart to compare CGP output and expected output 

5.2 Benson Figure Task 

5.2.1 Subjective assessment result. All of patients’ drawings are 

assessed according to the NACC Benson test rating scheme in 

Fig. 4. The assessment result indicates that the recall task has 

better performance than the copy task in terms of distinguishing 

patients from different stages, as shown in Fig. 16. The scores are 

divided into three tiers according to their minimum and maximum 

score. In each PD stage, the leftmost bar represents the worst 

drawing quality, the middle one indicates mediocre performance 

and the rightmost bar is the portion of the near-perfect drawings. 

According to Fig. 16, patients tend to perform well in copy task, 

which makes this task seems useless in classifying patients in 

different stages. However, recall task distinguishes patients better 

than copying task, with a vivid increase of height on the leftmost 

bar while the PD stage advances, and a decrease in the portion of 

high-quality drawings. However, as it is a subjective assessment 

method, we expect to see a different result in CGP classification 

of those drawings where both copy and recall task can distinguish 

patients from different stages. 
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Figure 16: Distribution of scores in different Benson drawing 

tiers across all PD stages from conventional assessment 

method 

5.2.2 CGP execution result. As described in the previous 

section, due to lack of samples, K-fold cross validation is applied 

in Benson figure task data training. The value of K is set as 10. 

For all pairs, Node Weighting Classifier is used for fitness 

function and classification. Only nodes and arities of CGP are 

different across all pairs, mutation rate is set at 8%, maximum 

generation is 200,000. Following is a table which shows the 

testing result for each dataset for each drawing mode. It includes 

all mean accuracies for each dataset as well as its standard 

deviation, which indicates CGP’s stable performance from the 

cross validation.  

Table 6: Mean of CGP classification accuracy result 

PD Pair Mode Training Validation Test 

NC/MCI 
Copy 99.74% 85.45% 83.03% 

Recall 100% 87.82% 83.79% 

Δ 0.26% 2.37% 0.76% 
     

NC/D 
Copy 94.81% 73.44% 69.70% 

Recall 95.93% 74.95% 68.18% 

Δ 1.12% 1.51% 1.52% 
     

MCI/D 
Copy 98.89% 88.58% 83.64% 

Recall 99.03% 84.85% 79.61% 

Δ 0.14% 3.73% 4.03% 

Table 7: Standard Deviation of CGP classification accuracy 

result 

PD Pair Mode Training Validation Test 

NC/MCI 
Copy 0.0069 0.0835 0.0833 

Recall 0 0.0930 0.1034 

Δ 0.0069 0.0095 0.0201 
     

NC/D 
Copy 0.0548 0.1038 0.1122 

Recall 0.0477 0.0974 0.1044 

Δ 0.0071 0.0064 0.0078 
     

MCI/D 
Copy 0.0217 0.0957 0.0994 

Recall 0.0225 0.0687 0.0989 

Δ 0.0008 0.0290 0.0005 

As expected in section 5.2.1, the actual CGP execution result 

shows that it can distinguish different classes from both copy and 

recall tasks, there is no significant compromises in terms of 

classification accuracy in copy task figures, indicating its potential 

in compensating the human error in subjective assessment 

approach. In fact, both copy and recall classification shows 

similar result according to table 6 and 7 with the same CGP 

configuration except random number seed. The cross validation 

performance is indicated by the standard deviation score, which 

shows great stability in accuracy with different folds and random 

number seed applied. 

6 FURTHER WORKS 

Support Vector Machine (SVM) is an efficient supervised 

learning models for dual-class data classification. Current research 

progress on the paper topic are using CGP for dual-class data 

classification. Further research can be conducted by using SVM 

on current datasets with different Parkinson’s condition pairs to 

compare the performance of SVM’s and CGP’s. The investigation 

on how both algorithms process data inputs would assist clinical 

experts to investigate the affect elements of Parkinson’s disease, 

in order to understand Parkinson’s disease further and better. 

As mentioned in section 3.3.2, numerous credited cognitive 

assessments are also conducted on the patients. Previous test 

result has only used patients’ condition as classification standard. 

Potential research can be carried out to further investigate the 

correlation between the Parkinson stage, MoCA score and Benson 

figure score in future research. 

7 CONCLUSION 

Compared with traditional deep learning approach for image 

classification, evolutionary algorithm provided a more precise 

way to analyse and classify clinical drawing test, especially when 

the smallest detail is decisive in detecting cognitive impairment. 

Current diagnosis method has limitation in diagnosing early 

cognitive disorder. By combining machine learning and previous 

clinical research, this research can help clinical experts to further 

investigate how each aspects from the drawing have different 

impacts on cognitive disorder patients, thus assisting development 

in healthcare. 
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