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ABSTRACT
This paper details an investigation of the extent to which perfor-
mance can be improved for the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) by tuning the selection of individuals
used for the mean-update algorithm. A hyper-heuristic is employed
to explore the space of algorithms which select individuals from
the population. We show the increase in performance obtained
with a tuned selection algorithm, versus the unmodified CMA-ES
mean-update algorithm. Specifically, we measure performance on
instances from several real-valued benchmark function classes to
demonstrate generalization of the improved performance.

CCS CONCEPTS
•Computingmethodologies→Genetic programming; •The-
ory of computation→ Design and analysis of algorithms; • Soft-
ware and its engineering→ Genetic programming;
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1 INTRODUCTION
Evolutionary Algorithms (EA)s employ selection functions to con-
trol the method by which an individual’s genes are selected, for
purposes such as, recombination, survival, or updating internal
variables. New selection algorithms can be designed in cases where
the performance offered by existing algorithms is insufficient, even
with well-tuned parameters. However, the full space of selection
algorithms is effectively unlimited, and so it is highly unlikely that
any conventionally human-designed algorithm offers the optimal
selection behavior, given a specific problem. A performance gain is
likely to be attained by exploring the space of selection algorithms
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to find one that offers better performance than any conventional
selection algorithm. Previous work has confirmed this hypothesis,
prompting our approach to use a hyper-heuristic to explore the
space of new selection functions [30].

In our approach, each search algorithm is represented by two
components. The first component is a Koza-style Genetic Program-
ming (GP) tree [17], encoding a mathematical function that calcu-
lates how desirable an individual is at the current stage of evolution.
The second component is a method of selecting individuals, based
on how desirable they are calculated to be. We use this hyper-
heuristic to evolve a new scheme for selecting individuals in the
mean update function of the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [11]. The canonical CMA-ES has shown
great success in solving a wide variety of problems, and given the
improvement to a canonical EA via evolution of a new selection
process shown in [25], we sought to apply the same process to
CMA-ES, anticipating a similar improvement.

2 RELATEDWORK
The field of hyper-heuristics encompassesmany different approaches
for the automated design of new algorithms. Methods may utilize
offline learning, in which computation is done a priori to develop
a heuristic, or online learning, in which a heuristic is developed
dynamically alongside a running problem. The hyper-heuristic pre-
sented in this paper is an offline-learning heuristic that builds a
new selection function tuned to an EA solving problem instances
from a particular problem class.

A major application of hyper-heuristics is the automated design
of algorithmic components. Hyper-heuristics have been used to
evolve new algorithms from components of existing algorithms
for Ant Colony optimization algorithms [19], Boolean Satisfiability
solvers [16], local search heuristics [4], and iterative parse trees
representing Black Box Search Algorithms [21].

Previous work has also focused on improvement of targeted
components of EAs, including the evolution of new mutation op-
erators [13, 31], mating preferences [9], genetic representation of
individuals [26], and crossover operators [8]. Methods for generat-
ing selection algorithms, in particular, have been investigated. A
random walk through the space of register machines that compute
and return a probability of selection for each individual showed that
such custom-tuned selection algorithms can outperform typical se-
lection algorithms [30]. A more informed search through the space
of selection algorithms may yield an even greater benefit than a ran-
dom search. In the previous work involving the evolution of Black
Box Search Algorithms, the parse trees include evolved selection
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functions, although the selection functions are limited to two con-
ventional selection functions (k-tournament and truncation) with
evolved parameters [21]. An evolutionary search through selection
functions developed with Grammatical Evolution showed that bet-
ter selection functions can be developed using a hyper-heuristic,
and that the performance of these selection functions can general-
ize to new instances within the same function class [20]. A similar
hyper-heuristic search employed GP to discover new selection al-
gorithms, again showing a generalized increase in performance
for the same EA running on the same problem set [25]. The work
described in this paper expands on these ideas by applying the
hyper-heuristic search employing GP to the mean-update function
of CMA-ES, changing the method used to select the population
members used to update the mean in order to tune the performance
of CMA-ES for a particular function class.

3 METHODOLOGY
Here we discuss the methodology of our hyper-heuristic, and the
meta-EA powering it.

3.1 Encoding Selection Functions
We developed a generalized format to represent a selection func-
tion, which can encode both traditional and novel selection func-
tions. The representation consists of two major parts. The first part
is a binary Koza-style GP-Tree [17]. Rather than encoding entire
programs within the GP-Tree, which could result in an infeasibly
wide search space of selection algorithms [29], the GP-Tree instead
encodes a mathematical function. All of the function inputs (the
terminals of the GP-Tree) are real-valued numbers, and all of the
operators in the GP-Tree operate on, and return, real-valued num-
bers. The terminals of the GP-Tree include various factors pertinent
to a single individual of the population, including the individual’s
fitness, the individual’s fitness ranking among the population mem-
bers, the uniqueness of the individual’s genome, and the individual’s
age, in generations. The possible terminal inputs also include infor-
mation pertinent to the evolution at large, including the total size of
the population, the current generation, the maximum andminimum
fitness values in the population, and the sum of the individuals’
fitness values. Constants are also included, as well as random termi-
nals, which return a random number within a (configurable) closed
range. Binary operators in the GP-Tree include various arithmetic
and other mathematic functions. When evaluated, the mathematical
function encoded by the GP-Tree returns a single real-valued num-
ber, corresponding to the relative “desirability” of the individual
whose data was input into the function.

The second part of the evolved selection function is a method of
selecting individuals based on their desirabilities, as calculated by
the mathematical function encoded by the GP-Tree. The possible
selection methods are inspired by traditional selection functions.
Some selection methods will select with replacement, allowing a
single individual to be selected more than once per generation.

To perform selection on a population, the function encoded by
the GP-Tree is evaluated once for each member of the popula-
tion, using the data points for that individual (fitness value, fitness
ranking, etc.) as inputs to the function. The number output by the
function becomes the desirability score for each individual. Finally,

Figure 1: Example of a generated selection function.

the selection step is used to select individuals based on the individ-
uals’ desirability scores. The selected individuals can then be used
for recombination, as the survivors for the next generation, or for
any other update to the internal variables that depends on a chosen
subset of the population, as pertinent to the evolutionary search
strategy used.

An example of this representation is shown in Figure 1. It shows
an example of a GP-Tree that represents the function evaluated for
each individual, as well as a final selection method used. With this
selection function, the desirability of any individual is calculated as
the individual’s fitness rating plus 5, multiplied by the individual’s
ranking in the population ordered by fitness. The selection method
used is Proportional-No-Replacement, so the probability of any
individual being selected is directly proportional to its desirability
score, and an individual cannot be selected more than once. See [24]
for more information on this particular representation of selection
functions.

3.2 Search Methodology
We use a meta-EA to develop the selection functions described in
Section 3.1, treating each complete selection function as a member
of a higher-order population. The quality of each selection function
is determined by running CMA-ES on a suite of static training
instances from a benchmark function class, utilizing the selection
function in question and keeping all other parameters constant.
The performance of the CMA-ES is used to determine the quality
of a selection function; selection functions that enable the EA to
perform better, with all other parameters constant, are considered
to be “higher-quality” selection functions. The size of the GP-Trees
is constrained using parsimony pressure.

When the meta-EA concludes, the CMA-ES utilizing the best
selection function from the meta-EA is run on a set of separate
testing instances from the same function class to test the generaliza-
tion of the selection function’s performance. If modified CMA-ES
performs significantly better on the testing instances than the same
EA using a standard selection function, then we can say that the
evolved selection function successfully generalized to the function
class of interest.

The benchmark function classes used for the underlying EA
are selected from the Comparing Continuous Optimizers (COCO)
platform used for the GECCOWorkshops on Real-Parameter Black-
Box Optimization Benchmarking [10]. This benchmark set provides
a suite of real-valued optimization problems. Each function class
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Table 1: Meta-EA Parameters

Parameter Value

Population Size 40
Offspring Size 40

Evaluation Count 4000
Max GP-Tree Initialization Depth 4

Parent Selection k-tournament, k=4
Survival Selection Truncation

Mutation Subtree Regeneration
Crossover Subtree Crossover

Parsimony Pressure Coefficient 0.0005
Mutation Rate 0.25

Range for Constant Terminals [-100, 100]
Range for Random Terminals [-100, 100]
Number of Runs (Training) 5
Number of Runs (Testing) 200

is offered in multiple dimensionalities, and for each dimension,
multiple unique instances of the function class are present. By
using several different instances of a given problem for a given
dimensionality, we can test whether an increase in performance
offered by a higher-quality selection function generalizes to other
instances within the function class.We do this by using only some of
the instances during themeta-EA to evaluate the quality of selection
functions, then run CMA-ES utilizing the evolved selection function
on the unused, unseen instances. For each function instance in the
testing set, we run the CMA-ES for 200 testing runs, both using
the evolved selection function and unmodified. We then measure,
for each testing instance, the proportion of runs which solved the
function, in each case.

4 EXPERIMENTAL SETUP
The parameters for the meta-EA used in each experiment are shown
in Table 1. These parameters were manually tuned to allow for a
population with high explorative potential while keeping the total
computation time manageable.

To test our methodology, we target the CMA-ES algorithm for
improvement. We use the meta-EA to evolve a new method of
selecting which of the sampled points to use for recalculating the
search space mean. The individuals of the meta-EA each encode
a single selection function in their genome, which modifies the
mean-update functionality of CMA-ES. Rather than selecting the
µ highest-fitness points, the encoded selection function selects a
subset of all the sampled points, which are then ordered by fitness
and used to update the mean. Once the mean is updated, all other
state variables, such as the covariance matrix, are updated using
the same methods as the unmodified CMA-ES. When evaluating
the performance of an evolved selection function to assign a fitness
value to it, the fitness is taken as the proportion of the runs in which
the modified CMA-ES reaches the global optimum, or moves close
enough to it to meet the criteria to solve the function.

To select benchmark functions for the CMA-ES, we use the 24
noiseless function classes in the COCO dataset. We use dimension-
alities of 2, 3, 5, and 10, excluding 20 and 40 to save computational

resources. For the parameters of CMA-ES, we use λ = 10 × D,
µ = λ/2, and σi = 0.5. The CMA-ES terminates on population
convergence, after 10000 × D evaluations, or after finding the solu-
tion to a function instance, as specified by the COCO benchmark
platform.

5 RESULTS AND DISCUSSION
For each testing instance, the percentage of runs solved by the
modified and unmodified CMA-ES is shown in Table 2.

For the function classes 4, 6, 12, 17, 18, 19, 20, and 21, the CMA-ES
modified with the evolved selection function solved the function
instances at least 20 percent more often than the unmodified CMA-
ES for at least one dimensionality. For the function classes 4 and 19,
the success rate of CMA-ES increased by 20-30 percent when modi-
fied with the evolved selection function at D = 2, but performed
similarly to the unmodified CMA-ES at other dimensionalities. For
function classes 20 and 21, a performance increase is seen on dimen-
sionalities D = 2, 3, and 5, but not D = 10; curiously, the modified
CMA-ES performs worse on function class 21 when D = 10. For
function classes 17 and 18, performance increases are seen forD = 2
and D = 3, with negligible performance differences on the other
dimensionalities. Function class 22 sees about a 12 percent increase
in solution rate on D = 2, but negligible improvement for other di-
mensionalities. For function classes 6 and 12, performance is similar
forD = 2, 3, and 5, but forD = 10, there is a significant performance
increase: on function 6, the success rate increased from 0 percent
to around 96 percent, and on function class 12, the success rate
increased from 18-67 percent, varying across the function instances,
to 100 percent for all function instances.

For the other function classes, there was no major difference
between the success rate of the modified and unmodified CMA-ES.
In a few cases, the modified CMA-ES performs marginally worse
than the unmodified CMA-ES, but the difference in solution rate
usually no more than 5 percent, and only 7.4 percent at most.

We observed that evolving a new selection function for CMA-ES
increased its solution quality on 6 of the 11 functions tested. In par-
ticular, we observed two cases with high dramatic improvements:
the tests for COCO function classes 6 and 12 for dimensionality
D = 10. The five cases where no improvement was observed in-
volved functions that were highly multimodal. It is likely, in these
cases, that CMA-ES requires some other improvement aside from a
new mean-update scheme to better learn and traverse the global
structures of these functions.

6 CONCLUSIONS
We hypothesized that a search through the space of selection func-
tions could improve the performance of CMA-ES on a particular
problem class by discovering a specialized selection function with
which to modify the mean-update function of CMA-ES. We devel-
oped a representation of selection functions that utilizes a GP-Tree
and selection method and used a meta-EA to search through the
space of selection functions in this representation.

With this meta-EA, we have shown that it is possible to generate
new selection functions, tuned to a particular benchmark function,
that can enable CMA-ES to significantly outperform conventional
selection functions on those functions. We have also shown that
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Table 2: Percentage of Runs Solved By Modified CMA-ES/Unmodified CMA-ES, averaged over all instances

COCO Function Class D=2 D=3 D=5 D=10

1 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
2 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
3 35.65% / 34.2% 22.0% / 21.35% 7.6% / 6.6% 1.2% / 1.35%
4 32.15% / 3.3% 0.15% / 0.25% 0.0% / 0.0% 0.0% / 0.0%
5 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
6 100.0% / 100.0% 100.0% / 100.0% 99.1% / 100.0% 96.0% / 0.0%
7 98.05% / 94.35% 100.0% / 97.65% 99.35% / 99.4% 100.0% / 99.95%
8 99.85% / 100.0% 100.0% / 100.0% 99.9% / 99.5% 99.8% / 100.0%
9 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
10 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
11 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
12 99.55% / 100.0% 99.5% / 100.0% 99.85% / 100.0% 100.0% / 44.05%
13 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
14 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%
15 41.45% / 41.95% 32.85% / 32.45% 24.55% / 24.0% 11.95% / 16.85%
16 65.7% / 65.65% 59.95% / 64.0% 58.2% / 57.1% 40.05% / 39.7%
17 96.05% / 75.0% 96.15% / 81.9% 96.7% / 94.6% 99.2% / 99.2%
18 96.85% / 64.05% 97.6% / 79.25% 93.5% / 91.75% 93.9% / 94.9%
19 55.05% / 36.1% 20.1% / 20.9% 6.85% / 5.8% 6.6% / 0.45%
20 48.35% / 24.8% 19.35% / 12.15% 2.25% / 1.5% 0.0% / 0.0%
21 56.8% / 27.65% 55.4% / 28.7% 36.05% / 23.3% 28.6% / 36.0%
22 47.15% / 35.25% 25.8% / 27.85% 14.2% / 12.75% 5.95% / 0.4%
23 70.35% / 73.3% 54.7% / 52.3% 32.05% / 31.2% 7.35% / 8.05%
24 1.6% / 1.45% 0.1% / 0.3% 0.0% / 0.0% 0.0% / 0.0%

this performance increase from a custom selection algorithm will
generalize to similar functions in the same function class. Therefore,
if one expects to run CMA-ES, or any EA on many functions from
the same function class, one might expect to gain a performance
increase by doing some a priori calculation to develop a specialized
selection algorithm trained on instances of that function class. How-
ever, our experiments have also shown that, for certain functions,
replacing only the selection function may not yield significant per-
formance improvements, depending on the behavior of the search
strategy and the nature of the function being optimized by the EA.

7 FUTUREWORK
The work presented in this paper opens a number of potential
avenues for future research. Of primary concern is the fact that
the meta-EA presented in this paper requires a large amount of a
priori computation to generate a high-quality selection function.
While this computational cost may be worth it for EAs that will
run on functions from the same function class many times, a more
efficient method of finding good selection functions has a much
greater potential to benefit EAs in general. Exploring a method of
online learning could allow for the elimination of the expensive a
priori computation time, allowing specialized selection functions
to be generated during the evolution.

The CMA-ES in our experiments was tuned to increase perfor-
mance on the COCO benchmark function classes. A major next

step for this work is to apply the meta-EA to real-world EAs that
could benefit from new, specialized selection functions.

Because the objective of this paper is similar to the work done
to develop selection algorithms via Grammatical Evolution [20]
and register machines [30], it remains to be seen which cases each
method is more effective for, and a direct comparison of themethods
on the same benchmark functions may yield more insight into
which offers better performance benefits under certain conditions.

The framework of CMA-ES usedwas fairly basic, lacking features
such as restarts. In addition, many techniques have been developed
to improve CMA-ES, such as in (1+ 1)-CMA-ES [14] and the Active
CMA-ES [15]. Evolving a specialized selection function for these
new forms of CMA-ES may lead to even greater performance gains,
or may not even be necessary for particular problem classes. Addi-
tionally, we only made efforts to improve the mean-update step of
CMA-ES, which allowed to it gain increased performance in some,
but not all, of the problem cases tested. Further experiments to tune
the methods used for updating the other internal variables, such
as evolution path, covariance matrix, and step-size, may lead to
greater performance in more problem classes.

Themeta-EA parameters weremanually tuned to allow for a high
degree of exploration. A sensitivity analysis of these parameters,
as well an investigation of parameter tuning/control, could lead to
increased performance of the meta-EA.
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