A Symbolic Evolutionary Algorithm Software Platform

Rodolfo Ayala Lopes
Universidade Federal de Ouro Preto
Ouro Preto, Minas Gerais - Brazil
rodolfo.ufop@gmail.com

ABSTRACT

Evolutionary Algorithms (EAs) have become a well-recognized
population metaheuristic. The flexibility of EAs is the primary char-
acteristic of its broad domain of practical applications. By contrast,
its flexibility made it challenging to design formal languages to
represent optimization models. Modeling Languages, in especial,
are useful high-level languages for compact formulation and de-
scription of optimization problems. However, the lack of integration
between EAs and modeling languages can delay the development
of sophisticated and advanced generalized symbolic EAs, including
gray box algorithms. Thus, this paper presents a Symbolic Evolu-
tionary Algorithm Software Platform which proposes a modeling
language: Procedural Modeling Language (PML). This software
platform has a particular link to a symbolic compiler that allows
the creation of sub-models in real-time. In the course of this paper,
a study case is used to exemplify our proposed platform.
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1 INTRODUCTION

Evolutionary Algorithm (EA) is a well known population-based
metaheuristic to solving various optimization problems. Inspired on
mechanisms of natural evolution, scientists proposed the first EAs
in the 1960s. EAs are efficient tools for multiple fields of finance,
economics, government, engineering, and science. For instance, EAs
already have been applied to Brachytherapy treatment planning
[19], Pharmaceutical Drug Design [17], Industrial Applications
[24, 30], and Scheduling Applications [8, 26].
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EAs are also useful to many categories of optimization problems,
such as dynamic, robust, interactive, and multi-objective problems.
This flexibility comes at the cost of having only a few formal lan-
guages to represent these models. Specific Algebraic Modeling
Languages (AML), however, tend to be used in most fields of opti-
mization as they allow for simplified mathematical notation, col-
laboration, and a more systematic comparison of algorithms.

Mathematical modeling of optimization problems is composed
of a set of mathematical relationships, e.g., equalities, inequalities,
logical conditions [13]. In order to design an abstract representation
of the mathematical models, modeling languages support four basic
concepts: (i) decision variables (continuous, binary, integer); (ii)
constraints (equalities, inequalities); (iii) auxiliary data, also called
parameters or model constants; and (iv) objective functions.

In this context, modeling languages allow the user to model the
mathematical problem independently from the solver. The indepen-
dent problem formulation, as well as the direct reformulation of the
problem representation, are some of the main advantages of mod-
eling languages. This independent formulation has two primary
benefits: the possibility of developing more generalized solvers and
that different solvers can handle the same abstract model. Further-
more, one can easily apply changes or reformulations to the abstract
model, and it does not imply changes in the solver.

Modeling languages increase the optimization solvers lifetime
and contribute to the reduction of the project time and mainte-
nance [14]. Solvers widely apply this type of optimization modeling
language to several types of optimization problems. The most fre-
quently used ones are AIMMS [1], AMPL [10], CMPL [25], GAMS
[2], GNU MathProg [20], MiniZinc [21], and MPL [16].

Although there are many algebraic modeling languages in the
literature, there is a lack of formal languages to represent the vast
optimization problem domains that EAs can solve. The difficulty of
representing several practical black-box optimization problems can
explain this lack of formal languages for EAs. It is essential to state
that this is an obstacle even to AMLs non-free use licenses.

On the other hand, even though there have been valuable ad-
vances made on EAs over the last years, the most innovative EAs
[3-6, 28] require interpretation and examination of the problem
definition. However, there is still a lack of evolutionary approaches
that can automatically analyze and extract information from opti-
mization problems in a nonheuristic fashion. The absence of inde-
pendent modeling languages connected with EAs can explain this
lack of formal approaches. Moreover, mathematical manipulation
of optimization problems is not trivial, given that the problems
are usually implemented using procedural computer programming
languages.

Thus, EAs integrated with modeling languages can be an in-
teresting approach in which an automatic analysis of the problem
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description would be possible. The immediate benefit of this integra-
tion is the possibility to extract an algebraic representation of the
optimization problem. By facilitating the representation of the prob-
lem’s algebraic properties, significant mathematical manipulations,
such as simplifications, differentiation, integration, commutativity,
and non-commutativity, can be easily used. This strategy can ex-
tract information about the abstract model, such as variables and
constants of the model; constraints and objective functions; and, in
its turn, allow inferences about decision variable interactions. Fur-
thermore, recent EAs operators [3-6, 28] based on decomposition
and variable interactions become applicable if EA-based solvers can
algebraically represent and manipulate the optimization problems.

Thereby, this paper presents an Evolutionary Algorithm Soft-
ware Platform that uses a modeling language that can be compiled
to numeric and symbolic representations of the problem. The sym-
bolic representation allows the formulation of domain-specific op-
erators while the numeric representation allows fast evaluation of
the objective functions. Although our approach is still embryonic,
this paper presents a promissory platform toward a generalized
gray box EA.

Our proposal uses a flexible modeling language, called Proce-
dural Modeling Language (PML), to describe the model problem.
The model problem is interpreted and its objective functions are
compiled Just-In-Time (JIT). The JIT procedure attaches the model
to a symbolic component, which is responsible for the automatically
extracting an algebraic representation of the optimization problem.
Thus, all information extracted is kept available for the EA during
the evolutionary search.

Throughout the article, an example optimization problem is
presented and is used as a study case to exemplify the different
platform stages.

The remainder of this paper is organized as follows: Section
2 presents related works describing other platforms and frame-
works; Section 3 presents our Procedural Modeling Language for
describing optimization problem models; Section 4 describes the
computational architecture of the Symbolic Evolutionary Algorithm
Software Platform proposed; Section 5 describes the solver as an
independent component of the architecture; and, finally, Section 6
presents a final discussion and the future works related.

2 RELATED WORKS

At the beginning of the EAs research, the development, and ap-
plication of these metaheuristics have been realized ad-hoc to the
treating problem. However, the broad range of application domains
has induced the development of computational tools for EAs over
past years. There are now platforms, frameworks and computa-
tional libraries for EAs in the literature [7, 9, 12, 15, 18, 23, 29].

However, some gaps make the development of a generalized gray
box EAs and their recent EAs operators more complex. The first
gap is about a common formal modeling language for describing
problems. The second one is an automatic process to extract and
to analyze algebraic representations of the model. Moreover, we
can mention that some platforms/frameworks do not allow the
inclusion of new operators.

In the context of platforms, frameworks and computational
libraries for EAs, Genetic and Evolutionary Algorithm Toolbox
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(GEATDx) [23] is a standard tool for Matlab software. In GEATbx,
the optimization problem model is declared using the Matlab lan-
guage. The genome representation of the solution must be homoge-
neous using one of the three primitive data types (binary, integer
and real). However, it does not offer immediate support for het-
erogeneous genotypes. By default, the GEATbx tool offers some
EAs mechanisms, such as mutation, recombination, crossover, and
multi-populational strategies. The main disadvantages of this ap-
proach are the non-free license and the fact that it is not extendable
with new components.

The Evolving Objects library (EOLlib) [15] is a C++ object-oriented
framework for EAs. The EOlib supports homogenous genomic
representation using primitive C++ data types as well as writing
our data types. Its main advantages are: (i) the several algorithm
paradigms and selection/replacement operators offered, (ii) it is
open-source and free to use under GPLv2 and (iii) it is extendable
to other projects.

Proposed by [7], the EAsy Specification of Evolutionary Algo-
rithms (EASEA) is a platform dedicated to the specification of EAs.
The EASEA platform also provides the exploit of parallel EAs strate-
gies and implementations. However, this platform has its modeling
language that it is not widely used and it is different from other
traditional languages.

Furthermore, there are other EA libraries proposed over the past
years. For instance, ECJ [18], Jenetics [29], jMetal [9], and MOEA
[12] are some libraries found in the literature. In general, the main
aim of the libraries mentioned is supporting the development and
study of evolutionary metaheuristics.

Even though there are different platforms, frameworks, and li-
braries for EAs in the literature, there are gaps that prevent them
from supporting gray box EAs. Moreover, they are usually not acces-
sible to final users. The project time, evolution and maintenance of
the approaches mentioned are still slow. Consequently, the lifetime
of these approaches is small when comparing them with recognized
solvers, such as Cplex, COIN, and Gurobi.

3 PROCEDURAL MODELING LANGUAGE

Most AMLs are not able to represent a vast number of problem cat-
egories. Moreover, when they present resources to describe several
optimization problems, they do not have a free and open-source
license, e.g., AIMMS and AMPL.

In this paper, we propose a modeling language called Procedural
Modeling Language (PML). It is designed to be able to model dif-
ferent problems while also offering the possibility of extracting
numerical and algebraic representations. The purpose of the PML
is to be accessible and efficient to allow its application to a full
number of optimization problems. Thus, one can readily model lin-
ear, quadratic, nonlinear, smooth nonlinear, robust, dynamic, and
multi-objective optimization problems.

Following the same rationale of other modeling languages, PML
suggests that the user describes a model by the following compo-
nents: parameters of the model, decision variables, objective func-
tions, and constraints. The main difference between our proposed
language and the other ones is how we describe objective functions
and constraints. In PML, objective functions and constraints are
described using C++. Modeling functions and constraints in C++
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allowed the development of a Just-In-Time (JIT) compiler based on
LLVM/Clang. This JIT compiler provides an opportunity to join the
user code to other C++ code or any third-party library.

In order to achieve the modeling of several categories of opti-
mization problems, the PML supports three primary data (variables
and parameters) types: integer, floating-point, and boolean. Thus,
these data types supported by the PML provides resources to model
binary, integer, continuous and mixed optimization problems.

Besides the mathematical description of functions, a symbolic
library helps the execution of the procedural functions by extracting
algebraic information from the functions. In order to exemplify the
PML proposed, consider a simple optimization problem described
by Equation 1, where x represents a solution, and d denotes the
dimensionality of the problem.

d-1
arg n”gclnf(x) = Z h(x, i)
i=0

if mod(i,3) = 0 @

xlg , otherwise

subject to x; € [—-10.0;10.0]

h(x, i) = {xixmod(Hl,d)’

This function can be numerically defined in C++ as shown in
the Figure 1.

double problem(double x[],
double sum 0.0;
for(int i 0; i < d; i++){

if( i %3 0 ){

sum += x[i] * x[(i+1) % dI;
} else {

sum += x[i] * x[i];

int d){

}
3}
return sum;

}

Figure 1: A C++ implementation of the optimization prob-
lem exemplified in Equation 1.

Given the optimization problem presented in Equation 1, Figure
2 presents the modeling of this optimization problem using the
PML. Note, in this example, that a constant integer parameter d
was defined as 7, representing the problem dimensionality. Next, a
decimal (double) array of decision variables, called x, was defined
with size equal to 7. Moreover, the interval value of x;Vi € [0,d — 1]
is [-10.0; 10.0]. At the end of the model, the abstract representation
of the optimization problem is modeled as a minimization objective
function, using C++.

Therefore, the function in Equation 1 can also be represented by
the equivalent additively separable function in Equation 2.

f(x) = xox1 +x% + x% + X3X4 + xz +x§ + X6X0

@)

For better understanding the PML, let us consider a combinatorial
optimization problem, the 0-1 knapsack problem, as defined in
Equation 3.
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// defining parameters of model
int d 7
// defining decision variables
double[-10.0, 10.0]1 x[7]
// defining objective functions
minimize problem =
double sum 0.
for(int i
if( i

x[(i+1) % dI;
} else {
sum += x[i] * x[i];
}
}
return sum;

}

Figure 2: Modeling of the optimization problem (Equation
1) using the Procedural Modeling Language (PML).

n-1
argm;xf(y) = Z v; *Yj
i=0
subject to
n—1
Z wi * y; < max_weight
i=0
yi € {0,1}

In Equation 3, y; represents if item i will be included or not in the
knapsack, v; represents the gain of the i-th item, and w; represents
the weight of the i-th item. Moreover, max_weight defines the
maximum weight capacity of the knapsack and n defines the number
of items. Thus, Figure 3 presents an example of the 0-1 knapsack
model using the PML.

// defining parameters of model

double v = {1.2, 4.7, 2.3}
double w = {0.8, 0.5, 1.1}
double max_weight = 2.0

int n = 3

// defining decision variables
bool y[3]

// defining objective functions

maximize knapsakcProblem = {
double sum = 0.0;
for(int i = 0; i < n; i++){

sum += v[i] * y[il;

}
return sum;
3}
// defining constraint
constraint contraintWeight = {
double current_weight = 0.0;
for(int i = 0; i < n; i++){

current_weight += w[il * y[il;
}

return current_weight <= max_weight;

}
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Figure 3: Modeling 0-1 knapsack problem using the Proce-
dural Modeling Language (PML).

Concerning model changes, the PML is a very flexible modeling
language. This language allows us to easily modify the problem
dimensionality and variable boundaries without any complexity
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increase of the model representation. This characteristic is an essen-
tial aspect of modeling languages, especially when modeling large
scale optimization problems due to their vast number of decision
variables and complex objective functions.

Throughout the following subsections, we present more details
of the proposed modeling language, PML.

3.1 Comments

In PML, one-line comments can be preceded by //, --, and #. Block
comments are defined with /* and */. Figure 4 presents an example
of including comments of all types.

// one-line comment example one
- one-line comment example two
# one-line comment example one
/* block comment example =*/

Figure 4: Example of writing one-line and block comments
using Procedural Modeling Language (PML).

3.2 Parameters

Parameters represent constants or auxiliary data of the model. They
are always defined by a data type, a variable name, and a constant
value. In the case of arrays, a list of constant values can be defined
in brackets.

Figure 5 exemplifies how to declare parameters in our proposed
language. Observing this example, note that three parameters are de-
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3.3 Decision Variables

Decision variables let us represent the solution space and their
domain. Decision variables define the domain to be explored by the
solver. Thus, they have constant bounds that should be respected.
For instance, “int[4,9] x” declares a decision variable with lower
and upper bounds 4 and 9. When the variable boundaries are not
made explicit by the user, such as in “int x”, the maximum limits
for that data type are assumed. Moreover, boolean variables do not
need bounds as they are always false (0) or true (1).

Figure 7 shows the first example of defining decision variables
using the PML. This example presents the declaration of bounded
decision variables whose identifiers are var_bounded_integer, var._
bounded_decimal and var_bounded_boolean. These decision vari-
ables are defined as the following types: int, double and bool. For
the var_bounded_integer and var_bounded_decimal variables, their
lower bounds are defined as —2 and —112.22; and their upper bounds
are defined as 2 and 112.22. For var_bounded_boolean, the possible
values are false or true. The example also defines two decision
variables, var_unbounded_integer and var_unbounded_decimal. The
first one is an int variable and the second one is a double variable.

// defining bounded decision variables
int[-2, 2] var_bounded_integer
double[-112.22, 112.22] var_bounded_decimal
bool var_bounded_boolean

// defining unbounded decision variables
int var_unbounded_integer

double var_bounded_decimal

fined, whose identifiers are par_integer, par_decimal, and par_boolean.

In this example, the types of the parameters defined are int, double,
and bool and their values are 7, 5.9, and true, respectively.

// defining parameters
int par_integer 7
double par_decimal =
bool par_boolean

5.9
true

Figure 5: Example of defining parameters using Procedural
Modeling Language (PML).

Similarly to declaring single parameters, the PML also allows
defining arrays of parameters. The set of values must be declared
between brackets and separated commas, see the example in Fig-
ure 6. Three arrays of parameters (int, double, and bool, respec-
tively) are declared using the following identifiers: array_par_ in-
teger, array_par_decimal, and array_par_boolean. The first array,
array_par_integer, is composed by the set of values 10, 20 and 30.
The values set for array_par_decimal are 5.893, 7.064 and 82.09. The
array_par_bool is set to true, false and true values.

// defining array of parameters

int array_par_integer = {10, 20, 30}
double array_par_decimal = {5.893, 7.064, 82.09}
bool array_par_boolean = {true, false, true}

Figure 6: Example of defining parameters array using the
Procedural Modeling Language (PML).

Figure 7: Example of defining decision variables using Pro-
cedural Modeling Language (PML).

Similarly to arrays of model parameters, PML allows defining
arrays of decision variables. In Figure 8, three arrays are declared:
(i) var_bounded_integer, an array of integers whose size is 4 and
their values are within [0, 10]; (i) var_bounded_decimal, an array
of decimals whose size is 10 and their values are within [0.1, 1.5];
and, var_bounded_boolean, an array of bools whose size is 10,000.

// defining array of bounded decision variables
int[@, 10] var_bounded_integer([4]

double[0.1, 1.5] var_bounded_decimal[10]

bool var_bounded_boolean[10000]
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Figure 8: Example of defining array of bounded decision
variables using Procedural Modeling Language (PML).

3.4 Objective Functions

Objective functions express the goal of the model. In PML, a block
of C++ code or a single expression defines objective functions.
Objective functions need a keyword that tells the solver whether
we want to minimize or maximize that function. Extra keywords
allow us to make it explicit whether a problem is robust or dynamic.
Also, the model can contain any number of objective functions.

Figures 9 and 10 present two examples of objective function
declaration using PML. The objective function, minFunctionExam-
ple, presented in the first example is defined as arg min f(x,y) =
2 % cos(x) + sin(y). On the other hand, in the second example, max-
FunctionExample, the equation xo * x1 — x * x¢ is declared to be
maximized by the solver.
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// defining a problem as minimize function
minimize minFunctionExample = {

return 2 * cos(x) + sin(y);
3

Figure 9: Defining a minimization objective function using
Procedural Modeling Language (PML).

// defining a problem as maximize function
maximize maxFunctionExample = {

return x[@] * x[1] - x[2] * x[0];
3

Figure 10: Defining a maximization objective function using
Procedural Modeling Language (PML).

PML supports modeling multi-objective problems. In this case, it
is only necessary to declare all functions and whether they should
be minimized or maximized.

Dynamic optimization problems can be declared in PML by
adding the keyword “dynamic” between the minimize/ maximize
keyword and the function name, as the example presented in Fig-
ure 11. The dynamic keyword is used to inform the solver that the
relationship between decision variables and the objective function
change in time. This means the evolutionary algorithm needs to
implement strategies for dynamic problems, such as reevaluating
candidate solutions over time.

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

side of the inequality are transferred to the left side with their signs
reversed. Following a similar idea, an equality constraint A(x) == 0
can be represented as two inequality h(x) < 0 and h(x) > 0.

3.6 Procedures

The PML allows the declaration of procedures and functions as
presented in Figure 13. Using the procedure keyword, declaring
procedures follows the same idea of describing objective functions
and constraints.

// defining objective functions
maximize knapsakcProblem = {
double sum = sumProcedure(v, y, n);
return sum;
}
// defining constraint
constraint contraintWeight = {
double current_weight = sumProcedure(w, y, n);
return current_weight <= max_weight;
}
// defining procedure
procedure double sumProcedure(double a[], double b[],
int n) = {
double sum = 0.0;
for(int i = 0; i < n; i++){
sum += a[i] * b[i];
}
return sum;

}

// defining dynamic problems
minimize dynamic dynamicFunctionName = {
// c++ code

}

Figure 11: Defining dynamic problem using Procedural Mod-
eling Language (PML).

Analogously, robust optimization problems are defined by the
“robust” keyword, see Figure 12. In robust problems, we need robust-
ness against some uncertainty in the parameters of the objective
function. The solver can infer an ultimate fitness value from the
average, variance, or worst case analysis of reiterated evaluations
of the objective function.

// defining robust problems
minimize robust robustFunctionName = {
// c++ code

}

Figure 12: Defining robust problem using Procedural Model-
ing Language (PML).

3.5 Constraints

In optimization problems with constraints, the fitness of the can-
didate solution is important as well as if a constraint is violated.
Thus, the syntax for constraints is similar to that of objective func-
tions. However, the keyword constraint is used instead of mini-
mize/ maximize, according to knapsack example presented in Figure
3.

Our platform (vide Section 4) transforms each constraint declared
using PML into a single equation in which the terms from the right

Figure 13: Procedure declaration example using the Proce-
dural Modeling Language (PML).

4 COMPUTATIONAL ARCHITECTURE

Symbolic computation has been successfully applied to engineer-
ing and science [27] as a tool to describe and work with algebraic
expressions, equations, and inequalities. It provides essential re-
sources able to simplify, solve (symbolically), evaluate (numerically),
take derivatives, and integrals of algebraic expressions.

The proposed computational architecture can be divided in four
main components: modeling problem, interpreting model, compil-
ing/interpreting problem code and the solver. Figure 14 represents
these components. From modeling to solving the optimization prob-
lem, we have a special link between these four main components
that allow the application of symbolic operators.

The first stage is to model the optimization problem. This mod-
eling process is a entirely independent from the optimizer, and it
can be done in any text editor. The PML presented in Section 3
completes this stage. As discussed previously, the independent mod-
eling of the optimization problems guarantees that new problems
and changes can happen without impact on the solver architecture.
The parsing algorithm generates an Abstract Syntax Tree (AST)
of the PML model. The parser extracts all information about pa-
rameters, decision variables, and objective functions, defined in the
grammar. This information is essential for the solver to allocate the
appropriate computational resources.

In its turn, the symbolic compiler uses this AST to generate
function and subfunction representations in machine language that
can be accessed by the solver through an interface.
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Problem Parser
Model
Symbolic Compiler
fx) : fx)

* . . * .
symbolic and numeric only numeric

-

Solver

Figure 14: A brief overview of the platform architecture.

4.1 Symbolic Compiler

The primary goal of this compiler component is to provide access
to efficient numeric representations of the optimization problem
and its subfunctions. A symbolic library stage achieves these repre-
sentations through a JIT compiler based on Clang/LLVM.

The core process of the symbolic compiler has two hierarchical
procedures. At the first step, the compiler performs an automatic
attempt of symbolic representation for the optimization problem. If
we achieve this symbolic representation, we extract function prop-
erties and subfunctions that are useful to the solver. The compiler
converts these new symbolic functions back to numerical functions
that can be evaluated quickly.

For instance, the function f(x), described in Figure 1, is converted
into a symbolic representation that is simplified and then converted
into an equivalent representation presented in Figure 15.

If the compiler cannot create a symbolic representation of a
particular function, we directly compile it as a numerical func-
tion. Keeping the original numeric representation proposed at the
modeling stage allows the solver to work on problems that cannot
be easily represented algebraically, such as black-box problems,
problems dependent on online data, practical dynamic and robust
problems.
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double problem(double x[1){
return x[@]1*x[1] + pow(x[1]1,2) + pow(x[2],2)
+ x[3]1*x[4] + pow(x[4]1,2) + pow(x[51,2)
+ x[61xx[0];
}

Figure 15: A C++ implementation of the optimization prob-
lem presented in Equation 1 when d = 7.

4.2 Symbolic Library

In order to represent symbolic variables, we adapted a traditional
symbolic library, called SymbolicC++. The SymbolicC++ library [27]
uses C++ and object-oriented programming to provide an algebraic
computer system which can manipulate algebraic expressions.

For this project, the Symbolic class from SymbolicC++ library is
its most important data type. This data type allows the algebraic
representation of functions and its manipulation, such as differenti-
ation, and integration. The Symbolic class represents the algebraic
expressions using a tree-like structure. The original numeric rep-
resentation in Figure 1 is converted into an equivalent procedural
function presented in Figure 16.

Symbolic problem(){
const int &d int_parameters[0];
Symbolic x("x", 7);
Symbolic sum = 0.0;

for(int i = 0; i < d; i++){
if( 1% 3 == 0){
sum += x[i] * x[(i+1) % d];
}
else{
sum += x[i] * x[i];
}
}

return sum;

}

1371

Figure 16: C++ code generated by the symbolic compiler
component to try algebraic representation of the problem.

The result of this function is a symbolic representation of the
objective function where the root node represents the identifier
of the expression, the intermediate nodes represent operators and
child nodes represent symbols (variables) or numeric values. Figure
17 illustrates the symbolic representation of Equation 1, whered = 7
and it can be represented by the equivalent as Equation 2, using the
Symbolic class. In this example, the keywords sum, prod, and pow
represent summation, product, and exponentiation, respectively.

Once the algebraic representation is complete, the symbolic li-
brary attempts to simplify the function and the compiler uses it to
recreate the numerical function in simpler terms. This final numer-
ical function is presented in Figure 15.

The first advantage of a symbolic approach to generate numeric
functions is the cheap evaluation of objective functions achieved
by not only simplifying redundant terms but also by unrolling “for”
loops in the objective function by embedding values from the model
parameters, such as the dimensionality of decision variables. Thus,
we can translate from the general formulation in Figure 1 to an
instance-specific formulation in Figure 15.

Besides generating this new and more efficient numeric repre-
sentation, the symbolic compiler also generates a set of separable
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fx)

sum

NS

prod pow pow prod pow pow prod

/\ / \

X0 X1 X1 2 X2 2 X3 X4 X4 2 X5 2 X6 X0

Figure 17: A tree-like structure of the function problem pre-
sented in Equation 1 whend =7.

subfunctions. The ability to numerically access these subfunctions
allows us to apply (i) mathematical programming methods, when-
ever applicable, and (ii) design EA approaches and operators based
on decomposition and variable interactions.

4.3 Decomposition

Achieving the optimal decomposition approach is tightly dependent
on the identification of subfunctions of the problem that can be
optimized separately. Although a general procedure for identifying
subfunctions is not a trivial task, we propose, in this paper, a sym-
bolic interpretation of the problem to make it feasible. This task is
possible by visiting nodes of the tree-like structure of the algebraic
problem representation. This decomposition step is dependent on
the concept of separability, as presented below.

A function f(x), where x has n decision variables, is partially ad-
ditively separable with m independent subcomponents if there exist
a constant m such that 2 < m < n, a set of subfunctions fi, ..., fn,
and m disjoint sub-vectors of x denoted s1(x), ..., sm(xX) as presented
in Equation 4. Furthermore, in accordance with [22], a function is
fully separable if these disjont sub-vectors are 1-dimensional, that
is,m=n.

f&) = fo(s1(x) + ..+ £, (5m (%)) 4

Thus, exploring the separability concept, the main idea of the de-
composition procedure proposed in this paper is to find additively
separable subfunctions. This procedure needs to consider a sym-
bolic interpretation of the tree-like structure of the Symbolic class.
Then, we can visit the root node of the expression and check if its
child node is a summation node. This procedure identifies that all
child nodes are separable subfunctions of the problem. Otherwise,
if the root node child represents any other operator, this symbol
implies a non-separable subfunction.

This decomposition approach is essential to define Variable Inter-
action Graphs (VIG). VIGs are one of the most common approaches
proposed to represent variable interactions. A VIG is an undirected
graph G = (V,E), where V is the set of decision variables and E
represents all pairs of decision variables (x;, x;) that interact with
each other. Each sugraph of the VIG represents a separable problem.
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Then, Figure 18 illustrates the VIG from the example problem in
Equation 1 whend = 7.

Yod

Figure 18: Exemplifying a Variable Interaction Graph (VIG)
from the Equation 1 when d =7.

From the VIG, the symbolic compiler component can infer two
shorts subfunctions: (i) local functions and (ii) subgraph functions.
Firstly, considering the problem presented in Equation 1 whend = 7,
their local functions fi, f2, .. ., fn presented in Equation 5 include
only the adjacent vertices for each variable x, . .., xp—1. Our sym-
bolic component analyzes the code in Figure 2 and generates the
equivalent C++ code accordingly as local functions described in
Equation 5. The main advantage of describing local functions is
that they can be evaluated at a much lower computational cost.

fix) = xpxx1+x6%x0 f5(X)= x3%x4 +x2

fa(x) = X0 *x1 + xf fo(x) = x? )
f3(x) = x5 fi(x) = X6 * X0

fax) = X3 % X4

The subgraph functions represent separable problems from the
original one. These separable problems can be defined by analyzing
all vertices (variables) from a subgraph. Considering the example
problem presented in Equation 1 when d = 7, whose VIG was
described in Figure 18, their subgraph functions (fs,, ..., fs,,,) are
defined in Equation 6.

X0 * X1 +xf+x6*x0

fs,(x) = Js(x) = x%
fs(®) = fsx) =

Furthermore, still observing the VIG in Figure 18, four separable
subgraph functions can be identified, where x; and x5 are com-
pletely independent. For instance, f5, (x) = xox1 + xf + xXp is a
completely separable subfunction. This means that if x is a local
optimum for f(x) (and therefore, also a local optimum for f;, (x),
any solution x’ that has the same as values for {xo, x1, x¢} is also a
local optima concerning f5, (x).

(6)

X3 *x4+xi

5 SOLVER

According to the computational architecture presented in this paper,
the solver is an independent component. This independence allows
the development of different EAs without the requirement of change
on the other platform components. Therefore, the solver could be
composed of different EAs, e.g., Genetic Algorithm, Differential
Evolution, or Genetic Programming. There is no restriction on
the number of heuristics or combinations supported by the solver
component. Moreover, third-party solvers could be integrated by
rewriting the model in the standard modeling language of the solver.
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In this platform, the solver component has access to objective
functions, constraints and extras procedures through available in-
terfaces. Furthermore, it can infer the genotype representation by
analyzing the AST of the model. Thus, the information in the AST
dynamically defines the representation of a solution.

Lastly, final users can use a Graphical Interface User (GUI) for
modeling the optimization problem, choosing an EA, and defining
parameters for the solver. Another alternative is the development
of an automatic module for choosing the EA used for the problem
modeled by the user.

6 CONCLUSIONS

In this paper, a Symbolic Evolutionary Algorithm Software Platform
has been proposed and discussed. The computational architecture
of this platform has four main components: (i) problem models; (ii)
a symbolic parser; (iii) a compiler of symbolic subfunctions; and (iv)
the solver. One of the objectives of this computational architecture
is to provide independence between the models and the solvers.
Hence, we prolong the platform life cycle.

The proposed platform has a particular link between the mod-
eling and solver processes of the optimization problem. This par-
ticular link allows an automatic attempt of symbolic compiling
which provides an algebraic representation of the problem. Al-
though the algebraic representation of the model is conceivable for
many optimization problems (e.g., linear, non-linear, combinatorial,
multi-objective), the algebraic representation can be challenging or
impracticable for some problems, for instance, black-box problems
which are dependent on external data. Thus, for these particular
cases in which one cannot algebraically represent the objective
functions or constraints, only the original representation proposed
at the modeling stage will be provided to the solver.

In order to try to do a symbolic compilation, we have also pro-
posed a modeling language, called Procedural Modeling Language
(PML). In PML, the objective functions and constraints are declared
using C++, which allows the integration with third-party libraries.
The symbolic representation provided through integration between
the C++ code and the third-party symbolic library supports the
algebraic representation and manipulation of the model. This alge-
braic representation and manipulation make it possible to advance
toward a gray box optimizer.

Therefore, this software platform still needs support from a
solver that takes advantage of all these capabilities. Ideally, the
archetypical solver would be able to use the subfunctions identified
in the model to enhance the optimization process. Recently, Gomes
et al. [11] have successfully used this platform for the development
of a multi-heap constraint handling evolutionary algorithm.
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