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ABSTRACT
In this paper, we investigated and compared the performance of vari-
ous constrained surrogate-based optimization (SBO) techniques on
solving low-fidelity, low-speed airfoil design problems. We aim to
better understand the strengths and weakness of various constrained
SBO algorithms on handling non-algebraic real-world problems.
Low-fidelity problems are chosen since they allow us to perform
multiple independent runs of optimization algorithms, but still in
the domain of non-algebraic real-world problems. To be specific,
the optimization methods that we compared are Kriging-based effi-
cient global optimization (EGO) with the probability of feasibility
(PoF), ConstrLMSRBF, COBRA, and COBYLA. Results on four
airfoil design problems show that ConstrLMSRBF is the most robust
method in terms of convergence and consistency of performance.
On the other hand, EGO-PoF found high-quality solutions on two
airfoil problems, but its robustness decreases as the dimensional-
ity increases. We also observe that COBRA is significantly better
than EGO-PoF on one high-dimensionality problem, but its gen-
eral performance is not as good as that of ConstrLMSRBF. Finally,
COBYLA is the worst performer, which implies that methods based
on linear interpolation are not accurate for the problems considered
in this paper.
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1 INTRODUCTION
Real-world engineering design problems frequently employ compu-
tationally expensive partial differential equations (PDE) solvers to
evaluate objective functions. Especially in aerospace engineering,
tools such as computational fluid dynamics (CFD) and finite element
method (FEM) are routinely used to aid design and optimization
processes. The crude use of metaheuristics such as evolutionary al-
gorithms is not recommended due to the limited budget of function
evaluations. To handle such problems, it is now common to de-
ploy surrogate models incorporated into the framework of surrogate-
based optimization (SBO). SBO, in essence, utilizes approximation
models of black-box functions to assist the optimization process.
Surrogate models can be coupled with metaheuristics [8, 18, 31] or
used as stand-alone methods (i.e., the main driver of the optimization
methods are surrogate models themselves) as in Bayesian optimiza-
tion [28] and radial basis function (RBF)-based methods [9].

Most problems in engineering, including aerospace engineer-
ing, feature one or more constraints that should be satisfied while
seeking the optimal solution. An example is aerodynamic shape
optimization that typically involves constraints in pitching moment
and lift coefficient. In topology optimization of aerospace structures,
it is necessary to handle structural constraints such as stress and
frequency constraint [16, 32]. It is worth noting that gradient infor-
mation is not always available. Especially when function evaluations
are expensive, SBO methods are probably the most viable methods
for handling such problems. However, constrained SBO is still not
widely studied in contrast to its unconstrained counterparts. Some
successful examples of constrained SBO in real-world computation-
ally expensive aerospace design are wing design [30] and composite
structures design [17].
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The efficient global optimization (EGO) [15], as one form of
Bayesian optimization that uses the expected improvement (EI) met-
ric can be equipped with the probability of feasibility (PoF) [26]
to handle constraints. EGO-PoF is one of the most popular con-
strained SBOs due to its ability to obtain infill points that balance
both exploration and exploitation in the optimization process; it is
also often used as the baseline algorithm for other methods. Due to
its drawback, i.e., it does not work well when one or more feasible
solution is not provided in the samples, many new algorithms are
developed based on EGO-PoF. For example, methods such as EGO-
cons [10], SOCU [1], and the utilization of EI for constraints [13]
have been proposed to improve the performance of EGO-PoF when
there are no feasible solutions in the initial experimental design.
EGO-PoF is also one of the methods that are utilized in surrogate
model-based codes such as SurroOpt [11]. Another alternative to
EGO-PoF is SEGOKPLS [4], which is an extension of SuperEGO
[24] that can be used for high-dimensional constrained problems. It
uses the KPLS (Kriging with Partial Least Squares) model [3] and
the WB2 (locating the regional extreme) criterion [25] where the
Kriging surrogate is minimized while also maximizing EI subject to
Kriging surrogates of the constraints.

There also exist constrained SBO methods that rely on the non-
probabilistic radial basis function (RBF) surrogates such as Con-
strained Local Metric Stochastic RBF (ConstrLMSRBF) [21], Con-
strained Optimization By RAdial basis function interpolation (CO-
BRA) [22], and Self-Adjusting COBRA (SACOBRA) [2]. In ad-
dition, RBF surrogates have been used to assist metaheuristics for
constrained optimization such as PSO (e.g., [23]).

Comparison of constrained SBOs, to the best of our knowledge,
is rarely addressed in the context of non-algebraic problems (e.g.,
PDE-based problems). One reason is that not all PDE-based prob-
lems, e.g. those that are evaluated using CFD, feature characteristics
that can be fully replicated by algebraic problems. Methods that
perform as the best in algebraic problems are not necessarily the
best method for handling PDE-based problems. Therefore, we think
that it is also highly necessary to perform benchmarking study on
PDE-based problems. In that case, to allow statistical analysis of the
result, benchmarking can be performed with low-fidelity PDE-based
problems.

In this paper, we have an interest in comparing the capability of
four constrained SBO methods, i.e., constrained EGO with PoF, Con-
strLMSRBF, COBRA, and linear interpolation-based COBYLA [20].
The surrogate models that we used in this paper follow the imple-
mentations of the original papers. In this respect, Kriging is used for
EGO-PoF, RBF is used for ConstrLMSRBF and COBRA, and linear
approximation is used for COBYLA. Here, constrained EGO with
PoF was included since it is one of the most widely used methods
when Kriging is used as the surrogate model. COBRA and Con-
strLMSRBF were selected to represent SBO methods that use RBF.
COBYLA was included since we want to observe how much gain
in improvement can be achieved when we use RBF- and Kriging-
based methods compared to a simple method (COBYLA uses linear
approximation). This paper is an early attempt on the benchmark-
ing of various optimization algorithms for solving non-algebraic
constrained problems that hopefully will be useful for future algo-
rithmic development of constrained SBO algorithms. Furthermore,

the insight obtained from this research will also be useful for the de-
velopment of surrogate-assisted metaheuristics methods in general,
especially in the context of constrained optimization. For example,
the stand-alone methods that are compared in this research can be
used later as a local search mechanism to boost the performance of
memetic algorithms.

2 METHODS
In this section, we briefly explain the four optimization methods that
we compared in this paper. All methods model the objective and
constraint functions by using surrogate models. At each iteration,
all methods add a new sample by optimizing a specific updating
criterion.

2.1 EGO with probability of feasibility
EGO relies on Kriging models to approximate the objective and con-
straints functions. Here, Kriging approximates a black-box function
f (x), where x = [x1,x2, . . . ,xd ]

T and d is the number of decision
variables, with

f̂ (x) = µ + GP(x), (1)

where µ is the constant mean and GP(x) is a Gaussian process with
mean 0 and variance σ 2(x). For a Kriging model, one can readily
obtain the prediction f̂ (x) and mean-squared error ŝ2(x) at arbitrary
points.

After the Kriging models for the objective and constraint func-
tions have been constructed, one can sequentially update the sam-
pling point by evaluating the point that maximizes the expected
improvement (EI), reads as

EI (x) = (fmin − f̂ (x))Φ

(
(fmin − f̂ (x))

ŝ(x)

)
+ ŝ(x)ϕ

(
(fmin − f̂ (x))

ŝ(x)

)
,

(2)
where fmin is the best value observed and Φ and ϕ are cumulative
and probability density function of a normal distribution, respec-
tively.

One method to handle constrained optimization with EGO is
by multiplying EI (x) with the probability of feasibility for each
constraint, i.e., P(дi (x) ≤ 0) = Φ(−д̂i (x)/ŝдi (x)) (by assuming that
the constraint limit is zero), reads as

CEI (x) = EI (x)
K∏
i=1

P(дi (x) ≤ 0), (3)

whereK is the number of constraints. In the computation of CEI, note
that the EI uses the best feasible solution as the reference solution.
In that case, fmin,f eas replaces fmin in Eq. 2. In this paper, we
use EGO-PoF since it is the most widely used implementation of
constrained EGO.

In this paper, we tune the Kriging model by using a multi-start
gradient-based fmincon with 10 restarts. The constrained expected
improvement is optimized by using CMA-ES [12] with five restarts.

2.2 ConstrLMSRBF
The Constrained Local Metric Stochastic RBF (ConstrLMSRBF) al-
gorithm [21] is a constrained SBO method that uses RBF surrogates.
It can be used for high-dimensional problems with many constraints
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and has been successfully applied to the 124-D MOPTA08 bench-
mark problem with 68 black-box inequality constraints from the
auto industry [14].

Given n distinct sample points x (1), . . . ,x (n) where the objective
and constraint functions have been evaluated, ConstrLMSRBF uses
an interpolating RBF model of the form

sn (x) =
n∑
i=1

λiϕ(∥x − x (i)∥) + p(x), x ∈ Rd , (4)

where ∥ · ∥ is the 2-norm, λi ∈ R for i = 1, . . . ,n and p(x) is a
polynomial in d variables. Here, we use the cubic form (ϕ(r ) = r3)
with a linear polynomial tail p(x). However, ϕ can also take the thin
plate spline, multiquadric and Gaussian forms [19]. Details of how
to fit this model can be found in [21].

ConstrLMSRBF uses the above type of RBF model for the objec-
tive and constraint functions, but it is possible to use other types of
surrogates such as Kriging models. It treats each inequality constraint
individually instead of combining them into a penalty function and
builds and maintains separate surrogates, one for each constraint. As
with other SBO methods, ConstrLMSRBF begins by evaluating the
objective and constraint functions at the points of a space-filling de-
sign over the search space. Then, in every iteration, RBF surrogates
for the objective and for each constraint function are constructed (or
updated) based on all available sample points. Next, the algorithm
generates a large number of random candidate points from a Gauss-
ian distribution centered at the current best point. The algorithm then
collects the valid candidate points Ωvalid

n , which are the candidate
points with the minimum number of predicted constraint violations
according to the RBF surrogates of the constraints. The next sample
point x (n+1) is then chosen to be the point x ∈ Ωvalid

n that minimizes

Wn (x) = w
RBF
n V RBF

n (x) +wDist
n V Dist

n (x), (5)

where V RBF
n (x) and V Dist

n (x) are the scores of x ∈ Ωvalid
n for the RBF

and distance criteria, respectively, andwRBF
n andwDist

n are the weights
for these criteria. Here, the scores for each criterion are between 0
and 1 with the more desirable points having scores closer to 0. In
the default implementation of ConstrLMSRBF, wRBF

n = 0.95 and
wDist
n = 0.05, giving more focus on local search.

2.3 COBRA
The COBRA algorithm [22] uses the same type of RBF model as
ConstrLMSRBF to approximate the objective and constraint func-
tions. Again, it is possible to use other types of surrogates with its
infill strategy. It uses a two-phase approach where Phase I finds a
feasible point if none are available among the initial sample points
while Phase II improves on the feasible point found in Phase I. In
Phase I, the next sample point is typically a minimizer of the sum
of the squares of the predicted constraint violations (as predicted by
the RBF surrogates) subject only to the bounds. In Phase II, the next
sample point is a minimizer of the RBF surrogate of the objective
subject to RBF surrogates of the inequality constraints within some
small margin while also satisfying a distance requirement from previ-
ous iterates. More precisely, after n sample points x (1), . . . ,x (n) have
been evaluated, the next sample point x (n+1) solves the optimization

subproblem:

minx s
(0)
n (x)

s.t. x ∈ Rd , ℓ ≤ x ≤ u

s
(i)
n (x) + ϵ (i)n ≤ 0, i = 1, 2, . . . ,m

∥x − x (j)∥ ≥ ρn , j = 1, . . . ,n

(6)

Here, s(0)n (x) is the RBF surrogate of objective while s
(i)
n (x) is the

RBF surrogate of the ith constraint given the first n sample points.
Moreover, ϵ (i)n > 0 is the margin for the ith constraint and ρn is the
distance requirement after n sample points. The margins are meant
to facilitate the generation of feasible iterates [22].

The distance requirements are given by ρn = γnL([ℓ,u]), where
L([ℓ,u]) is the side length of the hypercube [ℓ,u] and γn can take
larger values to promote global search and smaller values to fa-
cilitate local search. Here, we use the local variant of COBRA,
the default implementation, where γn cycles through small values
⟨0.01, 0.001, 0.0005⟩ [22]. However, other settings for the distance
requirements are possible such as a more global variant described
in [22] and COBRA can be quite sensitive to these settings. More-
over, the optimization subproblem in (6) is solved using Matlab’s
gradient-based fmincon solver from a good starting point obtained
via a global search scheme, but this can also be replaced with a mul-
tistart approach. In this paper, we used the local variant of COBRA
that is focused on local search, which is the default implementation.

2.4 COBYLA
The COBYLA (Constrained Optimization BY Linear Approxima-
tion) algorithm [20] is a derivative-free trust region method that uses
linear models for the objective and constraint functions. In each iter-
ation, linear approximations to the objective and constraint functions
are constructed by interpolation at the vertices of a simplex. The next
sample point x (n+1) is typically obtained by solving the subproblem:

minx f̂n (x)

s.t. д̂
(i)
n (x) ≤ 0, i = 1, . . . ,m
∥x − x∗∥ ≤ ∆n ,

(7)

where f̂n (x) and д̂
(i)
n (x), i = 1, . . . ,m are the linear models of the

objective and constraints, ∆n is the trust region radius, and x∗ is the
current best sample point according to the merit function

Φn (x) = f̂n (x) + µn [max{д̂(i)n (x) : i = 1, . . . ,m}]+. (8)

Here, µn is a parameter that is automatically adjusted and the sub-
script + denotes the positive part of the given expression. However,
in some cases, the sample point is chosen to improve the geometry
of the interpolation points for the linear models. In this study, we ran
COBYLA through the interface provided by the OPTI toolbox [6].

3 EMPIRICAL EXPERIMENTS
3.1 Problem definition
We used a set of low-speed airfoil design problems that use the
NLF(1)-0416 airfoil as the baseline design. NLF(1)-0416 is an air-
foil with natural laminar flow characteristic that was developed for
general aviation applications [27], thus, it is suitable for our study.
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Variable lb ub

rle 0.0193 0.0236
Xup 0.2814 0.3440
Yup 0.0942 0.1152
Yxxup -1.1967 -0.9791
Xlo 0.3243 0.3964
Ylo -0.0613 -0.0501
Yxxlo 0.5552 0.6785
αte -0.2458 -0.2011
αte 0.1065 0.1302

Table 1: Upper and lower bounds of the PARSEC problem.

Here, a PARSEC parameterization with 9 variables [29] and a B-
spline technique with 16 tunable control points [5] are used to change
the baseline airfoil; these parameters are then disturbed to act as the
decision variables of the optimization problem.

The PARSEC parameterization works by representing an airfoil
shape with polynomials, in which the parameters are designed in a
way such that they are intuitive to engineers (e.g., radius of leading
edge and trailing edge angle). The upper and lower bounds of the
PARSEC problems are shown in Table 1 with the trailing edge thick-
ness and ordinate were set to zero. Details regarding the PARSEC
parameterization can be found in the original paper [29].

On the other hand, B-spline parameterization works by attaching
control points close to the airfoil. The location of these control
points are then systematically altered to change the airfoil shape.
Figure 1 shows the baseline airfoil and the control points for the
B-spline parameterization. We attached 20 control points but only
16 points are allowed to vary in the z2 direction. For both B-spline
and PARSEC-based problems, we use XFOIL [7] to evaluate the
objective and the constraint functions. XFOIL is a low-fidelity solver,
yet accurate for low-speed problems, that couples a boundary layer
solver and a panel method. One XFOIL simulation takes less than
one second in a personal computer; hence, performing independent
runs of optimization with multiple methods is doable.

The objective function for all problems is to maximize the lift-
to-drag ratio (L/D) as the performance measure of aerodynamic
design subjects to constraints in lift coefficient (Cl ), absolute pitching
moment coefficient (|Cm |), and laminar to turbulent flow transition
point. We vary the problem by enforcing two and three constraints,
where the two-constraint problems use Cl and Cm as the constraints.
The maximization problem can be transformed into a minimization
problem by simply multiplying the L/D with negative one. The
pitching moment constraint for the B-spline problem is set to a
different value so as to create problems with feasible domain while
still minimizing the number of failed simulations. The transition
point is set as one constraint in order to maintain laminar flow over
the upper surface, which is beneficial for airfoil design.

The four problems are summarized in the following:

(1) NLF(1)-0416, PARSEC parameterization (nvar = 10). Con-
straints: Cl > 0.5, |Cm | < 0.10.

(2) NLF(1)-0416, PARSEC parameterization (nvar = 10). Con-
straints: Cl > 0.5, |Cm | < 0.10, transition point > 0.4

(3) NLF(1)-0416, B-Spline parameterization (nvar = 17). Con-
straints: Cl > 0.5, |Cm | < 0.11.

(4) NLF(1)-0416, B-spline parameterization (nvar = 17). Con-
straints: Cl > 0.5, |Cm | < 0.11, transition point > 0.4

Notice that the angle of attack α is also set as one design variable,
which is set to vary from 0 to 4 degrees; thus, the number of actual
design variables is the number of airfoil parameters plus one. The
number of initial and new samples for the PARSEC problem are 30
and 100, respectively. For the B-spline-problem, due to its higher
dimensionality, the number of initial and new samples are set to 50
and 100, respectively. We set these numbers of initial new samples
by primarily considering the expensive construction time of Kriging,
thus, we cannot afford too many iterations if the number of initial
samples is already high. The training time and acquisition function
optimization of EGO are significantly more expensive than the others
and this limits the number of EGO runs that we can perform. To
that end, also for a fair comparison, we evaluate the performance
of the optimization algorithms by using 15 independent runs for all
problems.

It is worth noting that it is very difficult to design a test problem
without failed simulations (i.e., simulations that do not converge).
Here, failed simulations are not those that violate the constraint
but simulations that yield no value of the objective and constraint
functions. If there are too many failed solutions, it becomes difficult
to assess the difference in the performance of various optimization
methods. Therefore, we minimized the number of failed simulations
by carefully choosing the upper and lower bounds of the design vari-
ables. The number of failed simulation for each problem, according
to a random sampling with 2000 samples, is about 2%. Although this
number is reasonably low, we imputed the objective and constraint
values for failed simulations with max(Y ) + std(Y ), where (Y ) is the
vector of responses from 2000 random simulations.

To assess the difficulty of the problem in terms of feasibility,
We estimated the percentage of feasible region by 2000 random
sampling and we found that the feasible region for problem (1),
(2), (3), and (4) are 12.3%, 4.25%, 50.2%, 4.4%, respectively. In
addition, we estimated the percentage of the feasible region with
each and all constraints considered, as shown in Table 2. From the
table, we can see that the lift constraint is relatively easy to fulfill,
followed by the pitching moment constraint, and the transition point
constraint; the latter is obviously the hardest for both B-Spline and
PARSEC problems. The lift constraint is relatively easy to fulfill
because it is sensitive to the change of angle of attack. The moment
constraint of the B-spline problem was relaxed, which is the reason
why the percentage of feasible of region is higher than that of the
PARSEC problem. The transition point constraint is not so sensitive
to the change in design variables considered in this paper, which is
the reason why it creates a small feasible space.

The PARSEC problem experiments were executed with a personal
computer with the specifications of Intel(R) Core(TM) i5-6200U
CPU @2.30 GHz 2.40 GHz and 4 GB RAM. On the other hand, the
B-spline problems were performed in a personal computer with Intel
Xeon E5 2620 v4, with 8 cores, 16 threads, 2.10 Ghz (base clock),
and RAM 16 Gb 2400 MHz.
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Problem Cl |Cm | xtr s Cl and |Cm | All

PARSEC 93.35% 16.6% 24.5% 12.3% 4.25%
B-Spline 95.3% 52.4% 10.9% 50.2% 4.4%

Table 2: Percentages of feasible region for all problems due to
the single and combined constraints.

Figure 1: The NLF(1)-0416 airfoil and locations of B-spline
points used to alter the shape.

40 60 80 100 120

N
upd

-170

-160

-150

-140

-130

B
e

s
t 

n
e

g
a

ti
v
e

 L
/D

Convergence of mean

EGO-PoF

COBRA

ConstrLMSRBF

COBYLA

Figure 2: Mean convergence plots of best feasible objective func-
tions for the PARSEC problem with two constraints.

3.2 Experimental results
We show the convergence of the mean of the best negative L/D
during the course of optimization. In addition, we show the boxplot
of solutions at the final iteration to depict the distribution of final
best feasible solutions. We judge the performance of the algorithms
primarily from these two aspects, thus, we analyze both the mean
convergence and the distribution of final best feasible solutions.
This is because there might be cases when an algorithm yields a
fast convergence but the distribution of final solutions is not so
satisfactory. Notice that we defined a feasible solution as a solution
that strictly fulfills the constraints without any threshold. The results
for the PARSEC problems are shown in Figs. 2, 3, 4, and 5, while the
results for the B-spline problems are shown in Figs. 6, 7, 8, and 9.
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Figure 3: Boxplots of final best feasible objective functions for
the PARSEC problem with two constraints.
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Figure 4: Mean convergence plots of best feasible objective func-
tions for the PARSEC problem with three constraints.
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Figure 5: Boxplots of final best feasible objective functions for
the PARSEC problem with three constraints.

First, we notice that COBYLA is the worst performer on all
problems. This clearly implies that linear approximations are not
sufficient to solve the constrained aerodynamic optimization prob-
lems considered in this paper. Instead, RBF (as used by COBRA
and ConstrLMSRBF) and Kriging (as used by EGO-PoF), which
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Figure 6: Mean convergence plots of best feasible objective func-
tions for the B-spline problem with two constraints.
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Figure 7: Boxplots of final best feasible objective functions for
the B-Spline problem with two constraints.
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Figure 8: Mean convergence plots of best feasible objective func-
tions for the B-spline problem with three constraints.

are capable of capturing nonlinear functions, are more suitable for
handling this kind of problem; we can see that they converged faster
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Figure 9: Boxplots of final best feasible objective functions for
the B-Spline problem with three constraints.

and yielded significantly better best solutions at the end of the opti-
mization (one interesting case is on the B-spline problem with two
constraints as we discuss below).

The results show that, in general, ConstrLMSRBF outperformed
COBRA on all problems; here, we can see that the former yielded
a better convergence property (although only slightly) and better
distribution of final best feasible solutions than the latter. On the PAR-
SEC problem with two constraints, COBRA briefly outperformed
ConstrLMSRBF at early iterations but was soon outpaced by Con-
strLMSRBF. However, despite its volatile performance, the observed
best minimum solution of the two PARSEC problems was found
by COBRA. EGO-PoF yielded the best convergence on the two
PARSEC problems, in fact, it even outperformed ConstrLMSRBF
from the viewpoint of both convergence and best final solutions.
Nevertheless, ConstrLMSRBF was still competitive with EGO-PoF
on these two problems. Such a fact indicates that EGO-PoF identi-
fied the feasible regions quicker than the other methods, at least for
the PARSEC problems. Despite the fast convergence of EGO-PoF,
ConstrLMSRBF yielded better distribution of final solutions on the
PARSEC problem with three constraints. By remembering that the
feasible region of the PARSEC problems with three constraints is
very low, we infer that EGO-PoF (at least with the current setting) is
not so good at the exploitation phase.

We observe an interesting phenomenon in the results of the B-
spline problem with two and three constraints (see Figs. 6, 7, 8
and 9). For the two-constraint problem, ConstrLMSRBF started to
outperform COBRA in terms of the mean convergence at about the
100th iteration, although the difference is actually slight; we can
also see that the former is better from the viewpoint of final distribu-
tions. Such an observation is in line with the results of the PARSEC
problems which demonstrate the robustness of ConstrLMSRBF.
What interesting here is that the mean convergence of EGO-PoF is
even worse than that of COBYLA before the 120th iteration on the
two-constraint PARSEC problem. This means that for the B-spline
problem with two constraints, EGO-PoF spent too much time in ex-
ploring the design space. EGO-PoF finally exceeded COBYLA starts
from about iteration 120 and its distribution of final solutions is also
much better than COBYLA. However, this indicates that one should
be careful when using EGO-PoF. For example, in a situation where
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one could only afford 50 new solutions, EGO-PoF could find worse
solutions compared to when we use COBRA and ConstrLMSRBF.

Surprisingly, EGO-PoF performed well on the B-spline problem
with three constraints. EGO-PoF, COBRA, and ConstrLMSRBF
are indeed competitive with each other on this problem. The perfor-
mance of COBRA is not so robust as indicated by poor values of two
outliers. We can also see that EGO-PoF was slow at early iterations
on the B-Spline problem with three constraints; however, if we pay
a good attention to the mean convergence of the two PARSEC prob-
lems, it can also be seen that EGO-PoF needed a time to warm-up
itself. However, the fact that EGO-PoF does not perform well on
the B-spline problem with two constraints signifies that EGO-PoF
is not a really robust method. It is also perplexing that EGO-PoF
performed better on a problem that was supposed to be more diffi-
cult (i.e., the problem with three constraints). The best guess that
we have now is that the performance of EGO-PoF highly depends
on the initial sampling points, which makes sense if we take into
account the fact that EGO-PoF primarily exploits locations near the
current feasible solutions.

3.3 Discussion on the run time
We plot the average actual computation time of the algorithms on
the PARSEC problem with two constraints and the B-spline problem
with three constraints in Figs. 10 and 11, respectively, which repre-
sent the case with the shortest and the fastest run time. In terms of the
run time, we can see that COBRA, ConstrLMSRBF, and COBYLA
are methods that run very quick even on a personal computer. This
means that these three algorithms are also suitable for solving prob-
lems with a moderate budget of function evaluations (say, 500-1000
function evaluations). For all algorithms but EGO, the minor differ-
ence in the run time is attributable to the algorithm implementation
rather than the surrogate model building. It is worth noting that the
short run time of these three algorithms stems from the fast model
building. ConstrLMSRBF and COBRA will also consume a signifi-
cant amount of time if expensive surrogates are used. Nevertheless,
one advantage of ConstrLMSRBF and COBRA compared to EGO is
that they can use non-probabilistic surrogates in the loop since only
the prediction structure is needed. The calculation time of EGO-PoF
is significantly longer than the other algorithms, which is primar-
ily due to the construction time of the Kriging model. It is worth
noting that, just like other algorithms, EGO-PoF needs to construct
1+ncon Kriging models for one function evaluation, where ncon is
the number of constraints. The problem is that the calculation time
of EGO significantly increases as the number of constraint increases,
which implies that EGO-PoF is not suitable for problems with many
constraints.

3.4 Discussion on the percentage of feasible
regions

Figures 12, 13, 14, and 15 show the average percentage of feasible
solutions for the PARSEC problem with two constraints, PARSEC
problem with three constraints, B-spline problem with two con-
straints, and B-spline problem with three constraints, respectively.
Basically, we observe that the percentage of feasible solutions typ-
ically increases as we add more updating samples, although the
percentage got stalled in some problems (see Fig. 13 for example).
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Figure 10: The actual computation time (in seconds) of all al-
gorithms averaged from 15 independent runs for the PARSEC
problem with two constraints.

50 60 70 80 90 100 110 120 130 140 150

N
upd

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
c
tu

a
l 
ti
m

e
 (

s
e

c
o

n
d

s
)

EGO-PoF

COBRA

ConstrLMSRBF

COBYLA

Figure 11: The actual computation time (in seconds) of all al-
gorithms averaged from 15 independent runs for the B-spline
problem with three constraints.

The results show that the two RBF-based methods (i.e., COBRA
and ConstrLMSRBF) tend to generate a higher percentage of fea-
sible solutions as the optimization progresses when compared to
the other two methods. On the other hand, EGO-PoF and COBYLA
tend to generate a similar percentage of feasible solutions. The ex-
ception is on the PARSEC problem with three constraints, where the
percentage of feasible solutions of EGO-PoF is even lower than 10%.
Despite this, EGO-PoF performed better than COBYLA, which in-
dicates that the former is more efficient on finding good feasible
solutions than the latter. It is also interesting to note that EGO-PoF
performed well on both PARSEC problems although it generated
a higher percentage of infeasible solutions compared to ConstrLM-
SRBF and COBRA; however, this is not the case in the B-spline
problem with two constraints. This might mean one of two things,
that is, either EGO-PoF primarily explored infeasible regions after it
found a near global optimum location or it over-explored infeasible
regions (the latter is the case for the B-spline problem with two
constraints). Compared to EGO-PoF, it seems like COBRA and Con-
strLMSRBF maintain a more balanced search between infeasible
and feasible parts of the design space.
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Figure 12: Percentage of feasibility averaged from 15 indepen-
dent runs for the PARSEC problem with two constraints.
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Figure 13: Percentage of feasibility averaged from 15 indepen-
dent runs for the PARSEC problem with three constraints.
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Figure 14: Percentage of feasibility averaged from 15 indepen-
dent runs for the B-spline problem with two constraints.

4 CONCLUSIONS AND FUTURE WORK
In this paper, we compared the performance of four constrained
SBO methods (i.e., EGO with the probability of feasibility, CO-
BRA, ConstrLMSRBF, COBYLA) on four aerospace engineering
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Figure 15: Percentage of feasibility averaged from 15 indepen-
dent runs for the B-spline problem with three constraints.

problems, that is, low-speed airfoil design optimization cases with a
varying number of constraints and dimensionality. The primary ob-
jective of this paper is to investigate the strengths and weaknesses of
various constrained SBO methods on solving PDE-based problems
(represented by low-speed airfoil cases). It is hoped that the insight
obtained from this paper will be useful for future algorithmic de-
velopment to handle real-world constrained optimization problems,
especially in the aerospace domain.

The results show that ConstrLMSRBF is the most consistent and
well-performing method, in the sense that it is relatively robust to the
various number of constraints and dimensionality. The performance
of COBRA, although still much better than COBYLA, is still not as
robust as ConstrLMSRBF. However, in this paper, it is worth noting
that we only used the local variant of COBRA; comparison with
adaptive version of COBRA is one subject of future works. EGO-
PoF performed very well on the PARSEC problems but it performed
poorly when it was used to solve the high-dimensional problem with
two constraints. The poor performance of COBYLA relative to the
others indicates that linear approximations are not adequate enough
to solve the current low-fidelity low-speed airfoil design problems.

For future works, we are planning to completely separate the
effect of the baseline algorithm (including constraint handling tech-
niques) and the surrogate models. In this regard, all algorithms
considered so far, with the exception of COBYLA, should be com-
pared by using identical surrogate models (e.g., Gaussian RBF). It is
also worth noting that the insight obtained from the experiment this
paper applies in the context of low-speed airfoil design. Therefore,
we think that experiments with other types of problems and different
CFD solvers are necessary to complement the results of this paper.
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