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ABSTRACT
Finding communities of interrelated nodes is a learning task that of-
ten holds in problems that can bemodeled as a graph. In any case, de-
tecting an optimal partition in a graph is highly time-consuming and
complex. For this reason, the implementation of search-based meta-
heuristics arises as an alternative for addressing these problems.
This manuscript focuses on optimally partitioning dynamic net-
work instances, in which the connections between vertices change
dynamically along time. Specifically, the application of Novelty
Search mechanism for solving the problem of finding communi-
ties in dynamic networks is studied in this paper. For this goal,
this procedure has been embedded in the search process under-
taken by three different bio-inspired meta-heuristic schemes: Bat
Algorithm, Firefly Algorithm and Particle Swarm Optimization. All
these methods have been properly adapted for dealing with this
discrete and dynamic problem, using a reformulated expression of
the modularity coefficient as its fitness function. A thorough exper-
imentation has been conducted using a benchmark composed by
12 synthetically created instances, with the main objective of ana-
lyzing the performance of the proposed Novelty Search mechanism
when facing this problem. In light of the outperforming behavior of
our approach and its relevance dictated by two different statistical
tests, we conclude that Novelty Search is a promising procedure
for finding communities in evolving graph data.

CCS CONCEPTS
• Theory of computation → Bio-inspired optimization; Ran-
dom search heuristics; Theory of randomized search heuristics; •
Mathematics of computing → Evolutionary algorithms;
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1 INTRODUCTION
These days, a remarkable amount of methods and tools can be found
in the literature for efficiently excerpting insights from the hetero-
geneous interrelations between different elements in a network.
Undoubtedly, the impactful influence that social networks have in
the current society is the main reason of this recently exploded
boiling activity [3]. The information that can be obtained by the use
of these methods is truly diverse, ranging from enriched ways for
network visualization and routing of efficient paths amidst a pair of
nodes, to the assessment of the influence of a specific node in the
whole network (centrality). All this gained insights have been used
for many practical goals recently, such as child abuse detection [53]
or the evaluation of radicalization risk [2, 38].

Focused in the above mentioned Social Networks, the finding of
communities within a network is probably one of the most valuable
and recurrent tasks, as evinced by the recent literature [21, 50]. In
this regard, a community is group of nodes which fulfill the princi-
ples of weak inter-connectivity (a low connectivity with members
belonging to other communities) and robust intra-connectivity
(solid links between vertices of the same partition). Moreover, the
characteristics of these parameters lead to the construction of het-
erogeneous network (directed, weighted or dynamic, among other
variants), quantifying the cohesiveness of any projected partition.
Furthermore, different metrics have been formulated by the scien-
tific community for efficiently evaluating the quality of any pro-
posed solution. Each of these metrics takes different assumptions,
leading to a single value for assessing the quality of the commu-
nity. Some of the most used examples are Surprise [1], Permanence
[6] and, above all, Newman and Girvan’s Modularity [32]. In the
present research, the latter Modularity is considered.
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In this context, the main focus of this work is set on a specific
type of graphs characterized by their time-evolving dynamic na-
ture. Usually, relationships between human beings undergo changes
over time. People tend to strengthen existing connections or build
new ones throughout their lives, while some others are loosened
or eventually broken up. Thus, if we place our attention on the
relational history of a single person in a long time lapse, we will
surely discover some level of dynamism. Logically, this phenome-
non can be also reflected in Social Networks. In this way, dynamic
graphs are special instances of networks in which the number of
nodes and the links between them can suffer from modifications
along time, reliably modeling the situation described above. This is
the reason why a dynamic network can be also considered as an
evolving graph stream, in which the evolution of the graph may
occur among consecutive time steps. In this envisaged situation,
the discovery of communities becomes even more involved than in
the static scenario, as structural graph dynamics propagate to the
communities underneath the graph itself. This noted fact unleashes
a pressing need for devising efficient methods to incrementally
infer communities from streaming graph instances, while incorpo-
rating mechanisms to adapt the inferred community structure to
structural changes eventually occurring over time.

In this regard, a myriad of efficient methods has been proposed in
recent years for solving the problem of detecting communities opti-
mizing one of the previously pointed metrics. In line with the study
presented in this paper, a rising part of the scientific community is
devoting efforts towards adapting heuristic optimization methods
to this problem by using one modularity metric as their objective
function. Many interesting studies can be found in the recent litera-
ture, devoted to diverse approaches of algorithmic methods, graph
types and quality metrics. One of the most utilized method for this
purpose is the Genetic Algorithm, as can be seen in works such
as [58] or [40]. Some additional techniques used in this research
area that fall inside the umbrella of Evolutionary Computation
and Swarm Intelligence are Ant Colony Optimization [39], Particle
Swarm Optimization [43], Artificial Bee Colony [48], Bat Algorithm
[18] and Firefly Algorithm [10]. Regarding dynamic networks, the
amount of scientific studied related to this topic is much fewer
than the one associated to stationary networks. A valuable survey
focused on community finding in dynamic graphs can be found
in [45]. Another interesting practical study was reported in [30],
in which a multi-objective Bat Algorithm is proposed for tackling
with this problem. Furthermore, Genetic Algorithms have been also
used in this context, as evinced in [26] or [15]. Finally, along the
history, many works have been published exploring the tackling of
dynamic problems using metaheuristic methods [8, 9, 29].

In this paper we take a step further over the state of the art by
elaborating on a new research direction: the application of Nov-
elty Search mechanism for solving the problem of finding com-
munities in dynamic networks. The Novelty Search (NS, [24]) was
proposed in 2008 as a way to enhance the exploratory ability of
population-based algorithmic solvers. After showing its great per-
formance applied to several optimization problems, we hypothesize
its promising performance also for this specific community finding
problems. To this end, we have developed different versions of well-
known Swarm Intelligence methods, namely Bat Algorithm (BA,
[55]), Firefly Algorithm (FA, [54]) and Particle Swarm Optimization

(PSO, [22]), and we evaluate in this manuscript the performance of
these meta-heuristics embedding the NS mechanism on their basic
scheme. We introduce along the paper the descriptions on how
these methods have been modeled for tackling the problem at hand,
and how the NS has been adapted for this discrete scenario. In order
to assess the performance of each implemented solver, outcomes
get over 12 synthetically generated datasets are compared and dis-
cussed, based on their capability to discover their ground-of-truth
community partition. Moreover, with the aim to draw statistically
robust conclusions, two different statistical tests (Friedman’s and
Holm’s) have been carried out with the obtained outcomes.

The remaining of this manuscript is structured as follows: in
Section 2, the problem of community finding in dynamic network
is formulated. In Section 3, the main concepts behind NS are intro-
duced, placing emphasis on how we have hybridized meta-heuristic
solvers with this mechanism. Next, the considered heuristic solvers
and important development aspects are described in Section 4. Ex-
perimentation is detailed and discussed in Section 5 and, finally,
Section 6 ends this paper with concluding remarks and a prospect
of future research lines.

2 PROBLEM STATEMENT
We begin by modeling the network as a graph G � {V, E}, where
V stands for the set of |V| = V nodes or vertex of the network,
and E represents the group that details the dynamic situation of
the edges (or links connecting every pair of elements) over a given
time frame (time horizon). During this time frame a set of graph
snapshots is generated, each one describing the specific structure
of the network at one moment in time. Thus, E � {e1, . . . , eN },
where en corresponds to the group of edges at time stamp n.

It is important to highlight that the dynamism of the graphs
considered on this study affects to the relations between the vertex.
This means that while the connections between elements vary
along the time, the number of nodes remains the same in the whole
time horizon. Additionally, the weight of each edge connecting
nodesv andv ′ iswv ,v ′ = 1. We also consider thatwv ,v = 0 (i.e. no
self-loops) and thatwv ,v ′ = 0 whether elements v and v ′ are not
connected. We also define an adjacency matrix W given by W �
{wv ,v ′ : v,v ′ ∈ V}, and satisfying Tr(W) = 0. Finally, we assume
symmetry in G, so,wv ,v ′ =wv ′,v . Henceforth, weights are denoted
aswn

v ,v ′ , representing the weight at timestamp n. This notation is
used in order to contemplate the dynamism of the problem.

Therefore, the problem of detecting related communities in
the network G is assumed in this research as the partition of
the nodes group V into a number of non-empty, non-fixed size
and disjoint sets. Considering that M is the amount of partitions
Ṽ � {V1, . . . ,VM }, such that ∪Mm=1Vm = V andVm ∩Vm′ = ∅

∀m′ , m (i.e. no overlapping communities). Similarly, the set of
partitions will be depicted as Vn henceforth, representing Ṽn �
{Vn

1 , . . . ,V
n
M } the set of communities detected at time stamp n.

As has been advanced in the introduction, the Newman and
Girvan’s Modularity metric has been employed for properly mea-
suring the quality of a certain community. This famous formula
has been widely employed in a plethora of previously published
works, and its adequacy has been extensively affirmed in studies
such as [5, 7, 25]. Thusly, the modularity metric for a considered
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community can be calculated by:

Q(Ṽn ) �
1

2|En |

∑
v ,v ′

[
wn
v ,v ′ −

knvk
n
v ′

2|En |

]
δ (v,v ′)n, (1)

where knv is the degree of node v , |En | is the total amount of ele-
ments in the network, and δ (v,v ′)n depicts the Kronecker delta
symbol. All these values are contextualized in the time stamp n.
With other words, δ (v,v ′)n is a binary function δ : Vn × Vn 7→

{0, 1}, such that δ (v,v ′
n ) = 1 if Vv

n = Vv ′

n as per the community
set by Ṽn (and 0 otherwise). We note the dependence of all this
notation with the time stamp n. Thus, finding an optimal partition
Ṽ∗
n of graph Gn can be formulated as:

Ṽ∗
n = argmax

Ṽn ∈BV

Q(Ṽn ), (2)

where BV denotes the set of possible partitions ofVn nodes into
nonempty subsets (i.e. the solution space of the above combina-
torial problem). The cardinality of this group is computationally
intractable for an exhaustive search, whose value is given the Vn-
th Bell number [17]. It is also important to remark that our main
objective is to solve the above problem over the n timestamps. For
reaching this objective, different degrees of similarity must be mod-
eled and contemplated between consecutive snapshots n and n + 1.

3 NOVELTY SEARCH (NS)
NS is a mechanism which main goal is to increase the diversity of a
population-based method, by finding novel candidates in the behav-
ioral space instead of the search space. Commonly, individual in a
population tend to collapse in the same point of the solution space.
On the other hand, this tendency does not appear in the behavioral
space, which is measured using the well-known Euclidean distance.
Thus, we can quantify numerically how novel an individual x is
within the population/swarm at hand as:

ρ(c) =
1
k

k∑
i=1

d(c, µi ), (3)

where d(·, ·) denotes the Euclidean distance, and k is the number
of neighbor candidates selected from the subset of neighbors N =
{µ1, µ2, . . . , µk } ⊆ P (i.e. the neighborhood size). The value of
k is problem-dependent, i.e. its specific value should be selected
empirically. Furthermore, the selection of candidates is driven by the
distance metric, which also depends on the problem. Although NS
has showcased its efficiency in manifold studies so far [14, 16, 27],
the strategy to adapt NS to a given problem remains weakly defined,
and strongly subject to the problem at hand [13].

4 PROPOSED HYBRID APPROACH
For efficiently dealing with the dynamic community finding prob-
lem formulated previously, we propose to hybridize several bio-
inspired meta-heuristic solvers and a NS-based diversity inducing
mechanism. Prior to detailing each solver under consideration, we
describe several important design aspects in what follows. These
aspects are related to solution encoding, repairing mechanism and
the metrics employed for comparing among different candidates.

To begin with, a label-based representation [20] has been adopted
for encoding solutions that represent partitions arranged over

a graph. Thus, each candidate is represented as a combination
c = [c1, c2, . . . , cV ] of V integers from the range [1, . . . ,V ], where
V = |V| is the amount of vertices of the network. Additionally, cv
represents the community label to which element v belongs. For
example, considering a network comprising V = 12 nodes, a feasi-
ble solutions could be c = [1, 1, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3], meaning that
the partition obtained is Ṽ = {V1,V2,V3}, whereV1 = {1, 2, 3, 7},
V2 = {4, 5, 9, 11} andV3 = {6, 8, 10, 12} (thus,M = 3).

This representation has the disadvantage of an inherent ambigu-
ity between the selected genotype representation (label encoding)
and the phenotype. Specifically, multiple genotypes map to the
same phenotype (partition). For avoiding this important problem, a
repairing mechanism has been implemented, partly inspired by the
one presented by Falkenauer in [12]. This procedure transforms the
genotype of each generated candidate to collapse into a single rep-
resentation, thereby making the relationship between the repaired
genotype to its phenotype be biyective (one-to-one). For exam-
ple, unrepaired solutions such as c = [4, 4, 4, 3, 3, 5, 4, 5, 3, 5, 3, 5]
and c′ = [7, 7, 7, 1, 1, 8, 7, 8, 1, 8, 1, 8] (which represent the same par-
tition) are modified to collapse into a single individual for both
candidates: c = [1, 1, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3].

The next important aspect to revolve around is the measure of
similarity between different individuals (solutions). This measure
lies at the core of movement strategies of certain meta-heuristics as
the ones considered in this work. For this matter we have selected
the Hamming Distance following the good performance of this
choice observed in prior contributions [34]. Specifically, the Ham-
ming Distance is computed as the number of non-corresponding
elements between two solutions. For instance, if we consider c =
[1, 1, 1, 2, 2, 2, 2, 3, 2, 1] and c′ = [1, 1, 2, 2, 3, 2, 2, 3, 2, 2] as exempli-
fying partitions, their Hamming Distance equals 3.

Finally, four movement functions have been implemented for
evolving solutions along the search process. These functions have
been labeled as CE1, CE3, CC1 and CC3. On the one hand, the sub-
script depicts the number of randomly selected vertices, which are
removed from its corresponding community. On the other hand,
in CE∗ operators, the extracted nodes are re-inserted in an already
existing community, whereas inCC∗ they can be introduced also in
newly generated ones. At this point, it is interesting to observe that
the main operator of all meta-heuristic methods is CC1; CE1, CE3,
andCC3, however, compose the pool of functions that NS considers
for the reinsertion of candidates. This aspect is detailed below. We
now introduce the meta-heuristic algorithms under consideration:

• BA: The Bat Algorithmwas first proposed for solving continuous
optimization problems [55]. As done in recent work [37], a discrete
adaptation has been introduced to accommodate the BA operators
to the combinatorial nature of the problem tackled in this study.
First, each bat of the swarm represents a possible solution to the
problem, and both concepts of pulse emissions ri and loudness Ai
have been modeled and implemented in the same way as in the
naïve BA. In order to simplify the approach, no frequency param-
eter has been considered. Furthermore, the value of the velocity
parameter vi has been adapted by embracing the Hamming Dis-
tance as its similarity function as vtp = rand[1,DH (cp , cbest )], i.e.,
the velocity of the p-th bat in the swarm at generation t is a random
number, which follows a discrete uniform distribution between 1
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and the Hamming Distance between cp and the leading bat cbest .
At generation t , cp moves towards cbest as:

cp (t+1)=Ψ
(
cp (t),min

{
V ,vtp

})
, (4)

where Ψ(c,Z ) ∈ {CE1,CE3,CC1,CC3} is the movement function
that depends on the bat in move, each one parametrized by the
amount of times Z this function is performed onto c. After Z trials,
the movement enhancingmost the fitness of the modified individual
is chosen as output.
• FA: similarly to what occurs with the BA meta-heuristic algo-
rithm, the basic FA cannot be directly applied to the combinato-
rial problem considered in this work, hence some adaptations are
needed. Each firefly represents a feasible solution for the problem.
Regarding the light absorption parameter, it is considered in this
discrete FA, taking into account its importance for properly adjust-
ing the fireflies’ attractiveness. In addition, the distance between
two individuals is also computed by the Hamming Distance. Finally,
the movement criterion followed by a firefly attracted by a brighter
one is determined as per (4).
• PSO: Particle Swarm Optimization is the last method considered
in our study. In this case, PSO has been already adapted to discrete
problems in multiple occasions [52, 59]. Following in part this prior
work, each particle in the swarm represents a possible partition for
the problem. Velocity vp is computed roughly in the same fashion
as for the BA. Additionally, the movement strategy is inspired by
Expression (4). Finally, Hamming Distance has been taken as the
similarity measure between particles.

In this specific study, the NS mechanism has been applied identi-
cally in the three considered meta-heuristic algorithms. Previously
published works [14] pointed out the need for modeling a suitable
distance metric in order to properly achieve the objective of enhanc-
ing the diversity of the population. In our case, this metric is the
aforementioned Hamming Distance DH (·, ·). Furthermore, a subset
B is maintained, in which all replaced or discarded individuals are
introduced at each generation. Thus, the size of B is the same as
the main population of the algorithm.

Conceptually, B contains the candidates which are more poten-
tially novel and, therefore, to be inserted back into the population
for diversity injection. Basically, when a trial solution ci outper-
forms the individual which is going to replace, it is introduced in
the main population, whereas the replaced solution is inserted into
B. Otherwise, if the evolved candidate is worse than its preced-
ing version, the former is inserted directly into B. Furthermore,
once the t-th generation comes to its end, if rNS (a value drawn
from a normal probability distribution) is lower than the parameter
NSP ∈ [0.0, 1.0], the NS mechanism is carried out. In this specific
study, NSP = 0.3, which has been fixed after a thorough empirical
analysis not shown for the sake of clarity.

Furthermore, there is no clear consensus established by the re-
lated community regarding the number of individuals that should
be reinserted in the population throughout the NS procedure, and
how they replace existing solutions. Once again, practitioners of the
field recommend to adapt these values and criteria depending on
the problem being tackled. In this study, the number of reinserted
individuals has been established to 7, which replace solutions of
the population with lower fitness. Furthermore, these candidates

are chosen from B based on their distance respect to the whole
population. Namely, the 7 solutions having a greater diversity with
respect to the population/swarm of the meta-heuristic solver are
those chosen for reinsertion. Finally, the main contribution of the
proposed NS mechanism is a novel neighborhood changing pro-
cedure. Concretely, each time a solution c is introduced in B, its
movement operator Ψ(·, ·) is randomly modified using a baseline
pool of four different functions {CE1,CE3,CC1,CC3}. In this way, if
a solution is reinserted in the population, it can explore the solution
space in a different way. This simple but effective mechanism not
only enhances further the diversity of the population, but also the
exploratory capacity of the solver.

Once described the designed methods and how the NS mecha-
nism has been adapted to this specific problem, it is also crucial to
explain here how implemented approaches manage the transitions
between the n different snapshots that compose each dataset. First,
in the beginning of every execution, the main population of the
algorithm is comprised completely by randomly generated indi-
viduals. Furthermore, B is initialized empty. After that, the main
population is maintained in every snapshot transition, but B is
reinitialized between consecutive time stamps. In other words, the
population at the first generation of snapshot n is the resultant of
the last generation of snapshot n − 1.

5 EXPERIMENTATION AND RESULTS
We assess the performance of the considered solvers for dynamic
graph partitioning by means of several computer experiments over
a heterogeneous set of synthetically generated graph instances. All
these datasets have been built by using the DANCer framework
[4, 23], aiming at covering a diverse group of practical situations in
dynamic environments. The complete benchmark is comprised by
12 different instances with 100 nodes, for which the true underlying
community structure behind the generated time-varying graphs
(ground of truth) is given. Furthermore, each dataset is labeled to
indicate the parameter values established for its generation, namely:
• Size of the problem: This value is 100 nodes in all the datasets.
• Communities: Number of communities that comprise the ground
of truth partition.
• Generations: Number of generations executed in each graph snap-
shot Gn .
• Variability: The difference that the graph suffers between two
adjacent graph snapshots Gn and Gn+1. This parameter can adopt
three values: slight (variety of 5% between adjacent snapshots),
medium (variety of 10%), and severe (variety of 20%).
• Transition: Each dataset is comprised by 30 base snapshots, di-
vided into two different families of 15 timestamps. If Transition
equals abrupt, the transition between both families is carried out di-
rectly after the 15th timestamp. Thus, these datasets are composed
just by these 30 canonical snapshots. On the hand, if Transition is
gradual, the transition is performed gradually, introducing a group
of 10 additional snapshots, which are placed between the last times-
tamp of the first family and the first timestamps of the second one.
Thus, these gradual instances are composed by 40 snapshots.

This generation approach allows evaluating the performance of
the implemented methods over noisy versions of a network char-
acterized by a controlled underlying community distribution. This
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Table 1: Obtained NMI results (average/best) using BA, BANS, FA, FANS, PSO, and PSONS. Best average results have been high-
lighted in bold.

BA BANS FA FANS PSO PSONS
Instance Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best
100_7_20_Sli_Abr 0.673-0.474 0.782-0.656 0.674-0.493 0.766-0.665 0.645-0.538 0.779-0.673 0.687-0.564 0.780-0.719 0.568-0.428 0.654-0.539 0.642-0.511 0.768-0.705
100_7_20_Sli_Grad 0.676-0.473 0.787-0.663 0.691-0.490 0.773-0.650 0.633-0.530 0.726-0.683 0.682-0.569 0.785-0.712 0.566-0.459 0.676-0.588 0.644-0.570 0.773-0.681
100_7_50_Sli_Abr 0.666-0.512 0.747-0.683 0.676-0.493 0.758-0.646 0.654-0.561 0.754-0.693 0.691-0.597 0.779-0.696 0.626-0.477 0.752-0.619 0.668-0.554 0.735-0.656
100_7_50_Sli_Grad 0.688-0.455 0.765-0.579 0.689-0.486 0.769-0.633 0.660-0.571 0.755-0.710 0.684-0.594 0.788-0.746 0.618-0.481 0.736-0.645 0.674-0.577 0.761-0.664
100_8_20_Med_Abr 0.654-0.476 0.819-0.641 0.663-0.496 0.837-0.613 0.605-0.489 0.775-0.706 0.675-0.535 0.839-0.693 0.564-0.442 0.692-0.555 0.653-0.467 0.852-0.661
100_8_20_Med_Grad 0.674-0.459 0.835-0.613 0.663-0.456 0.855-0.638 0.626-0.483 0.818-0.623 0.682-0.526 0.845-0.659 0.568-0.454 0.677-0.552 0.645-0.489 0.850-0.631
100_8_50_Med_Abr 0.701-0.469 0.861-0.603 0.710-0.503 0.861-0.617 0.640-0.513 0.889-0.658 0.690-0.533 0.847-0.636 0.620-0.458 0.798-0.642 0.698-0.501 0.854-0.637
100_8_50_Med_Grad 0.671-0.467 0.870-0.631 0.691-0.468 0.841-0.616 0.655-0.502 0.817-0.637 0.688-0.517 0.833-0.661 0.635-0.471 0.834-0.653 0.685-0.510 0.837-0.664
100_9_20_Sev_Abr 0.649-0.511 0.820-0.705 0.650-0.530 0.797-0.713 0.612-0.515 0.841-0.657 0.653-0.562 0.796-0.694 0.539-0.485 0.641-0.609 0.601-0.496 0.754-0.674
100_9_20_Sev_Grad 0.640-0.544 0.769-0.716 0.639-0.525 0.814-0.652 0.607-0.526 0.789-0.656 0.649-0.565 0.806-0.700 0.541-0.515 0.649-0.606 0.613-0.549 0.768-0.674
100_9_50_Sev_Abr 0.644-0.544 0.775-0.705 0.654-0.539 0.820-0.650 0.631-0.526 0.770-0.634 0.671-0.560 0.829-0.716 0.594-0.505 0.716-0.631 0.666-0.545 0.872-0.655
100_9_50_Sev_Grad 0.655-0.524 0.786-0.640 0.665-0.538 0.825-0.662 0.647-0.520 0.775-0.631 0.658-0.535 0.822-0.660 0.595-0.535 0.706-0.676 0.660-0.563 0.836-0.705

Friedman’s non-parametric test (mean ranking)
Rank 3.0-4.5 1.83-3.75 4.83-3.25 1.75-1.26 6-5.54 3.58-2.66

specific approach is opposed to the widely followed practice con-
sisting of the comparison done based on the fitness value. For each
dataset, 10 independent executions have been conducted, with main
goal of drawing statistically reliable conclusions. The population
size has been fixed to 50 individuals for every solver. For the de-
velopment and parameterization of these methods, the guidelines
given in [34–36] have been followed. The finishing criterion of each
method is strictly related to the value of both the Transition and
Generations parameters of every dataset. Depending on the value
of these parameters, solvers are stopped after 150, 200, 300 or 400
generations.

In Table 1, outcomes (average/best) obtained by the four solvers
are shown. Each of these values are divided into two different sub-
values, each one depicting separately the performance for the first
and the second family. As has been mentioned, each dataset is
composed by 30 canonical graph snapshots (plus 10 transitional
graphs for gradual instances), which belong to two different fam-
ilies. All results are shown in terms of the Normalized Mutual
Information (NMI) with respect to the ground of truth partition
of the specific timestamp. This means that the average depicted
represents the mean NMI value for all the 15 timestamps belonging
to the same family. Analogously, best values indicate the maximum
value reached at any timestamp of the whole family. The NMI score
measures the level of agreement between two community parti-
tions: if NMI(Ṽ, Ṽ ′) = 1 both distributions Ṽ and Ṽ ′ are equal to
each other. This also means that lower values denote that there are
differences between the partition output by the solver and the true
community underneath.

A first analysis reveals that in both PSO and FA, NS improves
considerably the outcomes of the solver, for both first and second
families in all the 12 datasets. On the other hand, in the case of
BA, the NS mechanism yields better performance results in 83.33%
of the first families (10 out of 12), and in the 66.66% of the second
families (8 out of 12). The same trend is also noted for the best
results obtained for each dataset. Other interesting insights can
be drawn after conducting a Friedman’s non-parametric test for
multiple comparison [11, 33]. The last row of Table 1 indicates the
mean ranking returned by this nonparametric test for each of the
compared algorithms and families (the lower the rank, the better the
performance). Results obtained from this test confirm that methods
using the NS mechanism not only outperform their naïve version,

but also emerge as the outperforming methods. Thus, FAN S and
BAN S arise as the best alternatives for the first family, whereas
FAN S and PSON S take the lead for the second family.

Additionally, the Friedman statistic for the first family is equal to
48.428. Furthermore, the confidence interval has been established
in 99%, being 16.812 the critical point in a χ2 distribution with 6
degrees of freedom. Since 48.428 > 16.812, it can be concluded
that there are significant differences among the results. In relation
to the second family, the Friedman statistic test is 37.25. Again,
since 37.25 > 16.812, the same conclusion is also applicable in this
case. A second statistical test has been conducted for delving in
the obtained outcomes. In this case, the analysis carried out is the
Holm’s post-hoc test. For this analysis, FANS has been established
as the control algorithm in both families. Table 2 shows the unad-
justed and adjusted p-values obtained with the application of this
statistical test. In this case, it is noteworthy to highlight that FANS
not only outperforms its basic version in a significant way for the
first family (since p value is lower than 0.05), but also PSO and
PSONS . For the second group the conclusions are more conclusive,
since FANS significantly beats all its counterparts, except PSONS .

Table 2: Holm’s post-hoc unadjusted and adjusted p-values
using FANS as the control algorithm.

Fam1 (FANS as control) Fam2 (FANS as control)
Algorithm Unadjusted p Adjusted p Algorithm Unadjusted p Adjusted p

BA 0.101707 0.203414 BA 0.000027 0.000106
BANS 0.913116 0.913116 BANS 0.001288 0.003803
FA 0.000054 0.000217 FA 0.010346 0.020691
PSO 0.0 0.0 PSO 0.0 0.0

PSONS 0.016377 0.049132 PSONS 0.071817 0.071814

Lastly, for a better visual assessment of the obtained outcomes,
Figure 1.a and 1.b depict the evolution of the NMI score and modu-
larity for instances 100_8_50_Med_Grad and 100_8_50_Med_Abr .
Both plots illustrate the performance statistics averaged over the
10 independent runs, where it is important to observe that both
types of changes in the community structure of the graph streams
imply both a NMI and fitness decrease. This underscores the need
for further research aimed at crosschecking how the severity and
dynamics of the change relate to the amount of diversity induced
by the NS mechanism.
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6 CONCLUSIONS AND FUTURE RESEARCH
This research work has elaborated on the application of Novelty
Search for finding communities in dynamic graph streams. For this
goal, this diversity inducing mechanism has been embedded into
the search algorithm of three different bio-inspired meta-heuristic
solvers: Bat Algorithm, Firefly Algorithm and Particle Swarm Opti-
mization. The discovery of partitions has been modeled as a com-
binatorial optimization problem, embracing the Newman and Gir-
van’s modularity coefficient as the fitness function to be maximized.
The performance of all implemented approaches has been evalu-
ated by using a benchmark of 12 synthetic dynamic graph streams,
suitably generated through the DANCer framework. A compar-
ison between solvers has been conducted using the Normalized
Mutual Information (or NMI) regarding their ground of truth parti-
tion. The results rendered by our experimentation permit to claim
that the use of NS improves the performance of basic versions of
the considered meta-heuristic algorithms. On a closing note, we
conclude that the NS mechanism is a promising method for solving
the problem of community detection over evolving graphs with
search meta-heuristics.

(a)

(b)

Figure 1: Evolution of NMI (blue line) and modularity (red
line) obtained by FANS for 100_8_50_Med_Grad (upper) and
100_8_50_Med_Abr (lower). A vertical gray line represents
the time stamp at which the community structure begins to
change, whereas a black vertical line denotes the point at
which the community structure has changed entirely.

We plan to invest research efforts in several interesting direc-
tions rooted on this initial study. In the short term, we will adaptat

additional Evolutionary Computation and Swarm Intelligence al-
gorithms for tackling this problem, comparing the benefits of hy-
bridizing them with a NS mechanism. Other modern solvers such
as Cuckoo Search [56], Coral Reefs Optimization [46] or [31] will
be considered, after showing a significant performance applied to
other optimization problems [19, 41, 42, 47, 57]. In the longer term,
we will explore how to modify the NS mechanism proposed in this
work to graph instances composed by a massive number of nodes,
for which avant-garde techniques under the family of Large-Scale
Global Optimization will be investigated. Finally, in the case of
recurrent changes over the stream we foresee that the amount of
population diversity imprinted by NS during the meta-heuristic
search should be linked to the characteristics of changes (speed
and intensity) along the stream. If these characteristics could be
predicted as a result of the recurrent nature of the phenomena
producing it, we could actively tune the diversity induced for an
adapted reaction of the search under such circumstances. Our atten-
tion will be surely focused on exploring this postulated hypothesis
in the future.
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