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ABSTRACT
Stochastic population-based nature-inspired metaheuristics have
been proven as a robust tool for mining association rules. These
algorithms are very scalable, as well as very fast compared with
some deterministic ones that search for solutions exhaustively. Typ-
ically, algorithms for association rule mining identify a lot of rules
depending, on the transaction database and number of attributes.
Therefore, evaluating these rules is very complex. On the other
hand, establishing the relationships between discovered association
rules can be considered as a very hard problem that cannot easily be
solved manually. In this paper, we propose a new algorithm based
on stochastic population-based nature-inspired metaheuristics for
discovering dependencies among association rules.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; • In-
formation systems→ Expert systems;
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1 INTRODUCTION
In the current information age, data accompany us in almost every
aspect of our lives. The data revolution has already changed many
traditional human habits. For example, when interacting with web-
sites on the Internet, our interactions are stored, and our behavior
is analyzed further by website providers in order to get the best
advertisement serving strategies. On the other hand, we usually
operate with different loyalty cards that store our buying habits for
further analysis.

By the same token, sport is also considered as an area where,
nowadays, a lot of data are produced during the process of sport
training. Modern sport training strategies enable athletes to wear
sport trackers during sport activity. These have emerged in the
form of sport watches or mobile devices and allow to measure the
performance of an athlete during sports activities. Analyzing these
activities can later be used for:

• monitoring the improvements of athletes,
• planning the sport training sessions based on existing activi-
ties,
• adapting sport training sessions,
• planning the proper nutrition, etc.

Association Rule Mining (ARM) [1] is a popular data mining
method for identification of dependence rules between features
in a transaction database. There are many traditional association
rule mining algorithms, but the most used are Apriori proposed by
Agrawal [2], Eclat introduced by Zaki et al. [18], and FP-Growth
developed by Han et al. [8]. The main characteristic of these al-
gorithms is that they search for the association rule exhaustively,
i.e., by enumerating all possibilities. Consequently, the traditional
algorithms are very time consuming, especially, when the problem
to be solved is complex.

Recently, the scientific community has developed a lot of meth-
ods for mining association rules that are based on stochastic popu-
lation based nature-inspired metaheuristics. Actually, the popular
nature-inspired algorithms, like Differential Evolution (DE) [15],
Particle Swarm Optimization (PSO) [10], and Genetic Algorithm
(GA) [9] have been applied for tackling this problem. Usually, such
methods produce a lot of association rules. Although we can filter
these rules according to the value of fitness function, some inter-
esting rules that may not have a high fitness value can easily be
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overlooked. Therefore, one of the biggest challenges referring to
the association rule mining is the proper interpretation of results.

On the other hand, the mined rules with lower support and
confidence values express similar characteristics, and, therefore, do
not contribute much to comprehending some characteristics of an
athlete in sports training. As a result, two solutions of the problem
could be used:

• to increase the values of the minimum support and the min-
imum confidence in order to eliminate the solutions with
lower support and confidence, or
• to analyze dependencies among the mined association rules,
and to post-process the mined characteristics of the athlete
automatically.

In this paper, we are focused on the second solution. In line with
this, we would like to obtain answers to the following questions:

• Can we identify the features arising as antecedents in the
majority of rules?
• Can we identify the features having an impact on the conse-
quences in the majority of rules?

Interestingly, these issues led us to the domain of complex net-
work. They appear in many aspects of our life, such as, for ex-
ample, biological networks [13], molecular networks [14], social
networks [5], Internet [17], etc. The main characteristics of these
networks are that they have complex and irregular connectivity
patterns. Their organization of vertices and edges are challenging
to understand and characterize [11].

In our study, the mined association rules are presented as com-
plex networks, where graphs based on the results of stochastic
nature-inspired population-based algorithms depict association
rules by connecting the features with edges. Graphs may be di-
rected or undirected [4]. In directed graph, edges are referred as
arcs and represent ordered pairs of vertices. Usually, these edges
are associated with weights designating the power of relationship
between vertices. The higher the weights, the powerful the connec-
tion. On the other hand, edges in undirected graphs are represented
as unordered pairs of vertices, where direction is unimportant. Here,
we are focused on the unordered graphs.

These graphs are appropriate for community detection, where
the group of tightly knit vertices construct a so-called cohesive
subgroup. Consequently, the first issue can be realized by searching
for those antecedents that are connected with the higher number
of the other antecedents. The second issue demands searching for
vertices with the higher number of consequences. In our study,
the former vertices are also called as central, while the latter as
subsequent. However, the major advantage of using the complex
networks is a wide range of visualization tools that can help the
user to analyze the complex relationships in an easy way.

The paper of Fister et al. [6] presents the starting point for the
study, where the so-called BatMiner was presented for mining the
characteristics of athletes in sports training. The previous work
finished with an analysis of the huge set of mined association rules,
and a conclusion that this amount of rules is hard to analyze manu-
ally. Actually, the study integrates the BatMiner in a new method
that is capable of joining the results of the algorithm with their in-
terpretation. The results of the proposed method were encouraging,

and showed that the complex networks are the potential direction
for analyzing the results of association rule mining in the future.

The structure of this paper is as follows: The ARM problem is ex-
plained In Section 2. Section 3 is devoted to describing the proposed
method for discovering dependencies between mined association
rules with the BA algorithm. The results of the method are illus-
trated in Section 4. Section 5 concludes the paper and outlines the
possible directions for future work.

2 ASSOCIATION RULE MINING
This section briefly presents formal definition of ARM. Let us sup-
pose, a set of objects O = {o1, . . . ,on } and transaction database
DB are given, where each transaction T is a subset of objects; in
other words, T ⊆ O . Then, an association rule can be defined as an
implication:

X ⇒ Y , (1)
where X ⊂ O , Y ⊂ O , in X ∩ Y = ∅. The following two measures
are defined for evaluating the quality of an association rule [3]:

conf (X ⇒ Y ) =
n(X ∪ Y )

n(X )
, (2)

supp(X ⇒ Y ) =
n(X ∪ Y )

N
, (3)

where conf (X ⇒ Y ) ≥ Cmin denotes confidence and supp(X ⇒
Y ) ≥ Smin support of association rule X ⇒ Y . Thus, N in Eq. (3)
represents the number of transactions in the transaction database
DB and n is the number of repetitions of a particular rule X ⇒
Y within DB. Here, Cmin denotes minimum confidence and Smin
minimum support. This means that only those association rules
with confidence and support higher than Cmin and Smin are taken
into consideration, respectively. Typically, an association rule is
called strong, if it satisfies both posted objectives, i.e., the minimum
support and the minimum confidence.

3 THE PROPOSED METHOD
The proposed method consists of the following steps:
• association rules generation,
• discovering dependencies,
• analysis,
• evaluation.

In the first step, the association rules are generated using some
stochastic population-based nature-inspired algorithm [7]. Discov-
ered dependencies between mined association rules are dedicated
to highlight those characteristics of the rules that are characteristic
for an athlete’s behavior. The features in the mined rules are then
visualized using complex networks. Finally, the obtained results
need to be evaluated by the real sports trainer. All mentioned steps
are outlined in detail in the next subsections.

3.1 Association rules generation
The association rule mining presents the first step of the proposed
method. In this step, association rules are mined from the transac-
tion database of the realized sports training sessions [12]. The bat
algorithm for association rule mining (BatMiner), proposed by Fis-
ter et al. in [6], was used for the task. This algorithm discovers a lot
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Table 1: Features and their attributes.

Feature Attribute domain
DISTANCE {NULL, SHORT, MEDIUM, LONG}

DURATION {NULL, SHORT, MEDIUM, LONG}

HEART_RATE {NULL, LOW, MEDIUM, HIGH}

CALORIES {NULL, SMALL, MEDIUM, HIGH}

WEATHER {NULL, SUNNY, CLOUDY, RAINY, SNOWY}

TYPE {NULL, EASY, INTERVALS, POWER, ENDURANCE}

NUTRITION {NULL, POOR, MODERATE, GOOD}

FOOD {NULL, PROTEINS, CARBOHYDRATES, FAT, FRUITS}

BEVERAGES {NULL, WATER, JUICE, ISO, COKE}

REST {NULL, AFTER_TRAINING, NO}

NIGHT_REST {NULL, BAD, MEDIUM, GOOD}

INJURIES {NULL, NO, LOW, MEDIUM, HIGH}

CRAMPS {NULL, NO, LOW, HIGH}

HEALTH_PROBLEMS {NULL, NO, LITTLE, YES}

of association rules having their support and confidence measures
above the prescribed minimum values of Smin and Cmin.

The features and their corresponding attributes, used in this
study, are illustrated in Table 1. Indeed, the attributes of these fea-
tures are obtained either by digitizing measured values obtained
from sports activities into proper intervals (like DISTANCE, DURATION,

HEART_RATE, etc.) or by interviewing the athletes before training ses-
sions (like NUTRITION, FOOD, REST, etc.). Interestingly, each feature can
also be assigned the value of NULL, which means that the feature is
not present in the association rule. On the other hand, the feature
is concatenated with its corresponding attribute by a character ′_′
to form the feature-attribute pair that is presented as an item of
the association rule. For more information about this subject, the
interested reader is invited to look at the aforementioned study [6].

Typically, the large set of discovered association rules were ob-
tained after applying the BatMiner. Obviously, this set needs to be
analyzed using an algorithm for discovering mutual dependencies,
in order to highlight the hidden relationships on the one hand, and
to expose the more important ones, on the other. The proposed
algorithm is illustrated in detail in the remainder of the section.

3.2 Discovering dependencies
Discovering dependencies is represented as an optimization prob-
lem that is defined formally as follows. Let us assume, a set of mined
association rules R = {r1, . . . , rN } is given, where each rule ri is in
form ofX ⇒ Y , andN denotes the number of rules. Then, the subset
S ⊂ R of association rules S = {rπ1 , . . . , rπD } is selected randomly
from the R that is estimated with regards to two measures:

LHS = m (X )
D , and

RHS = m (Y )
D ,

(4)

wherem(X ) denotes the number of times that X occurs as an an-
tecedent or Left-Hand-Site (LHS) in the rules,m(Y ) is the number
of times that Y occurs as a consequence or Right-Hand-Side (RHS)
in the rules, and D determines the size of the subset S . Finally, the

quality of the subset is determined as follows:

f (S ) =
LHS(S ) + RHS(S )

2
, (5)

subject to
∀X : |X | ≥ MX , and
∀Y : |Y | ≥ MY ,

(6)

whereMX denotes the feasible number of antecedents, andMY the
feasible number of consequences.

The motivation behind the inequalities in Eq. (6) is to discover re-
lations between a specific number of items that occur as antecedents
and the number of items occurring as consequences. Indeed, re-
lations with only one object in consequence could be especially
interesting for users, because some special behavioral characteris-
tics of an observed athlete could thus be exposed.

Although a lot of stochastic nature-inspired population based
algorithms could be taken for solving this problem, the Bat Algo-
rithm (BA) [16] was used due to its simplicity. In order to prepare
the algorithm properly, the following components of the original
BA must be modified:
• representation of individuals,
• fitness function evaluation.

In the remainder of the paper, modifications of the mentioned
components are illustrated in detail.

Individuals in the proposed BA algorithm for discovering de-
pendencies within mined association rules are represented as real-
valued vectors:

xi = {xi,0, . . . ,xi,D }, for i = 1, . . . ,Np, (7)

with elements xi, j ∈ [0, 1] presenting an index of the corresponding
association rule, where Np is a population size. As a matter of fact,
the genotype (i.e., elements xi, j ) is mapped to the phenotype of an
individual (i.e., association rule rk ) in compliance with the following
equation:

k =
⌊xi, j
N
· N

⌋
, (8)

where k determines the corresponding rk ∈ R.
The fitness function evaluation is performed according to Eq. (5).

Let us emphasize that the task of the optimization is to maximize
the value of the fitness function.

3.3 Analysis
The results obtained by BA for discovering dependencis among
mined association rules are presented as a complex network [11].
The network is constituted from the best M association rules ac-
cording to fitness value by modeling the obtained results in the
form of a complex interconnection of nodes by edges. The nodes
present items (i.e., feature-attribute pairs) arising in association
rules, while edges are connections between these. There are two
kinds of edges that join vertices, arising as:
• antecedents, and
• consequences.

The first kind of joining is denoted by solid black lines, while the
second by blue colored dotted lines in the complex network graphs.

In order to identify characteristics of the complex networks, the
following two metrics are used in our study: an Average Neighbor-
hood Degree (AND), and a Network Density (ND). The AND metric
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is defined as:
AND =

1
|V |

∑
v ∈V

deg(v ), (9)

where deg(v ) denotes the degree of vertex v , and |V | is the max-
imum number of vertices. On the other hand, the ND metric is
expressed as:

ND =
2 · |E |

|V | · ( |V | − 1)
, (10)

where |E | denotes the actual number of connections and the expres-
sion |V | · ( |V | − 1)/2 refers to the maximum number of connections
in complex networks.

3.4 Evaluation
In this step, a community detection in complex networks is searched
for. The evaluation of the relationship between the items in complex
networks showed that there are two forms of vertex distribution in
general:
• trees, and
• cliques.

Typically, trees identify a situation, where antecedents/consequences
of two or more association rules are joined in a chain, while cliques
represent a cohesive group of feature-attribute pairs that are con-
nected to each other tightly. Typically, these pairs arise as an-
tecedents/consequences in more than one rule, and, therefore, rep-
resent the tightly knit characteristics of the athlete in training. The
critical vertices are searched for among these cohesive group mem-
bers, while the decisive ones also need to be searched for among
the other antecedents as well.

In order to get the estimation as reliable as possible, the obtained
results need to be estimated from the practical aspect. Therefore,
the real trainer, who was asked for help, analyzed the results of the
proposed method, and assessed the value of the proposed method
in the real-world.

4 EXPERIMENTS AND RESULTS
The goal of our experimental work was to show that the depen-
dencies between mined association rules can be discovered using
the stochastic population-based nature-inspired algorithms. Thus,
hidden relationships between feature-attribute pairs of association
rules can be established, where the most important antecedents
could be identified on the one hand, and the most important con-
sequences on the other. In line with this, three experiments were
conducted, where:
• the number of antecedents were set to MX ≥ 2 and the
number of consequences toMX ≥ 1,
• the number of antecedents were set to MX ≥ 2 and the
number of consequences toMX ≥ 2,
• the number of antecedents were set to MX ≥ 3 and the
number of consequences toMX ≥ 3.

As can be seen from this setup, it is expected that the complexity
of the mined association rules M are increased from test to test.
On the other hand, the numberM might be reduced. Although the
number of association rulesM , forming the complex networks, is
crucial, analysis of its influence on the results was left as a direction
for future work.

In our study, the BA algorithm for discovering dependencies
between mined association rules used the parameter settings as
illustrated in Table 2.

Table 2: The parameter settings of BA.

Parameter Symbolic name Value
Population size NP 30
Number of generations MAX_GEN 1000
Loudness A 0.5
Pulse emission rate r 0.5

In the remainder of the section, the experimental data are pre-
sented. Then, the results of the experiments are illustrated. Finally,
the obtained results are analyzed and commented on by the real
sports trainer at the end of the section.

4.1 Experimental data
BatMiner mined the association rules from a transaction database
consisting of 80 transactions. Each transaction is an essence of one
sport training session realized by a professional cyclist, and high-
lights attributes of 14 features that determine the characteristics of
the athlete before and during the training session.

Interestingly, BatMiner found 4,191 different association rules
withminimum confidence andminimum support higher thanCmin ≥

0.1 and Smin ≥ 0.1, respectively. These rules present the starting
point for the proposed stochastic population-based algorithm for
discovering dependencies.

4.2 Results
The experiments were conducted as follows. At first, the BA algo-
rithm selects the association rules from an archive generated by
BatMiner [6] according to constraints given in Eq. (6). The bestM
association rules according to fitness function are then selected for
the second phase, where the complex networks of feature-attribute
pairs are built. In this preliminary study, these networks were then
analyzed manually with the help of the characteristic metrics AND
and ND.

Table 3 illustrates ten the best association rules, from which the
complex network in Fig. 1 was built. In this test, constraints were
set asMX ≥ 2 ∧MX ≥ 2.

As can be seen from Fig. 1, the connected graph is obtained from
the features-attribute pairs. This means that no isolated vertices
exist in the graph. In this case, the complex network consist of
|V | = 21 vertices, and |E | = 27 edges. As a result, the average vertex
density is expressed as AND = 1.2857, while the network density
is ND = 0.1286. Since the last metric refers to a relatively sparsely
connected graph, the antecedent nodes, denoted as black solid lines,
constitute only trees (chains) of the feature-attribute pairs.

Table 4 illustrates ten the strongest association rules discovered
in the database that are needed for building the complex networks.
Let us mention that the association rules are more complex com-
pared with their counterparts in Table 3 that is a consequence of
the stronger constraints set in Eq. (6).

As can be seen from Fig. 2, the complex networks of ten the best
mined association rules also form the connected graph of vertices
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Table 3: The strongest association rules discovered in database byMX ≥ 2 ∧MX ≥ 2.

DURATION_SHORT ∧ CALORIES_SMALL => TYPE_EASY ∧ FOOD_FRUITS
DISTANCE_SHORT ∧ HR_LOW ∧ CALORIES_SMALL => TYPE_EASY ∧ INJURIES_NO ∧ HEALTH_PROBLEMS_NO
NUTRITION_GOOD ∧ FOOD_CARBOHYDRATES ∧ NIGHT_REST_GOOD ∧ CRAMPS_NO => DURATION_MEDIUM ∧ HR_LOW ∧ CALORIES_MEDIUM
DISTANCE_SHORT ∧ HR_LOW => TYPE_EASY ∧ BEVERAGES_WATER ∧ HEALTH_PROBLEMS_NO
DISTANCE_SHORT ∧ DURATION_SHORT => CALORIES_SMALL ∧ NUTRITION_POOR ∧ INJURIES_NO
DISTANCE_SHORT ∧ DURATION_SHORT => TYPE_EASY ∧ REST_NO ∧ INJURIES_NO
DURATION_SHORT ∧ HR_HIGH => TYPE_INTERVALS ∧ HEALTH_PROBLEMS_NO
HR_LOW ∧WEATHER_CLOUDY => REST_AFTER_TRAINING ∧ INJURIES_NO
DISTANCE_SHORT ∧ CALORIES_SMALL => BEVERAGES_WATER ∧ INJURIES_NO ∧ CRAMPS_NO
CALORIES_SMALL ∧ TYPE_EASY ∧ INJURIES_NO => DISTANCE_SHORT ∧ DURATION_SHORT ∧ HR_LOW

Figure 1: Visualization of mined association rules byMX ≥ 2 ∧MX ≥ 2.

Table 4: The strongest association rules discovered in the database byMX ≥ 3 ∧MX ≥ 3.

DISTANCE_LONG ∧ DURATION_LONG ∧ HR_MEDIUM ∧ CALORIES_HIGH ∧ TYPE_ENDURANCE => FOOD_PROTEINS ∧ BEVERAGES_ISO∧
REST _NO ∧ N IGHT _REST _GOOD ∧ INJURIES_LOW ∧ CRAMPS_NO
DISTANCE_LONG ∧ HR_LOW ∧ CALORIES_HIGH ∧WEATHER_SUNNY => FOOD_FRUITS ∧ BEVERAGES_WATER ∧ HEALTH_PROBLEMS_NO
TYPE_EASY ∧ INJURIES_NO ∧ CRAMPS_NO => DURATION_SHORT ∧ CALORIES_SMALL ∧WEATHER_SNOWY
NUTRITION_GOOD ∧ FOOD_CARBOHYDRATES ∧ NIGHT_REST_GOOD ∧ CRAMPS_NO => DURATION_MEDIUM ∧ HR_LOW ∧ CALORIES_MEDIUM
FOOD_FRUITS ∧ BEVERAGES_WATER ∧ NIGHT_REST_BAD ∧ HEALTH_PROBLEMS_NO => DISTANCE_LONG ∧ HR_LOW ∧ CALORIES_HIGH∧
WEATHER_SUNNY ∧ NUTRITION_GOOD
DISTANCE_SHORT ∧ DURATION_SHORT ∧ CALORIES_SMALL => WEATHER_SUNNY ∧ TYPE_EASY ∧ NUTRITION_POOR ∧ FOOD_PROTEINS∧
NIGHT_REST_BAD ∧ INJURIES_NO
DISTANCE_SHORT ∧ DURATION_SHORT ∧ HR_LOW => CALORIES_SMALL ∧WEATHER_SUNNY ∧ TYPE_EASY ∧ FOOD_PROTEINS∧
NIGHT_REST_BAD ∧ INJURIES_NO
DISTANCE_SHORT ∧ HR_LOW ∧ CALORIES_SMALL => TYPE_EASY ∧ REST_AFTER_TRAINING ∧ INJURIES_NO
CALORIES_SMALL ∧ TYPE_EASY ∧ NUTRITION_POOR ∧ CRAMPS_NO => DISTANCE_SHORT ∧ DURATION_SHORT ∧ HR_LOW
DISTANCE_SHORT ∧ DURATION_SHORT ∧ HR_LOW => CALORIES_SMALL ∧ TYPE_EASY ∧ CRAMPS_NO

representing feature-attributes pairs. Now, the complex networks
consist of |V | = 29 vertices, and |E | = 42 edges. This means that
the average node density is set to AND = 1.4483, and the network
density to ND = 0.1034. However, the antecedent vertices in this
graph, excelled by the higher average vertex density, also constitute
cliques of the feature-attribute pairs, and, thus, they indicate the
tightly connected relationships between these pairs.

4.3 Analyzing complex networks
Two issues are put at the beginning of the section, i.e., to identify
those feature-attribute pairs that emerge in the majority of the
association rules as either: (1) antecedents or (2) consequences. As
mentioned before, both issues are transformed into searching for
central and subsequent vertices in complex networks.

The results of analyzing complex network in Fig. 1 are presented
in Table 5, where the feature-attribute pairs can be seen emerging in

Table 5: Results of analyzing the complex network in Fig. 1.

Feature-attribute Ante Cons All Type
DISTANCE_SHORT 5 1 6 clique 1
CALORIES_SMALL 4 1 5 clique 1,center
HR_LOW 3 2 5 clique 1
INJURIES_NO 1 5 6 subsequent

the majority of the corresponding association rules. In the table, the
columns ’Ante’ and ’Cons’ denote the number of rules where these
pairs have arisen as antecedents and consequences, respectively,
while the column ’All’ is the number of all rules in which the pair
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Figure 2: Visualization of mined association rules byMX ≥ 3 ∧MX ≥ 3.

has emerged. The column ’Type’ denotes the type of corresponding
vertex in the complex network. For instance, the central vertex
represents the CALORIES_SMALL feature-attribute pair that forms a
clique 1:

{CALORIES_SMALL, DISTANCE_SHORT, HR_LOW}.

Additionally, the central vertex is connected with DURATION_SHORT

and TYPE_EASY pairs. Although this vertex is not emerged in the
maximum number of association rules, it is joint with the maximum
number of antecedent vertices.

A subsequent vertex is the INJURIES_NO pair that is connected even
with eight consequences, as follows:
{BEVERAGES_WATER, CALORIES_SMALL, CRAMPS_NO, HEALTH_PROBLEMS_NO,

NUTRITION_POOR, REST_AFTER_TRAINING, REST_NO, TYPE_EASY}.

The complex network in Fig. 2 is more interesting, because here
the corresponding graph is more dense. The results of analyzing
this complex network are illustrated in Table 6 from which it can

Table 6: Results of analyzing the complex network in Fig. 2.

,

Feature-attribute Ante Cons All Type
HR_LOW 4 3 7 Clique 1+2,center
CALORIES_SMALL 3 3 6 Clique 2
DISTANCE_SHORT 4 1 5 Clique 1
DURATION_SHORT 3 2 5 Clique 1+2
TYPE_EASY 2 4 6 Subsequent

be seen that even two cliques are detected as follows:
{DISTANCE_SHORT, HR_LOW, DURATION_SHORT}, and

{HR_LOW, DURATION_SHORT, CALORIES_SMALL}.

Indeed, vertices HR_LOW and DURATION_SHORT create the common
membership of the cliques. In this graph, the HR_LOW pair is indicated
as a central vertex due to its higher degree of 7.

On the other hand, the subsequent vertex TYPE_EASY is incident
by eight edges as follows:

{CALORIES_SMALL, CRAMPS_NO, REST_AFTER_TRAINING, FOOD_PROTEINS,

INJURIES_NO, NIGHT_REST_BAD, NUTRITION_POOR, WEATHER_SUNNY}.

4.4 Comments of the real sport trainer
In order to get the proper interpretation of analyzing the complex
networks, the real sport trainer was asked for help. His comments
are as follows.

The complex network depicted in Fig. 1 consists of two compo-
nents joined by the consequence edge incident to vertices CRAMPS_NO

and INJURIES_NO. This means that the generated association rules base
on the antecedents from two different components: The first is
formed from the chain of the feature-attributes pairs, like NUTRI-

ENT_GOOD, FOOD_CARBO, NIGHT_REST_GOOD, and CRAMPS_NO, while the sec-
ond component is more complex, due to indicating the highly knit-
ted vertices forming clique 1 (cohesive subgroup of vertices).

More interesting is analyzing the subsequent vertex, from which
it can be concluded that, if the athlete is not injured (INJURIES_NO),
he/she does not have any health problems (HEALTH_PROBLEMS_NO) and
cramps (CRAMPS_NO), needs only poor nutrition (NUTRITION_POOR) of
small energy value (CALORIES_SMALL), can consume only water bev-
erage (BEVERAGE_WATER) during the sport activity, while the rest is
unimportant (REST_AFTER_TRAINING_NO, REST_NO), when conducting the
easy training sessions (TYPE_EASY). This conclusion complied strongly
with the sport theory.

Moreover, the complex network depicted in Fig. 2 is divided
evenly into four components that are joined between each other
with more edges arisen as consequences in the association rules.
The most interesting is the component consisting of tightly knitted
vertices forming two cliques. From these components it can be
deduced that the low heart rate (HR_LOW) of the observed athlete
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is characteristic for training sessions of medium duration (DURA-
TION_MEDIUM), long distance (DISTANCE_LONG), where the energy con-
sumption is medium or high (CALORIES_MEDIUM, CALORIES_HIGH).

Analyzing the subsequent vertex justifies the fact that, if the
athlete is not injured INJURIES_NO, the observed athlete is healthy
(HEALTH_PROBLEMS_NO, CRAMPS_NO), consumes only a small energy (CALO-
RIES_SMALL) taken in with poor nutrition (CALORIES_SMALL), and rest-
ing is unimportant (REST_AFTER_TRAINING_NO, REST_NO), and likes sunny
weather conditions (WEATHER_SUNNY) in the training session of easy
type (TYPE_EASY). However, this assertion is also in compliance with
the sport theory.

In summary, analyzing of the second complex network is more
interesting for the practice, because it is more general and, con-
sequently, can discover the deeper relationships between feature-
attributes pairs.

5 CONCLUSION
This paper presented a new method for discovering dependencies
among mined association rules. This is an extension of the exist-
ing BatMiner algorithm for association rule mining, where we are
focused on discovering dependencies among mined association
rules with the BA algorithm. Actually, the BatMiner is capable of
generating a lot of association rules that are hard to be interpreted
manually. Therefore, the new method is proposed that integrates
the BatMiner with the BA for discovering dependencies between
mined association rules, analyzing, and evaluation. These rules are
analyzed in the sense of the complex networks, and interpreted
(evaluated) by the real sport trainer.

The proposed method was applied on a transaction database that
presents the training data of a professional cyclist. The results of
experiments showed that the proposed method can find dependen-
cies efficiently among different association rules. Thus, the mined
association rules are analyzed as complex networks, where the
feature-attribute pairs are presented as vertices, and edges denote
connections between these. The results of analyzing showed new
insights into complex data, that were confirmed by the real sport
trainer.

Obviously, this is not the end of the development of the proposed
method. In the future, we would like to test other fitness functions
along with different population-based metaheuristics. Additionally,
we would also apply this method on the mined association rules
from other datasets.
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