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ABSTRACT
A number of applications to interplanetary trajectories have been
recently proposed based on deep networks. These approaches often
rely on the availability of a large number of optimal trajectories to
learn from. In this paper we introduce a new method to quickly cre-
ate millions of optimal spacecraft trajectories from a single nominal
trajectory. Apart from the generation of the nominal trajectory, no
additional optimal control problems need to be solved as all the tra-
jectories, by construction, satisfy Pontryagin’s minimum principle
and the relevant transversality conditions. We then consider deep
feed forward neural networks and benchmark three learning meth-
ods on the created dataset: policy imitation, value function learning
and value function gradient learning. Our results are shown for
the case of the interplanetary trajectory optimization problem of
reaching Venus orbit, with the nominal trajectory starting from
the Earth. We find that both policy imitation and value function
gradient learning are able to learn the optimal state feedback, while
in the case of value function learning the optimal policy is not
captured, only the final value of the optimal propellant mass is.
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1 INTRODUCTION
The use of deep neural networks (DNNs) for the guidance navi-
gation and control of space systems (spacecraft, landers, etc..) is a
prolific area of research as witnessed by the increasing number of
results that appeared recently on these topics [3, 4, 6, 9, 11, 12, 14].
Most of this body of work can be divided into DNNs approximating
the optimal policy u (e.g. the optimal thrust profile), and DNNs
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approximating the value function v (e.g. optimal propellant con-
sumption). The final goal of this line of research is to develop DNNs
that can be part of the on-board software to steer the spacecraft and
substitute the guidance and control loops currently used. Further-
more, accurate predictions of important quantities (e.g. propellant
mass) for optimal transfers can provide advantages during prelimi-
nary design phases of trajectories where many options are typically
screened and evaluated.

While the deployment of DNNs for trajectory design is promis-
ing, it has been shown over a large range of different application
domains that the performance of DNNs depends heavily on the
availability of suitable datasets for training. While most research
literature is concerned with improving network architectures (num-
ber of layers, regularization, activation functions, etc.) or training
procedures, in practice, it is often simply the lack of data that puts
a limit on what any DNN architecture is capable of achieving.

The computation of a large-scale dataset of trajectorie, including
the optimal control profile and the value function is challenging,
as a huge number of optimal control problems need to be solved.
Since numerical instabilities and convergence issues are dominant,
solution procedures are generally hard to automate and demanding
in terms of computational resources.

The contribution of this paper is two-fold: First, we show how
to create a large dataset of optimal trajectories without the need
to solve more than one optimal control problem. This decreases
the dataset generation time, in comparison to previous methods,
by orders of magnitude. Second, we use the dataset to learn several
control policies for an interplanetary mission to reach the orbit of
Venus.

Building on the work of [9, 10, 12], we propose three different
learning tasks, whichwe call policy imitation, value function learning
and value function gradients learning. We are able to approximate, in
the former case, the optimal policy (i.e. the optimal control profile)
and, in the latter two cases, the value function (i.e. the solution to
the corresponding Hamilton Jacobi Bellman equation). In the last
case we find that the learned value function can also be satisfactorily
used to compute the optimal policy.

This work is structured as follows: Section 2 provides the details
of the nominal transfer to Venus designed as a mass-optimal tra-
jectory by solving the two point boundary value problem resulting
from Pontryagin’s minimum principle. Based on this nominal tra-
jectory, Section 3 describes the new method for the generation of
a large dataset of different trajectories to the Venus orbit whose
mass-optimality is still ensured by Pontryagin’s minimum prin-
ciple. Section 4 describes different strategies for the training of
DNNs on such a dataset. The resulting controllers are evaluated
experimentally in Section 5 and we conclude in Section 6.
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2 BACKGROUND
We consider, in the International Celestial Reference Frame (ICRF)
heliocentric frame, the motion of a spacecraft of mass m whose
velocity and position we indicate with r and v. The spacecraft is
equipped with an ion thruster having specific impulse Isp and capa-
ble of delivering a maximum thrust c1 regardless of the spacecraft
distance from the Sun. We describe the spacecraft state via its mass
and the modified equinoctial elements x = [p, f ,д,h,k,L]T as orig-
inally defined by Walker et al. [13].

The set of differential equations describing the spacecraft motion
are then:
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√
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2p
w ft
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where,w = 1 + f cosL + д sinL and s2 = 1 + h2 + k2 and fr , ft , fn
are the radial, tangential and normal components of the force gen-
erated by the spacecraft propulsion system. The gravity parameter
is denoted with µ and the gravitational acceleration at sea level
with д0.

It is useful to rewrite the equations above using a more concise
notation. We thus introduce the matrices B and D defined as:√
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and
D(x) =
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µp
(
w
p

)2 ]
(3)

and rewrite the equations of motion in the form:{
Ûx = c1u(t )

m B(x)îτ + D(x)
Ûm = −c2u(t)

(4)

where the spacecraft thrust is now indicated by c1u îτ = [fr , ft , fn ]
T

and bounded by |u(t)| ≤ 1 and |îτ (t)| = 1. We will use the notation
u ∈ U to indicate the feasible control space. Furthermore, we define
c2 = 1/(Isp д0). Note that in order to steer the spacecraft, at each
instant we control the throttle magnitude u(t) ∈ [0, 1] and the
thrust direction îτ . We refer to these control variables also with the
single symbol u = [u, îτ ].

2.1 The Low-Thrust Problem
We consider here a free time orbital transfer problem, that is finding
the controls u(t) and îτ (t) defined in [0, tf ] and the transfer time
tf so that the functional:

J (u(t), tf ) =

∫ tf

0
{u − ϵ log [u(1 − u)]}dt (5)

is minimized, and the spacecraft is steered from its initial massm0
and some initial point x0 to some final massmf and some final point
xf ∈ Sf ⊂ R6. The functional J , following thework of Bertrand and
Epenoy [2], is parameterised by a continuation parameter ϵ ∈ [0, 1]
which activates a logarithmic barrier smoothing the problem and
ensuring that the constraint u(t) ∈ [0, 1] is always satisfied. Clearly
for ϵ → 0 the functional becomes J = (m0 −mf )/c2, equivalent to
minimizing the propellant mass.

2.2 Consequences of Pontryagin’s Minimum
Principle

Following the work of Pontryagin [8], we can infer the necessary
conditions for an optimal solution of this problem by applying
Pontryagin’s minimum principle.1

Let us introduce the co-states λ, λm as continuous functions
defined in [0, tf ] and define the Hamiltonian:

H(x,m,λ, λm , u) =

=
c1u

m
λT B(x)îτ + λL

√
µ

p3
w2 − c2λmu + {u − ϵ log[u(1 − u)]}

(6)

and the system of equations:


Ûx = ∂H

λ
=

c1u(t )
m Bîτ (t) + D

Ûm = ∂H
∂λm

= −c2u(t)
Ûλ = − ∂H

∂x
Ûλm = − ∂H

∂m

(7)

The explicit form of the various derivatives appearing in the
equations above is reported in Appendix A.

Along an optimal trajectory, the Hamiltonian must be zero (free
terminal time problem) and minimal w.r.t. the choices of u and îτ .
For the optimal thrust direction î∗τ it follows that

îτ = î∗τ (t) = −
BT λ
|BT λ |

(8)

where the time dependence on the right hand side follows both
from the co-states and from B and has not been indicated explicitly
for brevity. While for the optimal throttle u∗, necessarily:

u(t) = u∗(t) =
2ϵ

2ϵ + SF (t) +
√
4ϵ2 + SF (t)2

(9)

where we introduce a switching function

SF (t) = 1 −
c1
m

|BT λ | − c2λm . (10)

1Note that we have stated a minimization problem, hence the conditions are actually
slightly different from the ones originally derived in Pontryagin’s work.
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Figure 1: Solution of the two point boundary value problem
for the throttle magnitude u(t) and decreasing values of ϵ .

2.2.1 The two point boundary value problem. The test case con-
sidered in this work is that of a transfer from any x0,m0 to Venus’
orbit (not a rendezvous). In this case the final value for the mass and
the final value for the anomaly L are left free so that some transver-
sality conditions apply (λLf = 0, λmf = 0). For any starting state
x0 andm0, we need to choose the values for λ0 and λm0 and the
time tf such that solving the initial value problem for Eq.(7) results
in a final state that matches the arrival conditions at Venus orbit,
the transversality conditions and the free-time condition on the
Hamiltonian. Formally, we introduce the shooting function:

ϕ(λ0, λm0 , tf ) =

= [pf − pV , ff − fV ,дf − дV ,hf − hV ,kf − kV , λLf , λmf ,Hf ]

(11)

where we indicate with a subscript V the modified equinoctial el-
ements of Venus orbit and with the subscript f the final values
of the modified equinoctial elements resulting from numerically
integrating Eq.(7) for a time tf and from the initial conditions
x0,m0,λ0, λm0 . We have thus transformed our optimal control prob-
lem into the problem: ϕ(λ0, λm0 , tf ) = 0.

2.2.2 The nominal trajectory. We consider a spacecraft with
massm0 = 1500 [kg], a nuclear electric propulsion system specified
by Isp = 3800 [sec] and c1 = 0.3 [N]. We look for the optimal
transfer from the Earth to Venus orbit with a launch on the 7th of
May 2005. The planet ephemerides are computed using JPL low-
precision ephemerides. We solve the optimal control problem by
solving the problem ϕ(λ0, λm0 , tf ) = 0. Note that this is, essentially,
a system of eight equations in eight unknowns and can be solved
by root finding methods (e.g. Powell, Levenberg-Marquardt) as well
as by SQP or interior point methods (e.g. SNOPT or IPOPT). As
it is well known (see [5] for example), the convergence radius for
this problem can get rather small, to the point that if we were
to try to directly solve the mass optimal problem (i.e. ϵ = 0) we

Figure 2: Nominal trajectory to Venus orbit. Thrust arcs are
indicated in red.

would fail consistently as almost any initial guess on the co-state
would not converge. However, solving the problem for ϵ = 0.1
is reasonably simple as convergence is frequently achieved when
starting with random co-states (we sampled them from a uniform
distribution with a standard deviation of 10). Note that we use non
dimensional units for the state so that the astronomical unit AU is
used for length, the spacecraft initial mass for mass, and the rest
is set as to get µ = 1.. Gradually decreasing ϵ from 0.1 down to
10−6 (as visualized in Figure 1), allows us to obtain the final mass
optimal trajectory which is visualized in Figure 2. We refer to the
final trajectory (with ϵ = 10−6) as the nominal trajectory in the
following. The nominal trajectory reaches the orbit of Venus after
t∗f = 1.376 [years] and spendsm∗

p = 210.47 [kg] of propellant.

2.3 Consequences of Bellman’s Principle of
Optimality

For ϵ = 0, we can apply Bellman’s principle of optimality [1] to the
optimal control problem that we have stated in the previous section.
We indicate with v(x,m) the value function, i.e. the optimal value
of the functional defined by Eq.(5) for any spacecraft state x,m0.
Since the value function is time-independent, the Hamilton Jacobi
Bellman (HJB) equations can be written as:

0 = min
u∈U

(u + ∇v · f) (12)

u = argmin
u∈U

(u + ∇v · f). (13)

These equations hold in all points where v(x,m) is differentiable.
We use f to denote the right hand side of Eq.(4) including the mass
equation. Comparing Eq.(12) and Eq.(6), it follows that∇v = [λ, λm ]

and thusH = u +∇v · f . Thus, the co-states of Pontryagin’s theory
are the gradients of the value function introduced in Bellman’s
theory. This fact, albeit rarely exploited in interplanetary trajectory
optimization research, provides a convenient basis for the design
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of new learning procedures, which we introduce and evaluate later
in Section 4.

3 BUILDING A DATASET OF OPTIMAL
TRAJECTORIES

3.1 Reducing the Cost of Computation
The availability of large-scale datasets is essential to train DNNs.
This section shows how to create a large number of optimal tra-
jectories without the need to solve any particular optimal control
problem except for the nominal trajectory. The brute-force ap-
proach for computing a dataset of optimal trajectories is to decide
on a number of interesting initial states and then solve the corre-
sponding optimal control problem for each( e.g. following all the
steps outlined in Section 2). This approach scales extremely poorly
because of the known computational difficulties associated with
solving optimal control problems, both using direct and indirect
methods.

Previous work (e.g. Sanchez and Izzo [9, 10]) deployed a con-
tinuation (homotopy) approach to reduce some of the complexity
involved by eliminating the need to search for a new initial guess
all the time: by perturbing the initial state of a nominal trajectory,
the unperturbed co-state provides (most of the time) a good initial
guess to solve the newly created two points boundary value prob-
lem. However, assuming that no convergence issues occur, it is still
necessary to solve Eq.(11) for the new initial conditions considered,
which incurs a significant computational cost.

In the following, we describe a more efficient way to obtain a
similar result avoiding entirely convergence issues, guaranteeing
optimality and reducing the computational costs down to the cost
of a single numerical propagation of Eq.(7) for a new trajectory.
The idea, surprisingly simple and applicable more generally than
this Venus orbit acquisition task, is to perform a backward in time
propagation of Eq.(7) starting from suitably perturbed final values of
the state and co-states of the nominal trajectory. This perturbation
needs to be chosen such that the tranversality conditions and the
condition on the Hamiltonian are still satisfied.

Formally, consider the nominal optimal trajectory and indicate
with xf ,mf ,λf , λmf the final values (i.e. at t∗f ) of the states and
the co-states. Consider the new set of final co-state values:

λ′
f = λf + δλ (14)

where the perturbation δλ is in some ball Bρ ∈ R7 of size ρ
such that the transversality condition on the anomaly (δλL =
0, δλm = 0) is satisfied. Note that the trajectory that results from
propagating backward in time Eq.(7) from the new final conditions
xf ,mf ,λ

′
f , λmf is fulfilling all of Pontryagin’s necessary conditions

for optimality, exceptHf = 0. It is possible to find new final values
m′
f =mf + δm and L′f = Lf + δL (e.g. with a simple root finding

algorithm) so that the condition on the Hamiltonian is fulfilled.
Thus the new trajectory resulting from propagating backward in
time Eq.(7) from the conditions x′f ,m

′
f ,λ

′
f , λmf is now fulfilling all

of Pontryagin’s necessary conditions for optimality. Such a trajec-
tory will neither end where the nominal trajectory ends, nor will it
start from where the nominal trajectory starts, but it is nevertheless
optimal (with respect to Eq. 5) and represents a valid sample to

Figure 3: Overlapping optimal dataset trajectories. Thrust
arcs are indicated in red.

learn from. This procedure reduces the cost of computing one more
valid training sample to that of a backward in time integration of
Eq.(7) plus the (negligible) cost of a single root finding call to solve
Hf (m

′
f ,L

′
f ) = 0.

As we onlymodifymf and L, our final state is always constrained
to be on the orbit of Venus, and since our perturbations for the final
co-states are small the timing and direction of thrust maneuvers
are close to the nominal trajectory during the backward integration.
Together, these imply that it is unlikely, if not impossible, for the
final state of the backward integration to go significantly beyond
the orbit of Earth during an integration period of t∗f = 1.376 [years].
This is confirmed when looking at the dataset in the next subsection.

3.2 The dataset
To build the particular dataset used in this work, we start from the
nominal trajectory of Figure 1 and generate 500 000 perturbations
of the arrival state x′f ,m

′
f ,λ

′
f using ρ = 0.1 as a perturbation radius.

Only perturbations for which the root finder for Hf (L
′
f ,m

′
f ) = 0

converged are kept. These valid final states are then integrated
backwards in time for tf = 1.376 [years]. At 100 equi-spaced points
in time, the state x′,m′,λ′ and the optimal policyu∗, i∗τ are sampled
and stored in the dataset. Figure 3 shows an overlapping plot of
these trajectories.

During the dataset generation, 453 212 feasible perturbations
were found. Thus the final dataset consists of 45 321 200 samples
which took approx. 12 hours to generate using 20 threads and 25 000
perturbations per thread on an Intel Xeon E5-2650L v4 processor at
1.70 GHz. Thus, we were able to generate a new optimal trajectory
approximately every 1.7 seconds. The bulk of the computational
time is spent to integrate Eq.(7) numerically with a relative error
tolerance of 10−13 and an absolute error tolerance of 10−13 using the
LSODA integrator. In Figure 3 we visualize the trajectory dataset
in its entirety. Note that all trajectories we will learn from are thus
time free, optimal control trajectories.
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4 EXPERIMENTS
Using the dataset constructed in the previous section, our goal is to
evaluate if it is possible to learn a control policy and/or the value
function by a deep neural network.

4.1 Ideas Behind Our Experiments
Since this goal can take many forms, we are particularly interested
in the following learning tasks:

(1) Policy imitation: In the first experiment we apply the imita-
tion learning pipeline described in [7, 9, 11] to our training
data. The result is a networkNu(x,m) predicting the optimal
u and iτ directly.

(2) Value function learning: In the second experiment we train
a network Nv (x,m) to predict the value function v(x,m) =

mp/c2 (i.e. the optimal propellant mass required to get to
Venus’ orbit). The loss function used during training and
evaluated on a batch of size b is ℓ =

∑b
i=1 |v(xi ,mi ) −

Nv (xi ,mi )|
2. Once the network is trained, the Hamilton

Jacobi Bellman equation Eq.(13) is used to derive the policy
u(x,m). Besides providing a way to compute u(x,m), this
network can also be used for predicting the propellant con-
sumption in preliminary design phases.

(3) Value function gradients learning: In the third experiment
we train a network N∇v (x,m) to predict the value function
v(x,m) and enforce the constraint that [∂xN∇v , ∂mN∇v ] =

∇v = [λ, λm ]. The idea being that gains are to be achieved,
with respect to the previous case, as Eq.(13) contains the
value function gradient which is here directly learned. The
loss function used during training and evaluated on a batch
of size b is thus:

ℓ =

b∑
i=1

{
|v(xi ,mi ) − N∇v (xi ,mi )|

2+

+

����λi − ∂N∇v
∂x

(xi ,mi )

����2 + ����λmi −
∂N∇v
∂m

(xi ,mi )

����2} (15)

4.2 Network Architecture and Training
The network architectures used for the three experiments are
mostly similar except for the depth and the output layers. In all
cases, the networks take as input the state [x, m] and consist of n
hidden layers with softplus activations between each layer (follow-
ing the results in [12]).

The policy imitation (experiment 1) network consists of n =
4 hidden layers with 100 units. The output layer has a sigmoid
activation and 4 units (throttle and thrust vector).

The value function networks (experiment 2 and 3) consist of
n = 9 hidden layers with 100 units. The output layer has a linear
activation and 1 unit. The reason for a linear activation is to avoid
normalizing the output, which would also effect the computed
gradients used in the loss function.

The network output can then be differentiated with respect to
its inputs to estimate the value function gradients necessary to
derive the control policy from Eq.(13). In the case of the value
function network (experiment 2), these gradients are only used after
training to compute the policy. For the value function gradients

network (experiment 3), the mean square error of the estimated
value function gradients with respect to the co-states is added to
the loss-function of the network. Thus the training for the value
function gradient network is minimizing both the error of the value-
function and its corresponding gradients.

In terms of the training set, the policy network was trained on a
normalized dataset where the normalization consists of a standard
scaling (i.e. removing the mean and scaling to unit variance). The
targets u and iτ have been scaled to [0, 1] in order to match the
output of the last sigmoid activations. During preliminary experi-
ments, we found that for the value function network and the value
function gradient network, a better performance was achieved by
omitting any normalization of the data.

We split the data into a train, validation and test set by a ratio
of 0.8/0.1/0.1. All networks were trained on mini-batches of size
b = 8192 using the Amsgrad optimizer with an initial learning
rate of 10−5 for 300 epochs. For each experiment, we select the
network with the lowest mean square error on the validation set
for all further computations presented in this work.

5 RESULTS
We evaluate the quality of the trained networks by two different
methods. First, we test the network performance on the test set,
containing optimal state control pairs from trajectories never seen
during training. Second, andmore importantly, we test howwell the
network performs when used to control the spacecraft dynamics, as
computed by integrating the equations of motion in Eq.(4) forward
in time starting from the initial state of the nominal trajectory
(which was excluded from the training, validation and test sets)
using the policies resulting from the network for u.

5.1 Evaluation of Control Predictions on the
Test Set

For each sample of the test set we compute the optimal policy predic-
tion from the networks (u and îτ ) and thus the mean and standard
deviation of the absolute error. In Table 1, the values for each of
the control components are shown. The policy network displays
the best performance in terms of the u, ir and it components. On
the other hand, the value function gradients network outperforms
the policy network in terms of the in component with regards to
the spread in errors across the test set despite an overall higher
mean absolute error. The value function network without gradient
learning, while approximating the value function reasonably well,
fails to reconstruct the optimal policy. This suggests that learning
the gradients in addition to the value function is necessary for the
reconstruction of an optimal control profile.

A more detailed view of the error distribution is shown in Fig-
ure 6 for the throttle and Figure 7 for the thrust direction, con-
firming that the value function gradients network mis-throttles (i.e.
throttling when it should not and not throttling when it should) on
average more frequently than the policy network. It is interesting to
note, again, that in terms of the distribution of errors in the thrust
direction, the value function gradients network achieves a narrower
distribution of errors centered around 0 for the un component of
the thrust.
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Figure 4: Absolute error for predicting the optimal thrust direction îτ of the nominal trajectory (log-scale).

controller u ir it in
Nu 4.0633 · 10−3 ± 1.6114 · 10−3 9.4601 · 10−4 ± 2.0558 · 10−6 5.4004 · 10−4 ± 8.7714 · 10−7 2.1191 · 10−3 ± 5.0105 · 10−5
Nv 3.8448 · 10−1 ± 2.3425 · 10−1 1.7492 · 10−2 ± 1.7631 · 10−4 3.6827 · 10−2 ± 7.3182 · 10−4 1.5677 · 10−1 ± 5.6198 · 10−3
N∇v 6.7513 · 10−2 ± 6.0727 · 10−2 2.9607 · 10−3 ± 6.2466 · 10−6 8.4705 · 10−4 ± 7.3286 · 10−7 2.6342 · 10−3 ± 4.6612 · 10−6

Table 1: Mean and Standard Deviation of the Absolute Error of network predictions for the three network types.

Figure 5: Absolute error for predicting the optimal throttle
u∗ of the nominal trajectory (log-scale).

controller mf [kg] ∆m [kg] mf + ∆m [kg]
optimal 210.4742 – 210.4742 (+ 0.0000)
Nu 210.3197 0.1858 210.5055 (+ 0.0313)
Nv 151.1732 129.7239 280.8971 (+ 80.7503)
N∇v 205.4894 5.6123 211.1017 (+ 0.6275)

Table 2: Propellantmass spent to reach Venus orbit from the
nominal initial condition. This mass consists of the propel-
lant massmf spent using the considered controller to steer
the spacecraft for a time t∗f and the mass (∆m) needed for
an additional (optimal) corrective maneuver able to match
Venus orbit exactly.

5.2 Closing the Gap to Venus Orbit
Next, we compare how well the trained neural networks are able to
reproduce the nominal trajectory (which was not part of the dataset

used for training) during a forward in time numerical integration of
the equation of motion stated in Eq.(4). Starting from the nominal
initial conditions, we thus predict the control actions using each
network and integrate forward in time for a period of t∗f = 1.376
[years] (the time needed by the nominal trajectory to reach the
orbit of Venus). Figure 8 shows the distance from the orbit of Venus
obtained in the three cases. We observe that Nu and N∇v come
closest to Venus orbit while Nv is comparatively far away.

For a fair comparison between all three strategies with respect
to the nominal trajectory, we correct all orbits (in a mass-optimal
way) to match the exact orbit of Venus and add the corresponding
propellant mass (∆m) needed for this corrective maneuver to the
propellant mass (mf ) spent by the controller. Consequently, we
solve the optimal control problem for reaching Venus from each of
the final orbits reached by the networks. The results are reported in
Table 2. We note that the additional mass needed by Nu and N∇v
to close the gap to Venus orbit is below 1 [kg].

6 CONCLUSIONS AND DISCUSSION
The results presented show that our strategy for the generation of
optimal trajectories is able to provide datasets of suitable size for
supervised training of deep neural networks. The major benefit of
this technique is the low computational cost and its reliability, as
the usage of complex solvers for optimal control problems can be
avoided in favor of a much simpler numerical integration procedure.
For the test case of an interplanetary transfer to Venus orbit, we
find that the small disturbances ρ, which we applied to the final co-
states, allowed us to generate enough variety within the dataset to
learn reliable control policies by imitation learning.While the policy
network is structurally simple and comparatively small in size, the
achieved precision is promising and provides a first step towards
the goal of achieving on-board optimal guidance and control by a
such a neural network.

Additionally to the prediction of the optimal control policy, the
value networks are able to estimate the value function up to high
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Figure 6: Distribution across the test set of the absolute error introduced when predicting the throttle using the three trained
networks.

Figure 7: Distribution of thrust errors for the radial (top), tangential (middle) and normal (bottom) thrust components with a
logarithmic y-scale.

precision and thus provide an approximation to the mass-budget
needed for optimal transfers from different starting points. If the
error of the gradients of the value function is incorporated during
training, a control profile equally good as the imitation learning
can be obtained.

While these preliminary results are encouraging, we plan to
further study the potential of this approach for designing more
ambitious transfers. In particular, the perturbation parameter of
the final co-states ρ is the key for this approach as it significantly

impacts the resulting trajectory dataset, its needed size and, subse-
quently, the quality and usability of the trained networks. Limiting
ρ to a comparatively small value allowed the trajectories in our
dataset to resemble the nominal trajectory closely. However, the
investigation of larger values of ρ is of great interest and remains
for future work. The dataset size and its relation to ρ is also of great
interest, since in this work they were both selected in a somewhat
arbitrary fashion.
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Figure 8: Distance from Venus during trajectory for value
function (blue), value function gradients (orange) and policy
networks (green).

Sampling of the trajectories at equally spaced points in time re-
sulted in a bias of the dataset, as it leads to introduce more sample
points at larger distances from the target orbit. Although this did
not pose a problem during our experiments, a different sampling
strategy could easily reduce the bias and would be most likely bene-
ficial for training on challenging transfers. Furthermore, foregoing
the computation of a nominal trajectory seems entirely possible and
worth investigating, for example by generating the final co-states
at random (and not perturbing some initial values).

Lastly we note that for the value function gradient learning as
presented here, the co-states need to be known (i.e. part of the
dataset). While our approach is able to deliver the co-states for each
trajectory, a direct method for solving the optimal control problem
would not. In such cases we hypothesize that adding Eq.(12) to the
loss function might improve the quality of the controller even if
information on the co-states is not available.

A APPENDIX
This appendix contains the explicit forms of all the derivatives
necessary to write Eq.(7) explicitly.

The Ûλp equation
We get:
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The Ûλf equation
We get:
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The Ûλд equation
We get:
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The Ûλh equation
We get:
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The Ûλk equation
We get:
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The ÛλL equation
We get:
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where,
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where,
wL =

∂w
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The Ûλm equation
We get:

Ûλm = −
c1u
m2 |λT B(x)| (27)
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