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ABSTRACT
Stress testing is part of today’s bank risk management and often

required by the governing regulatory authority. Performing such a

stress test with stress scenarios derived from a distribution, instead

of pre-defined expert scenarios, results in a systematic approach

in which new severe scenarios can be discovered. The required

scenario distribution is obtained from historical time series via a

Vector-Autoregressive time series model.

The worst-case search, i.e. finding the scenario yielding the most

severe situation for the bank, can be stated as an optimization prob-

lem. The problem itself is a constrained optimization problem in

a high-dimensional search space. The constraints are the box con-

straints on the scenario variables and the plausibility of a scenario.

The latter is expressed by an elliptic constraint.

As the evaluation of the stress scenarios is performed with a

simulation tool, the optimization problem can be seen as black-box

optimization problem. Evolution Strategy, a well-known optimizer

for black-box problems, is applied here. The necessary adaptations

to the algorithm are explained and a set of different algorithm

design choices are investigated. It is shown that a simple box con-

straint handling method, i.e. setting variables which violate a box

constraint to the respective boundary of the feasible domain, in

combination with a repair of implausible scenarios provides good

results.

CCS CONCEPTS
•Computingmethodologies→Rare-event simulation; •The-
ory of computation→ Bio-inspired optimization; •Applied com-
puting → Decision analysis; Operations research;
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1 INTRODUCTION
The real-world problem investigated comes from the area of fi-

nancial stress testing. This particular research area gained quite

some interest after the financial crises in the last decade and with

the subsequent policies put into action by various central and na-

tional regulatory authorities. It is beyond the scope of this paper to

present a detailed survey on all aspects of stress testing financial

institutions and the interested reader is referred to the specialized

literature like [28, 31, 35], publications like [2] describing the setup

for stress tests, and many other texts.

Stress tests can be performed as systemic stress tests and as

stress tests on the institutional level. Systemic stress tests [13]

deal with the connections and contagions in a banking network.

The work in this paper is related to stress tests on an institutional

level. The general setup of such a stress test is to examine the

stability and operating ability of a bank under some expert-defined

stress scenarios. Each scenario consists of a set of risk parameters

describing a particular economic situation. This procedure is called

“1st generation stress test”. The disadvantage of that procedure

is that pre-defined stress scenarios may miss one or more severe

scenarios or that some of the scenarios may be implausible for the

bank given their respective business segments.

In a “2nd generation stress test” one aims to perform systematic
stress-testing [10, 37]. This means, instead of considering a (usually

quite small) set of pre-defined scenarios, one would like to sample

from the respective distribution of the scenarios. Systematic stress-

testing further includes the restriction of using plausible scenarios
[11]. The plausibility is related to the changes in the risk parameters

and their deviation from the mean of the distribution. For example,

if a set of risk parameters changes differently than defined by the

covariance matrix of the distribution, the scenario is less plausible.

Given the distribution for the scenarios, one would like to find

the scenario yielding the worst possible business situation for the

bank. However, as will be discussed later, given the computational

requirements and the setup for the evaluation of the state of the

bank, this aim appears unrealistic. The idea is to use an optimization

approach which obtains more severe scenarios compared to simply

drawing samples from the distribution and which can efficiently
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Figure 1: Flowchart for evaluation of a single scenario.

deal with the challenges posed by the problem evaluation. While

the global optimum may not be reached (and may not be unique),

the found worst case scenarios will provide valuable information

to the bank’s risk management.

Using an optimization approach is similar to robust optimiza-

tion [3, 5] or worst-case optimization [14, 19, 25, 41]. However,

while in these approaches the best performance in a worst case

scenario is searched for, here, only the worst case scenario is of

interest and the decisions made by the bank are always the same,

i.e. independent of the scenario. One example for a similar investi-

gation, but with the intention to investigate the algorithm design

and using mathematical test functions is presented in [8]. The use

of a quasi Monte-Carlo approach is discussed in [12, 30], however,

the problem considered less complex and less computationally de-

manding.

Figure 1 shows the flowchart for the evaluation of a single sce-

nario. From the scenario distribution, a scenario is drawn and then

transformed into the input required for the simulation of the state

of the bank. The output of this simulation are the end-of-year bal-

ance sheets for the next five years, from which the scenario quality

will be derived. While there exist several models for simulating the

positions of a balance sheet [7, 18], the used simulation is tailored to

the bank and its business of operation. The simulation tool will be

considered as a black-box for the proposed optimization approach.

This assumption is valid, since the underlying model is too complex

to state it in an analytical form and involves several computation

steps using sub models. This prevents the use of a standard gradient

method as optimization method. Since the problem is real-valued

and the scenario distribution is specified as a multivariate normal

distribution, Evolution Strategies [4, 21, 32, 36] (ESs) are applied.

In ES, the mutation step is based on sampling from a multivariate

normal distribution which allows to easily incorporate the problem

knowledge into the optimization method.

The rest of the paper is organized as follows: The optimization

problem is formally stated in Section 2. This section further contains

the description on how the scenario distribution is derived from the

available data. The optimization algorithm and the respective design

choices are stated in Section 3. Section 4 presents and discusses

first results, and in Section 5 some implementation concerns are

discussed. The conclusion for the paper and an outlook are provided

in Section 6.

2 WORST-CASE PROBLEM SETUP
In this section the optimization problem and the process of deriving

the scenario distribution are presented.

2.1 Optimization Problem
The optimization problem is stated as

argmin

s ∈S⊆Rn
L(s) (1)

where L : Rn → R is the loss function and s ∈ Rn is a scenario

from the set of plausible scenarios S. The loss function provides

the quality of a scenario and its value is derived from the balance

sheet simulation. A balance sheet consists of several positions and

provides various information on the state of the bank. A complete

description of the balance sheet positions and how they are cal-

culated is beyond the scope of the paper. The interested reader is

referred to specialized literature like [33, 34] and the IFRS standard

[16].

For the purpose of the optimization, a design decision was made

that L should be a scalar. From the balance sheet positions the

Common Equity Tier 1 Ratio, the ratio between the bank’s core

equity capital and its risk-weighted assets, was chosen. Since the

simulation will provide a balance sheet for each simulated year, the

smallest of the obtained Common Equity Tier 1 Ratios is used as the

value provided by L(s). Next, the constraints for the optimization

problem are stated.

The scenarios are drawn from a distribution and can undergo

a transformation step afterwards to create the data used as input

for the simulation (see Section 2.2). To better distinguish between

these two states, s̃ will indicate data stemming directly from the

distribution (also referred to as genotype of a scenario) and s will
indicate data used as simulation input (also referred to as phenotype

of a scenario). Note, both states have the same dimensionality n.
As stated before, the scenarios should be plausible. To measure

the plausibility of a scenario the square of the Mahalanobis distance

is used [10],

(s̃ −m)TC−1(s̃ −m) ≤ κ, (2)

wherem andC are mean and covariance matrix of the distribution,

respectively. Note, the plausibility is measured on the genotype

of a scenario. The plausibility threshold κ is a user-defined value.

Choosing κ can be based on existing information, however, in most

cases it is not possible to set κ in this way. Another option is to

set κ based on the fact that the left-hand side of Eq. (2) follows a

chi-square distribution. Then the threshold can be set as

κ = n +
√
2n,

which equals mean plus one standard deviation for a chi-square

distribution with n degrees-of-freedom. This value for κ is used in

this work.

From a theoretical point of view, the plausibility constraint in

Eq. (2) is sufficient for the problem description. However, the user
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can change some parameters in the process of deriving the sce-

nario distribution. Hence, the same data set may yield different

scenario distributions. To avoid using scenarios where some vari-

ables take values which are deemed unrealistic by an expert in the

field, bounds for the scenario variables are employed. These bounds

are stated for the phenotype of a scenario. Each variable is bounded

by a lower and an upper bound, i.e.

smin,i ≤ si ≤ smax,i for i ∈ {1, 2, . . . ,n}. (3)

Before the optimization algorithm is presented, the next section

describes how the scenario distribution is obtained.

2.2 Deriving the sampling distribution from
historical data

The data required for the balance sheet simulation consist of various

parameters describing the current state of the bank, growth rates

indicating future developments, and possibly singular decisions

made by the bank
1
. The current state is determined by aggregate

information on the actual volumes in the accounts of the bank’s

customers (savings and liabilities), the current values of certain

economic variables (credit index values, exchange rates, stock index

values), and the current values of the balance sheet positions. The

growth rates describe how the current values, i.e. the economic

variables, the volumes of savings and liabilities, will change over

time on a yearly basis. The simulation input is finally defined by

more than 100 different parameters, several of them being time

series.

Given the large number of input parameters, it is not feasible to

draw all input variables from a distribution. First, several variables

are not driven by the economy, but rather depend on the bank’s

management choices. Therefore, they will not be included in the

set of parameters of interest. Second, any result obtained should

remain “explainable”. This means given the parameters of a scenario

experts should be able to validate the obtained simulation result.

Together with experts from the bank, a selection of parameters

was made. The following parameters were chosen: exchange rates

between the Euro and the US Dollar, the Japanese Yen and the Swiss

Francs; active and passive side margins for three business sections

(private, commercial, treasury) of the bank; probability of default

for each of the three business sections; index values for interest

rates (3 month euribor rate, 5 and 10 year euro swap rates); iTraxx

Europe Main as index for the credit market; and Euro Stoxx 50

as index for the stock market. Overall, this set comprises k = 17

different risk parameters. All other required input parameters are

defined by an existing expert-defined scenario.

In an ideal setup, risk parameters are not influenced by a bank’s

decisions. While this holds for most of the chosen risk parameters,

the margins are not completely independent of such decisions.

Nevertheless, they are part of the selected risk parameters since

they represent a main driver for the bank’s business.

For each risk parameter, monthly data for the last 10 years were

used for building a time series model. To improve the quality of

the time series model, risk parameters can be independently trans-

formed. The available transformations include various log-based

1
While not important for the work described, examples for such decisions can be the

selling of business parts or various ways for a large capital procurement.

transformations (see Appendix A) or by using the differences in-

stead of the absolute values. The choice of applying transformations

is up to the user. To indicate the transformation, the following op-

erator

T(s̃, ŷ) = s (4)

is defined. The operator T : Rn → Rn defines the transformation

from the time series model to the balance sheet simulation input.

The inverse operator T−1 is thus applied to the historical data. The

operator in Eq. (4) includes the known prior values ŷ, i.e. the last
known values before the start of the simulation. These values are

required as initial values for the time series model.

After transforming the risk parameters, a Vector-Autoregressive

(VAR) time series model is estimated [26]. The standard form for a

VAR-model with a lag of one time step is

y(t+1) = ν +Ay(t ) + ϵ . (5)

In Equation (5) y(t ) ∈ Rk is the vector of risk parameters at time

t , ν ∈ Rk is a vector of constants, A ∈ Rk×k is the lag-coefficient

matrix, and ϵ ∈ Rk is the error or disruption term. The error term

follows a multivariate normal distribution and is independent of

the time step, i.e.

ϵ (0) = ϵ (1) = ϵ (t ) = ϵ ∼ N (0,Cϵ ) .

The VAR-model in Eq. (5) can be stated as a multivariate normal

distribution given that the error terms are normally distributed.

Then a scenario is defined as

s̃ =


y(0)

y(1)

...

y(T )


. (6)

The dimensionality of s̃ is n = kT . The parameters of the multi-

variate normal distribution, i.e. the scenario distribution, are the

mean

m = E [s̃] =


ν +Aŷ(

A0 +A
)
ν +A2ŷ
...(∑T

i=0A
i
)
ν +AT+1ŷ


(7)

and the covariance matrix

C =


C̃0,0 C̃0,1 . . . C̃0,T
C̃1,0 C̃1,1 . . . C̃1,T
...

...
...

...

C̃T ,0 C̃T ,1 . . . C̃T ,T


(8)

where

C̃m,n =
(
C̃n,m

)
T

=

min(m,n)∑
i=0

Am−iCϵ
(
An−i

)
T

. (9)

With this multivariate normal distribution, N(m,C), a simple

worst-case search can be performed by repeatedly drawing samples

and evaluating them. This may be efficient for low dimensionalities.

For the stress test case, T = 55 time steps have to be forecasted
2
.

When using the full set of risk parameters (k = 17) the search space

2
For the first year, data until end of May exists.
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dimensionality is n = kT = 17 · 55 = 935 and repeatedly drawing

samples will not be efficient.

In the next section the algorithm for the worst-case search is

proposed.

3 EVOLUTION STRATEGY AS WORST CASE
SEARCH OPERATOR

Algorithm 1 Evolution Strategy with fixed, non-isotropic covari-

ance matrix and cumulative step size adaptation.

1: procedure ES(λ, µ, FEmax,σmin,κ, smin, smax,C,m,p, ŷ,γ )
2: FEs← 0, ps ← 0, n ← length ofm

3: wi ←
log

(
λ+1
2

)
−log(i)∑µ

j=1 log
(
λ+1
2

)
−log(j)

∀i ∈ 1, . . . , µ

4: µ
eff
←

(∑µ
i=1w

2

i

)−1
, cσ =

µ
eff
+2

n+µ
eff
+5

5: set initial solutionmc ▷ see Section 3.1

6: set initial mutation strength σ ▷ see Algorithm 2

7: repeat
8: for l := 1 to λ do
9: zl ← N(0,C)
10: s̃l ←mc + σzl
11: sl ← T (s̃l , ŷ)
12: zl , s̃l , sl ← constraint handling ▷ see Section 3.3

13: f
p
l ← max

[
(s̃l −m)

TC−1(s̃l −m) − κ, 0
]

14: fl ← L(sl ) + γ f
p
l

15: FEs← FEs + 1

16: mc ←
∑µ
i=1wi s̃i :λ

17: ps ← (1 − cσ )ps +
√
µ
eff
cσ (2 − cσ )C

− 1

2

(∑µ
i=1wizi :λ

)
18: σ ← σe

cσ
2

(
∥ps ∥2

n −1

)
19: until (FEs ≥ FEmax) ∨ (σ < σmin)

When selecting an Evolutionary Algorithm (EA) for a real-world

problem, an important question is how the problem representa-

tion must be defined to fit the algorithm. The problem considered

deals with high-dimensional samples from a multivariate normal

distribution, thus Evolution Strategies (ESs) [4, 21, 32, 36] fit quite

well. Especially in intermediate recombination ESs [4], abbreviated

as (µ/µI , λ)-ES, the mutation operator is defined as drawing sam-

ples from a distribution around the current centroid of the parent

population (i.e. the centroid is the mean of the distribution). The

algorithm then updates the mean and the covariance matrix [23]

during the iterative process to find improved solutions. The same

approach is applied for the worst-case search, with the exception

of the covariance matrix adaptation. Since the covariance matrix is

known from the time series model (cf. Eq. (8)) and further is used

within the plausibility constraint (cf. Eq. (2)), this fixed covariance

matrix will be used in the mutation step. The pseudo-code for the

ES used is given in Algorithm 1.

The first algorithm design decision concerns the choice of a spe-

cific ES variant and the respective algorithmic parameters. As stated

before, the (µ/µI , λ)-ES was selected, which requires the number

of offspring (λ), the number of parents (µ), and the recombination

weights (wi ). Part of any ES is the mutation strength (σ ) adaptation.

Preliminary experiments showed that cumulative step size adap-

tation [22] works quite well. The required parameters (ps , µeff , cσ )
are set to their default values as given in [20] (which also includes

default values for the recombination weights).

The remaining parameters required are:

• for the initialization procedure (line 6) - the user-defined

probability p
• for mutation (line 10) - covariance matrixC
• for the genotype-phenotype transformation (line 11) - the

known prior values of the risk parameters ŷ
• for the evaluation of the constraints (lines 12 and 13) - the

plausibility threshold (κ), the mean of the distribution (m),

and the parameter bounds (smin and smax)

• for the penalty function (line 14) - penalty parameter γ
• as termination criteria (line 19) - budget of function eval-

uations (FEmax) and minimal allowable mutation strength

(σmin)

The pseudo-code in Algorithm 1 agrees in most parts with the

(µ/µI , λ)-ES with cumulative step-size adaptation. One may note

that the selection step is not specifically stated. In ES selection is

done by ordering the offspring with respect to the fitness. This

ordering is indicated by the order statistic notation i : λ (see, for ex-

ample, line 16), meaning the ith best offspring out of all λ offspring.

Finally, some remarks on the required adaptations for the use as

worst-case search operator:

• The initialization procedures for the initial centroidmc of the

population (line 5) and the initial mutation strength (line 6)

are described in Section 3.1 and Section 3.2, respectively.

• The mutation operator (see line 9) uses a non-isotropic dis-

tribution.

• Except for the evaluation of a scenario (see line 14) and the

box constraint handling (see Section 3.3 and line 12), all

operators work at the genotype level.

• The constraint handling approaches for infeasible scenarios

(violating the box constraints in Eq. (3)) and for implausible

scenarios (violating the plausibility constraint in Eq. (2)) are

given in Section 3.3.

• The use of the penalty function for implausible scenarios,

see line 14, is discussed in Section 3.3.

Next, the initialization procedures and the constraint handling

approaches are described.

3.1 Finding an initial solution
One way for setting the initial centroid would be to always start

with the mean of the known multivariate normal distribution. How-

ever, using different initial centroids may steer the algorithm to-

wards different areas of the search space. A method for obtaining

different initial centroids, is to repeatedly sample from

mc ∼ N(m,a
2C)

starting with a = 1. After each sample the plausibility (cf. Eq. (2))

and box constraint (cf. Eq. (3)) satisfaction are verified. If one of

those is violated, a is reduced in a deterministic manner. The de-

signed mechanism is to reduce a by 0.1 if none of 10 samples did

provide a feasible and plausible scenario.
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The procedure is repeated until a feasible and plausible scenario

is obtained. Given that a for a well-defined problemm is feasible

and plausible by definition, if a → 0 thenmc → m holds. Note,

this step does not require any function evaluations.

3.2 Setting the initial mutation strength
The initial mutation strength should be selected such that at least a

certain number of offspring will fulfill the plausibility constraint.

Since in practice the set of risk parameters is allowed to vary, no

fixed value for the initial mutation strength can be given here. How-

ever, by considering that the plausibility as defined in Eq. (2) follows

a scaled non-central chi-square distribution, a method for selecting

the initial mutation strength can be devised. The reason why the

plausibility follows a scaled non-central chi-square distribution is

due to the fact that the offspring are now drawn from N(mc ,σC)
(see line 10 in Algorithm 1) andm ,mc and σ , 1 hold in general.

The non-centrality parameter for this distribution is

Λ = (mc −m)
TC−1(mc −m). (10)

The scaled non-central chi-square distribution can be expressed in

terms of an unscaled non-central chi-square distribution χ2nc as

σ 2χ2nc

(
n,

Λ

σ 2

)
,

with distribution parameters n as the degree-of-freedom and

Λ

σ 2
as

the non-centrality parameter.

Since n ≫ 1, the χ2nc -distribution can be approximated by a

normal distribution according to the central limit theorem. This

proves in the experiments also numerically more accurate than

using the non-central chi-square distribution. The parameters of

this normal distribution are

m = n +
Λ

σ 2

as mean and

v2 = 2n +
4

σ 2Λ
as variance. Note, both parameters depend onσ . The scalingmust be

considered when determining properties of the normal distribution.

For example, the value of the cumulative distribution function at

point x is Φ
(
x
σ 2

)
.

Now one can determine σ for given plausibility threshold κ and

a user-defined probability p from

Φ
(
m,v2,

κ

σ 2

)
− p = 0 (11)

with

Φ(m,v2,x) =
1

√
2πv2

∫ x

−∞

exp

(
−
(t −m)2

2v2

)
dt . (12)

The function on the left-hand side in Eq. (11) is a monotone function.

Hence, the root of this function can be determined by a line search

procedure. In the experiments Brent’s method [9] is applied as line

search. This method requires the definition of an interval which

contains the root. The respective method for finding the interval is

given in Algorithm 2.

What remains is setting a value for the user-defined probability

p. Since the search of the ES will be performed in high-dimensional

search space, diversity of the population plays a crucial role. In

Algorithm 2 Algorithm for determining the initial mutation

strength (IMS) and the function for calculating the difference be-

tween the user-defined probability p and the probability from the

respective normal distribution (function ProbDiff). The cumulative

probability density function Φ(m,v2,x) is defined in Eq. (12). Any

line search technique can be used as root finder in line 18. The used

choice for the initial α (i.e. when calling IMS) is α = 1.

1: function ProbDiff(n,Λ,α ,κ,p)

2: m ← n +
Λ

α

3: v2 ← 2n +
4

αΛ

4: return Φ
(
m,v2,

κ

α

)
− p

5: procedure IMS(n,α ,κ,p,m,mc ,C)
6: Λ← (mc −m)TC−1(mc −m)
7: r ← ProbDiff(n,Λ,α ,κ,p)
8: if r < 0 then
9: αl ←

α
2

10: while ProbDiff(n,Λ,αl ,κ,p) < 0 do
11: αl ←

αl
2

12: αr ← 2αl
13: else
14: αr ← 2α
15: while ProbDiff(n,Λ,αr ,κ,p) > 0 do
16: αr ← 2αr
17: αl ←

αr
2

18: α ← line search in [αl ,αr ] of ProbDiff
19: return

√
α

ESs diversity is directly related to the mutation strength, thus one

would like to choose a large as possible initial mutation strength

while at the same time ensuring at least one plausible solution. This

can be achieved by using

p =
2

λ

as desired probability. Note, this choice defines that on average two
of the offspring are plausible.

3.3 Repair of infeasible or implausible
scenarios

How to handle constraints is an important decision for the algo-

rithm design. A first question to be answered is whether infeasible

solutions can be evaluated by the simulation tool. Depending on the

answer, methods for handling and dealing with infeasible solutions

can be devised. In case of the balance sheet simulation, it holds

that infeasible solutions can be evaluated. This allows to use the

infeasible search space for the approach towards the optimum.

With those considerations in mind, the box constraints of Eq. (3)

will be considered first. Since the box constraints can be evaluated

independent of the balance sheet simulation, a repair of infeasible

scenarios is possible. There exist various approaches for handling

box (or bound) constraints, see for example [6] and the reference

therein. The commonality of these methods is to replace the infea-

sible offspring with a new candidate solution in or at the boundary
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of the feasible domain. One of the simplest procedures is setting the

value of a parameter to the boundary if it violates the respective

box constraint. For the stress scenarios, this is achieved by

si =


smin,i if si < smin,i

smax,i if si > smax,i

si else

. (13)

For the stress testing of the bank, this is particular enticing since

one expects that the worst case solution will be on the boundary.

However, since single variables of a scenario are changed, Eq. (13)

will potentially yield an increase in the Mahalanobis distance and

therefore in a possible violation of the plausibility constraint.

Another approach is to determine the intersection points be-

tween the infeasible scenario and the planes defined by the box

constraints. The first plane to be punctured defines then the feasible

scenario

s
feas
= (1 − β)mc + βs (14)

where

β = min

{
bi −mc,i

si −mc,i

����∀i : si < smin,i ∨ si > smax,i

}
(15)

with bi as the violated lower or upper bound. If the scenario is

feasible, β = 1 holds. This way of handling box constraints yields a

decrease in the Mahalanobis distance, since the length of the sce-

nario is scaled. But this method may decrease the diversity within

the offspring population since it can be seen as an additional factor

applied to the mutation strength. Without further investigations it

is not possible to decide which method is to be preferred.

Of course, other options for handling the box constraints, e.g.

penalty-based approaches, reflection or lexicographic ordering, are

possible. The two presented methods, however, lead to an inter-

esting question: Is it worth to accept a worsening in one of the

constraints (here the plausibility constraint) for a higher diversity

of the population which is to be preferred in high-dimensional

search spaces? This question can not be answered without consid-

ering how the plausibility constraint is handled.

As for the box constraints, several options exist for handling

the plausibility constraint. For a survey of handling nonlinear (and

linear) constraints one is referred to [29]. Again, the plausibility

constraint can be evaluated independent of the balance sheet simu-

lation. A straightforward approach is to apply a penalty approach.

In such an approach, the fitness of an infeasible solution consists of

the objective function value (which may be lower than the objective

function value at the global optimum in the feasible search space)

and a penalty value based on the constraint violation. The designed

penalty function is

f p = max

[
(s̃ −m)TC−1(s̃ −m) − κ, 0

]
. (16)

The value of f p is typically much larger than the results obtained by

the simulation. This means, scenarios which violate the plausibility

constraint in Eq. (2) have a low probability to be selected as parents

if µ plausible scenarios exist. This consideration let to the choice of

γ = 1 for line 14 in Algorithm 1.

A second option is to repair implausible scenarios. The approach

is analogous to Eq. (14) with

β =

√
κ
[
(s̃ −m)TC−1(s̃ −m)

]−1
. (17)

Scenarios repaired by Eq. (17) will always have a plausibility of κ.
Next some small scale experiments are performed to investigate

the different constraint handling options.

4 FIRST RESULTS
Before presenting some empirical results, the application specific

parameters for the experiments are stated. In all experiments, the

full set of risk parameters is considered and each risk parameter is

forecasted for a time horizon of 55 months, yielding a search space

dimensionality of n = 17 · 55 = 935 and a plausibility threshold of

κ = 935 +
√
2 · 935 ≈ 978.24.

The algorithm specific parameters of the ES are: λ = 24, µ = 12, and

a probability of p = 1

12
for the determination of the initial mutation

strength. Themean and the covariance matrix derived from the time

series model are the same for all experiments. The transformations

for the risk parameters are: log1p-transformation for 3 month euri-

bor rate, passive side margins for the business sections private and

treasury; log-transformation for all exchange rates, the Eurostoxx

50 index, and the iTraxx Main index; logit-transformation for all

probabilities of default. All other risk parameter are not transformed.

The various log transformations are given in Appendix A.

One final remark on the evaluation of the scenarios. The scenar-

ios contain monthly values for each risk parameter. The simulation,

however, only requires yearly values for each risk parameter. Thus,

in an aggregation step the yearly averages are calculated and used

as input for the simulation.

4.1 Investigation of design choices
For the investigation of the design choices for handling the con-

straints, 20 independent runs per design are performed. Each run

has a budget of 1000 function evaluations. To reduce the variance

in the runs, each of the 20 runs has a specific random seed and

this seed is reused for the same run number for all other design

choices. This means, the ith run for each design choice uses the

same random seed and therefore the same sequence of random

numbers. Neither the box constraint handling nor the repair of

implausible scenarios use any random number. The design choices

are:

• label “Puncture with repair”: use of Eq. (14) for the box con-

straints and repair of implausible scenarios with Eq. (17)

• label “Puncture”: use of Eq. (14) for the box constraints and

using the penalty Eq. (16) for implausible scenarios

• label “Bounds with repair”: use of Eq. (13) for the box con-

straints and repair of implausible scenarios with Eq. (17)

• label “Bounds”: use of Eq. (13) for the box constraints and

using the penalty Eq. (16) for implausible scenarios

In Figure 2 the average over the runs for the best-so-far fitness

(top), the mutation strength (middle), and the plausibility of the cur-

rent centroidmc (bottom) are shown. What can be observed is that

“Bounds with repair”, i.e. setting infeasible scenarios parameters

to the boundary of the feasible domain and repairing implausible

scenarios, yields the lowest fitness
3
values (see top plot in Figure 2).

Using the Wilcoxon-Mann-Whitney test [27, 40] one obtains the

3
Since the problem is a minimization problem lower fitness values are considered

better.
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Figure 2: Curves for average values of best-so-far fitness
(top), mutation strength (middle) and plausibility (bottom)
over the number of function evaluations for the experi-
ments investigating constraint handling choices.

following p-values for the one-sided test when comparing “Bounds

with repair” with the other design choices:

“Bounds with repair” vs. “Puncture with repair”: 7.878 · 10−7

“Bounds with repair” vs. “Puncture”: 3.398 · 10−8

“Bounds with repair” vs. “Bounds”: 5.522 · 10−6

If the same box constraint handling is used, but without repair,

the best-so-far value, which pertains to the best offspring, at the

beginning is implausible and thus receives a penalty as indicated by

the respective line (solid line) leaving the top of the figure. Looking

at the results for each of the runs (not shown here), one will find

that in three of the 20 runs this happened.

Looking for reasons why this algorithm design performed best,

one can take a look at themutation strength (middle plot in Figure 2).

As can be observed, the respective curves are quite similar in the

beginning and notable differences start to occur at around 400

function evaluations. The algorithm design “Bounds with repair”

achieves the largest mutation strength, which is desired for high-

dimensional problems as in ESs the mutation strength is directly

related to the population diversity.

Another option is to look at the plausibility of the population

centroids (bottom plot in Figure 2). Note, the centroid is defined by

mc in Algorithm 1 and the centroid is never evaluated. Thus, a feasi-

ble and plausible centroid might produce infeasible and implausible

offspring. If the plausibility of the centroid is further away from

the plausibility threshold, the ES can operate with larger mutation

strengths and produces (on average) less implausible offspring for

the same mutation strength. As can be observed, the algorithm de-

signs “Bounds with repair” and “Bounds” operate at lower centroid

plausibilities.

Those considerations now enable one to answer the question

posed in Section 3.3: Is it worth to accept a worsening in one of the

constraints (here the plausibility constraint) for a higher diversity

of the population which is to be preferred in high-dimensional

search spaces? As it turns out, the effect on the plausibility is less

than expected and the other box constrained handling approach

(determination of the intersection points) has even a much more

pronounced effect on the plausibility.

In the next experiment, longer runs of the best performing ES

variant are investigated and the results are compared with results

from a random search procedure.

4.2 Worst-Case Results
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Figure 3: Sample runs for worst-case optimization with 10
4

function evaluations each.
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Figure 4: Comparison of Random Search and ES for the
worst-case search.

In the following experiments the function evaluation budget is

increased to 10
4
function evaluations. This time 10 independent

runs of the ES with constraint handling “Bounds with repair” are

performed. The results obtained are shown in Figure 3. The results

show how much the Common Equity Tier 1 Ratio is decreased com-

pared to its value in the reference scenario. The reference scenario

is the scenario from which the remaining input parameters, i.e.

the ones not in s , for the balance sheet simulation are taken. The

obtained reduction is around 27%.
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To analyze the efficiency of the ES, a comparison with a sim-

ple random search procedure is performed. In the random search

procedure, 100 × 10
3
scenarios are drawn from the multivariate

normal distribution obtained from the time series. If a scenario is

implausible it is repaired. If it is infeasible, variables violating the

box constraints are set to the boundary of the feasible domain. In

Figure 4, a box plot based on the best obtained results for each

method is shown. As one can observe the ES is much more efficient,

since random search only achieves between 5% to 7% reduction

over the Common Equity Tier 1 Ratio of the reference scenario.

5 IMPLEMENTATION
An important, but often not stated part of applying an EA to a

real-world problem, is how the potential users can interact with the

EA and how the optimization process is embedded in the existing

operational framework.

For the stress testing a framework for the evaluation of deter-

ministic scenarios already exists and the worst-case search will be

integrated there. The existing application is built in Python [17, 39]

and uses the Jupyter framework [24, 38] for the interaction with the

user. The plan is to build a graphical user interface which allows to

control the important parameters of the optimization process. These

parameters include the choice of risk parameters and their trans-

formations and the maximum number of function evaluations. The

number of offspring and parents can be taken from the proposed

values in [20]

λ = 4 + ⌊3 ln(n)⌋, µ =
λ

2

.

All other input parameters for the ES are either defined by the time

series model or are set as stated in this work. This setup will allow

users not familiar with ESs to perform the worst-case search.

Next to the control of the worst-case search, one needs to pro-

vide tools for visualizing and post-processing the results. In the

framework several plots for the result and the respective statistics

are provided. For example, the user can plot the values of the risk

parameters of a worst case scenario and as defined by the reference

scenario in the same plot. Moreover, tools like explanatory power

analysis are available to gather more insights from the results.

Finally, the evaluation of a single scenario takes about 5 to 7

seconds on common hardware. To speed up the optimization, the

evaluation of the scenarios is performed in parallel by using the

Distributed Execution Framework [15]. For the experiments a sim-

ple master-worker approach [1] was used. The same framework

exists at the bank and thus allows to perform a worst-case search

in reasonable time.

6 CONCLUSION AND OUTLOOK
The paper proposes the use of an ES for finding worst case scenarios

for the state of a bank. The derivation of the scenario distribution

from historical time series is provided and the ES is outlined. Al-

gorithmic design decisions for the ES are motivated and empirical

results are provided.

The approach is not limited to stress testing a bank. Examples

for different applications might come from the areas of project

management or from engineering where, for example, different load

scenarios have to be investigated. It is not claimed that the same

approaches for handling the box constraints and the plausibility

constraint will be the most efficient ones, but by using the same

reasoning the most appropriate ones can be identified.

Several further investigations are possible. For example, what

happens if the function evaluation budget is increased and whether

some type of stagnation will be observed. The results presented

here are not expected to be the global optimum
4
given the restric-

tion on the function evaluation budget and the high-dimensional

search space. Also, special approaches for dealing with the high-

dimensional search spaces could be considered. One example would

be to reduce the search space dimensionality by having the scenario

vector defining the yearly forecast values instead of the monthly

forecast values. Another interesting approach is to restrict theworst-

case search on the surface of the hyper-ellipsoid defined by the

plausibility constraint. Such an approach would require further

adaptations to the ES. Finally, the use of more involved parallel

approaches [1] could provide further speed-up of the optimization

process and a more efficient search in the high-dimensional space.

Next to improving the worst-case search, adaptations of the

problem might provide a deeper insight. A natural extension would

be to use multi-criterion fitness function to capture different ef-

fects within the balance sheet. This would require the use of a

multi-objective optimizer as worst-case search operator. Another

interesting avenue would be to investigate different plausibility

thresholds.
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A DEFINITION OF THE
LOG-TRANSFORMATIONS

log-transformation: s̃i = ln(si ) (18)

log1p-transformation: s̃i = ln(si + 1) (19)

logit-transformation: s̃i = ln

(
si

1 − si

)
(20)
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