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ABSTRACT
This paper describes a method to solve Multi-objective Dynamic
Travelling Salesman Problems. The problems are formulated as
multi-objective hybrid optimal control problems, where the choice
of the target destination for each phase is an integer variable. The re-
sulting problem has thus a combinatorial nature in addition to being
a multi-objective optimal control problem. The overall solution ap-
proach is based on a combination of the Multi Agent Collaborative
Search, a population based memetic multi-objective optimisation
algorithm, and the Direct Finite Elements Transcription, a direct
method for optimal control problems. A relaxation approach is
employed to transform the mixed integer problem into a purely
continuous problem, and a set of smooth constraints is added in or-
der to ensure that the relaxed variables of the final solution assume
an integer value. A special set of smooth constraints is introduced
in order to treat the mutually exclusive choices of the targets for
each phase. The method is tested on two problems: the first is a
motorised Travelling salesman problem described in the literature,
the second is a space application where a satellite has to de-orbit
multiple debris. For the first problem, the approach is generating
better solutions than those reported in the literature.
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1 INTRODUCTION
This paper proposes a method to solve multi-objective dynamic
Travelling Salesman Problems. The goal is to find the trajectory of a
vehicle that visits multiple targets minimising multiple conflicting
objectives, where the order in which the targets are visited is not
specified a priori but is free to be optimised.

The Travelling Salesman Problem, in its various forms, is one of
the most studied in the field of optimisation. For this reason, even an
extremely condensed overivew of the relevant literature is outside
of the scope of this short paper. A distinctive aspect of the problem
here investigated that sets it aside from the vast majority of the lit-
erature concerning the TSP is that the trajectory connecting a point
to another is not an abstract edge connecting two nodes of a graph.
Instead, an actual trajectory has to be computed accounting for a
dynamical model of the vehicle of the Travelling Salesman. The
dynamical model is expressed in terms of a general set of nonlinear
ODEs and some free control parameters that can influence the tra-
jectory of the system. The cost associated to an itinerary is thus not
just a function of the sequence of the cities visited and eventually
the times of the visits, but depends also on the time histories of
the controls. This is more typical of the field of optimal control,
where an optimal policy is sought to steer a dynamical system from
an initial state to another while minimising some cost function. In
this sense, the adjective dynamic TSP is due to the presence of a
dynamical system, as opposed to an explicit time-varying nature
of the objective function or of the connections between the edges
of a graph. While the latter have been extensively investigated, for
instance in [1, 2, 6, 7, 12, 13], the former has received less attention.
This work can be seen as a multi-objective extension of the problem
class tackled for instance in [3–5, 17]. References [4, 7, 17] show
how the formulation of the dynamic (or motorised) TSP can be
employed to generate space missions visiting multiple asteroids but
all deal with single objective formulations.

The problem is here formulated as a multi-phase multi-objective
hybrid optimal control problem where the final conditions of each
phase depend on the choice of which target is visited. The solution
method adopted in this work closely follows [8], which dealt with
general multi-phase multi-objective optimal control problems. The
approach is based on a direct transcription of the optimal control
problem with Direct Finite Elements in Time (DFET) [9, 14] and a
solution of the resulting multi-objective nonlinear programming
(MONLP) problem with Multi Agent Collaborative Search (MACS)
[10, 15, 18], a population based global memetic multi-objective
optimisation algorithm.

In order to treat mixed integer problems, the method here pro-
posed employs a relaxation approach for the integer variables, with
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an associated set of smooth constraints to ensure that the final val-
ues of the relaxed variables is integer. An additional set of smooth
constraints is introduced to tackle the combinatorial aspect of the
problem, ensuring that the target destinations are visited exactly
once.

Two numerical examples will show the validity of the overall
approach: the first one is a motorised Travelling salesman problem
with simple dynamics, initially proposed in [16]. This was chosen
as it is easy to replicate and thus constitutes a good comparison
problem. The second test case is an application consisting in the
preliminary design of a space mission to de-orbit or repair malfunc-
tioning satellites in Geostationary orbit.

2 PROBLEM FORMULATION
Multi-objective Hybrid Optimal Control problems can be formu-
lated as:

min
u∈U ,σ ∈σ ,b∈B,µ∈M

J

s .t .
Ûx = F(x, u,σ , b, µ, t)
g(x, u,σ , b, µ, t) ≥ 0
ψ(x(t0), x(tf ), u(t0), u(tf ), b, µ, t0, tf ) ≥ 0
t ∈ [t0, tf ]

(1)

where J = [J1, J2, ..., Ji ..., Jm ]T is, in general, a vector of objec-
tives Ji that are functions of the state vector x : [t0, tf ] → Rnx ,
continuous control variables u ∈ L∞(U ⊆ Rnu ), discrete control
variables σ ∈ σ ⊆ Znσ , continuous static parameters b ∈ B ⊆ Rnb ,
discrete static parameters µ ∈ M ⊆ Znz and time t . The func-
tions x(t) belong to the Sobolev space W1,∞ while the objective
functions are Ji : R3nx × Rnu × Rnb × Znσ × Znz × R2 −→ R.
The objective vector is subject to a set of dynamic constraints
with F : Rnx × Rnu × Rnb × Znσ × Znz × [t0, tf ] −→ Rnx , alge-
braic constraints g : Rnx × Rnu × Rnb × Znσ × Znz × [t0, tf ] −→

Rnд , and boundary conditions ψ : R2nx × R2nu × Rnb × Znσ ×

Znz × R2 −→ Rnψ , where F(x, u,σ , b, µ, t), g(x, u,σ , b, µ, t) and
ψ(x(t0), x(tf ), u(t0), u(tf ), b, µ, t0, tf ) are vector fields.

When Np phases are present, dynamic constraints, path and
boundary constraints, and objective functions are defined on each
timeline. In order to connect different timelines, a set of Nip inter-
phase constraints is introduced:

ψsp

(
x0,Isp , xf ,Isp , u0,Isp , uf ,Isp , bIsp , µIsp , t0,Isp , tf ,Isp

)
≥ 0 (2)

with sp = 1, ...,Nip . The index vector Isp collects all the indexes
of the phases that are connected by constraintψsp . Note that the
number of phases is fixed, but their temporal order is actually
defined by the inter-phase constraints (2).

The problem can be discretised following the procedure for DFET
transcription. This results in a Multi Objective Mixed Integer Non-
linear Programming (MOMINLP) problem coming from the tran-
scription of problem (1), with the inclusion of interphase constraints
(2). In vector form it can be written as:

min
y∈Y ,p∈Π,d∈D

J̃

s .t .
C(y, p, d) ≥ 0

(3)

where y collects all the discretised state variables, p collects all the
static and discretised dynamic control variables, d collects all the in-
teger valued control variables and static parameters, and C collects
all constraints, including boundary and interphase conditions.

3 SOLUTION OF THE MIXED INTEGER
OPTIMAL CONTROL PROBLEM

To solve Multi-Objective Optimal Control problems, the following
approach was proposed in [8]: first, the multi-objective optimal con-
trol problem (1) is translated into a multi-objective NLP problem by
using the DFET transcription scheme, which discretises the dynam-
ics of the problem and converts it the finite dimensional problem (3).
An automatic and unsupervised process generates feasible guesses
before the main loop of the optimisation starts. The multi-objective
NLP is then solved by a modified version of the MACS optimisation
algorithm, employing two different and complementary formula-
tions. In the following section, a brief description of the MACS
algorithm is given, followed by a brief description of their coupling
strategy.

3.1 Description of the MACS algorithm
MACS is amemetic multi-objective optimisation algorithm inwhich
a population of agents is initially seeded in the search space with
a Latin Hypercube sampling. All agents can perform a set of in-
dividual actions to explore their neighborhood and improve their
position. A user defined number of agents, called social agents,
is associated with a weight vector. Weight vectors are generated
to be uniformly spread in the unit sphere on R+m , where R+ is
the set of non negative real numbers. These weight vectors are
used to compute the Chebychev scalarisation of the solution vector
associated to that agent. A trial solution with a better Chebychev
scalarisation criterion is considered to improve the current solu-
tion. The dominance criterion is also applied in order to detect an
improvement.

The individualistic actions that each agent can perform are Pat-
tern Search, Differential Evolution and Inertia. For the Pattern
Search heuristic, one randomly chosen optimisation variable is
perturbed by a random amount within the local neighbourhood
defined around each agent. If no improvement is made, another
trial is attempted in the opposite direction, and the process is then
repeated with another variable until a dynamically adjusted maxi-
mum number of directions is scanned or an improvement is made.
If Pattern Search does not find an improved solution, a Differential
Evolution step takes place choosing three other different agents.
If at a previous iteration a successful improvement direction was
found, the Inertia action takes place before the Pattern Search:
another attempt is made in the same successful direction, with a
random step size. If no improvement is made by any action, the
local neighbourhood associated to that agent is reduced by a user
defined factor, while it is increased by the same factor if a successful
step is made. The initial size of the local neighbourhood is the entire
search space, and it is also the maximum size it is allowed to assume.
It’s minimum size is instead defined by the user, who chooses the
maximum number of contractions of the local neighbourhood.
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Non-dominated solutions are saved to an external archive, with
a user defined maximum size. A special archiving strategy ensures
a good distribution of points across the Pareto front.

After the individual actions are performed and the archive has
been updated, Social agents can then perform social actions, exploit-
ing the information coming from the archive or from other agents
to collectively advance towards the Pareto front. Social actions
employ again the Differential Evolution heuristic, but this time the
choice of the other 3 solutions can come from either the archive or
the population. All solutions are again evaluated for improvement
and eventually added to the archive. Social agents are then moved
to the position in the archive that best satisfies their Chebychev
scalarisation criterion.

Individual and social actions are repeated until a maximum num-
ber of function evaluations is reached. For a more detailed explana-
tion of the MACS algorithm, the interested reader is invited to read
[10].

3.2 Description of the formulations
Two different and complementary formulations are employed to
solve problem (3). The first one consists of a further reformulation
of the multi-objective NLP into a bi-level optimisation problem. At
the outer level, MACS uses its heuristics to generate trial solution
vectors. This trial solution vector is received by the inner level,
which uses it as a first guess to enforce the constraints through
an NLP solver. Since the outer level always modifies fully feasible
solutions and only changes the control variables leaving the state
variables unaltered, the solution of each inner level NLP is very
fast, typically requiring only a handful of iterations. Once the NLP
solver converges, the solution is passed back to the outer level,
which evaluates the objective functions and employs the dominance
criterion and the Chebychev scalarisation to decide weather the new
solution is better than the existing ones. This bi-level formulation
allows to strictly solve nonlinear equality and inequality constraints,
provides global exploration capabilities and a good spreading of
the solutions on the Pareto front.

In order to guarantee local optimality of the solution, a single
level gradient based refinement step takes place every given number
of iterations. This refinement step operates on a smooth single
level reformulation of the problem. The reformulation operates
on a modified Pascoletti-Serafini scalarisation of the initial multi-
objective optimisation problem and allows a simultaneous handling
of feasibility and local optimality. Very importantly, the Chebychev
scalarisation criterion used in the bi-level approach is consistent
with the Pascoletti-Serafini scalarisation employed in the single
level approach. The method can thus seamlessly transition between
a global exploration mode that generates evenly spread solutions
on the Pareto front, to a local exploration mode able to guarantee
the local optimality of all the solutions along the same descent
directions in criteria space that were used by the global exploration
mode. A more complete description of this approach is described
in [8].

This approach can be further extended in order to treat mixed-
integer problems. For the outer level, the heuristics of MACS can
operate both with discrete and continuous variables, thus no mod-
ification is required. For the inner level and for the single level

gradient based approach instead the discrete variables were relaxed
in order to work with the NLP solver. In order to ensure that the
final values of the relaxed variables are integer, an additional set of
constraints is imposed. This way the inner level is able to modify
the value of the relaxed variables in order to get feasible solutions.
Algorithm 1 summarises the overall solution strategy. The follow-
ing subsection explains in greater detail the constraints imposed to
ensure that the relaxed variables assume an integer value.

Algorithm 1 MACS optimal control (MACSoc) framework
1: Initialise population P0 and global archive A0, k = 0, ρB = 1
2: Initialise weight vectorsω
3: while n_f un_eval < max_f un_eval do
4: Run individualistic heuristics on the relaxed problem using

bi-level formulation Algorithm 2
5: Pk → P+k
6: Update archive Ak with potential field filter
7: Run social heuristics combining P+k and Ak using bilevel

formulation Algorithm 2
8: Update archive Ak with potential field filter
9: P+k → P

†

k
10: if local search triggered then
11: Run gradient based refinement using single level formula-

tion
12: P

†

k → P∗
k

13: Update archive Ak with potential field filter
14: P∗

k → Pk+1
15: else
16: P

†

k → Pk+1
17: end if
18: k = k + 1
19: Update ρB
20: end while

Algorithm 2 Bi-level formulation
1: Apply chosen heuristic to modify controls and static variables
2: Solve feasibility problem with relaxed variables
3: Re-solve feasibility problem imposing (4)
4: Evaluate objectives of feasible solution

3.3 Relaxation and Integrality constraints
Within the inner level and the single level refinement the discrete
variables were relaxed and treated as continuous. This will likely
generate a solution where the relaxed variables do not assume
integer values. After a relaxed solution is found, the NLP solver is
invoked again but the following constraint is imposed in order to
force it to converge to solutions where the relaxed variables assume
integer values:

sin(πσ̃j ) = 0 (4)
where σ̃j is a relaxed variable.

This simple and smooth constraint is satisfied only for integer
values of the relaxed variable x j . However, since this constraint
has many possible solutions, it can introduce several local optima.
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For this reason it is enforced only after a solution to the relaxed
problem is found. The delayed imposition of constraints (4) should
allow the NLP solver to avoid the local minima introduced by this
constraint and converge to the integer value closest to the relaxed
solution.

3.4 Treatment of free-target boundary
constraints

For the class of problems of interest in this paper, the boundary
conditions of each phase can be expressed as:

x(tf ; i) =
∑
j
µi, jPj (5)

where x(tf ; i) indicates the boundary conditions at the end of phase
i , µi, j are static optimisation variables which can only assume a
value of 0 or 1, and Pj are the target boundary conditions. Variables
µi, j can be considered as a choice on the target associated to each
phase. In facts, if µ1, j = 1 while all other µi, j = 0 the constraint will
impose phase j to terminate at the position of target P1. However,
exactly one µi, j per phase must be equal to one. In addition, it is
required to visit each target exactly once. This particular set of
mutual exclusivity constraints needs a special treatment.

In [16] it is proposed to arrange the discrete variables µi, j in a
matrix, relax the variables µi, j into µ̃i, j and impose

∑
i
µ̃i, j = 1 ∀j = 1 · · ·n∑

j
µ̃i, j = 1 ∀i = 1 · · ·n

(6)

where µ̃i, j is the relaxed ith discrete variable for phase j. For an n
targets problem, this results in a total of 2n constraints. The idea
behind this set of constraints is to ensure that, if the variables
assume a value of 0 or 1, only one element per row and column
can be 1, thus resulting in a unique choice of target per each phase.
These constraints were then employed to obtain a relaxed solution
which constituted the upper bound for a branch and bound method:
one relaxed variable was then split into a branch where it had a
fixed value of 0 and a value of 1 in the other. The branch and bound
method progressed until all relaxed variables were given a value of
either 0 or 1, progressively discarding regions of the search space
which were considered unpromising.

This method has the advantage of not requiring any further spe-
cial treatment for the discrete variables, which are treated separately
to the continuous ones. However, it has two main disadvantages:
the first is that in order to obtain a solution to the full non-relaxed
problem it has to solve many NLPs, in the best case equal to twice
the number of binary variables and in the worst case equal to per-
forming a full enumeration of the 2n possible combinations. The
second, less obvious disadvantage, is that the method relies on the
NLP to provide an upper bound for the solution. If the problem has
multiple local solutions, the bounds computed by the NLP might
be incorrect and the method might discard the region of the search
space where the true optimal solution lays.

The set of constraints (6) has two major problems when applied
with the current framework: the first one is that it is composed
by 2n equality constraints. When adding constraints (4) to enforce

each µ̃i, j to assume a value of 0 or 1, the problem becomes overde-
termined for the µ̃i, j , given that constraints (4) already impose an
equality constraint per relaxed variable. Even if the constraints are
redundant at the solution points, the NLP solver might have serious
difficulties in handling this situation. A second less obvious problem
is that only one µ̃i, j involved in each of constraints (6) should be
greater than 0.5, before applying constraints (4). The reason for this
is that, in order to satisfy the constraints, the NLP solver performs
a linearisation of the constraints. Thus, it will try to satisfy the
constraints by pushing each µ̃i, j towards either 0 or 1 depending
on weather each µ̃i, j is lower or greater than 0.5. However, if more
than one µ̃i, j is greater than 0.5, or none of them are, it will be
impossible for the NLP solver to satisfy simultaneously (4) and (6).

In order to prevent this problem, another approach is here pro-
posed. First, equality constraints (6) are rewritten as inequality
constraints 

∑
i
µ̃i, j ≤ 1 + ϵ ∀j = 1 · · ·n∑

i
µ̃i, j ≥ 1 − ϵ ∀j = 1 · · ·n∑

j
µ̃i, j ≤ 1 + ϵ ∀i = 1 · · ·n∑

j
µ̃i, j ≤ 1 − ϵ ∀i = 1 · · ·n

(7)

where ϵ is a fixed positive parameter. This set of linear inequality
constraints solves the issue of overdetermination of the system,
because the only equality constraints remaining are from Eq. (4).
Moreover it creates a feasible region of thickness 2ϵ around the
hyperplane defined by the constraints (6), which should be easier to
satisfy than a strict equality constraint. However, it is still possible
that more than one of the µ̃i, j is greater than 0.5, or none are. In
order to solve this issue, an additional set of constraints is imposed:

∑
i
µ̃αi, j ≥ n

(
1
2
+ ϵ

)α
∀j = 1 · · ·n∑

j
µ̃αi, j ≥ n

(
1
2
+ ϵ

)α
∀i = 1 · · ·n

(8)

where n is the number of targets and α ≥
log2(n)
log2

2
1+2ϵ

. For this second
set of constraints to work, ϵ should be lower than 0.5. For simplicity,
the actual value of α used in the constraint can be rounded to the
smallest even integer larger than the minimum value. Constraint
(8) was derived from the following considerations: in principle it
would be necessary to guarantee that the largest of the µ̃i, j for
each row and column is strictly greater than 1

2 + ϵ . In that case,
form constraints (7), the sum of all other µ̃i, j would be strictly
less than 1

2 , thus guaranteeing that all other µ̃i, j are individually
less than 1

2 . The maximum value of a vector is equivalent to the
infinity norm of the vector. However, since the infinity norm is
not a differentiable function, its usage would be problematic when
included inside an NLP problem. To overcome that problem, it is
sufficient to find a norm with an exponent high enough to obtain
the same result, but still having a smooth behaviour and possibly
without resulting in numerical issues. Equation (8) does exactly
that: the minimum value of α was computed in such a way that the

2002



Solving Multi-objective Dynamic Travelling Salesman Problems by RelaxationGECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

vertices of the hypercube connected by an edge that stems from the
origin are never outside of the bubble with the above given radius.
In other words, if the minimum value of α is chosen, the constraints
will be tangent to each permutation of the vector (1, 0, 0, ..., 0).
If a larger value of α is used, the smallest xmin for which any
permutation of the vector (xmin , 0, 0, ..., 0) satisfies Equation (8)
is xmin =

(
1
2 + ϵ

)
n

1
α . Since a positive root of a positive number

greater than 1 is always greater than 1, the second term of the
last equation is always greater than 1, thus the minimum possible
xmin >

1
2 +ϵ . The constraints thus behave as desired. Moreover the

exponent α grows logarithmically with n, the number of targets,
thus the approach should not encounter numerical issues even
for large number of targets. The main limitation of the approach
is indeed given by the maximum size of the problem that can be
handled by the NLP solver.

It is important to remark that the feasible region of constraints
(7) and (8) is disconnected and has a number of islands equal to
the number of possible sequences. Thus, many different feasible
and locally optimal solutions are possible and a global exploration
approach is necessary.

4 TEST CASES
This section presents two test cases. Since the main goal of this pa-
per is to perform first tests on the validity of the proposed approach,
all the test cases are very simple in terms of combinatorial complex-
ity. For the same reason, the first test case is is a multi-objective
extension of a simple single objective problem already solved in the
literature. This allows to directly compare the solutions obtained
by the proposed approach with the known solutions.

In the first test case, referred to in the literature as a motirised
Travelling Salesmen Problem, a vehicle has to visit several targets
whose order is not specified. The second test case is a space applica-
tion, where a spacecraft has to rendez-vous with multiple targets in
order to deorbit or perform on-orbit servicing, and again the order
in which the targets are visited is not given a priori.

The algorithm was implemented in Matlab® 2017b and run on a
Linux workstation with 8 GB of RAM and an Intel i7-4790 cpu.

4.1 A motorised Travelling Salesmen Problem
This section describes a multi-objective extension of a problem
presented in [16]: a vehicle, described by a simple two dimensional
dynamic model, starts from the origin of the plane and has to visit
three target destinations before finally returning to its starting
position. It is controlled by the magnitude of the acceleration and
by the steering rate, both of which are limited. The order in which
the three targets are to be visited is not specified a priori but has to
be found as part of the solution, which in the original reference had
to minimise the total mission time. The vehicle has to pass on each
target point without any restriction on the velocity or direction of
velocity at the rendez-vous, while at the final time it had to be at rest
at the original position. This problem can be seen as an extension
of a classic Travelling Salesman Problem, where the presence of a
dynamical model for the Salesmen significantly changes the nature
of the problem and its complexity.

The objectives for this problem are the minimisation of the total
time for the tour, and the minimisation of the energy required:

min
tf ,u,µ

(J1, J2)
T =

(
tf ,

∫ tf

t0
u21dt

)
(9)

The dynamics of the vehicle are given by:
Ûx =v cos(α)
Ûy =v sin(α)
Ûv =u1

Ûα =u2

(10)

where x and y denote the position of the vehicle on the plane, v the
magnitude of its velocity and α the direction of the velocity vector.
The vehicle is controlled by the magnitude of the acceleration u1
and by the steering rate u2, both of which are limited: u21 ≤ 1,
u22 ≤ 1.

The vehicle starts at the origin at rest, and has to pass on 3
targets, whose location is 

P1 = (1, 2)
P2 = (2, 2)
P3 = (2, 1)

(11)

The problem was formulated as a 4 phase problem, with the
last phase targeting the origin. Matching conditions were imposed
between the states of the various phases, and final conditions for
each phase were imposed as per Eq. (5). The problemwas discretised
using 3 DFET elements of order 7 for both states and controls and
each phase, resulting in a problem with 638 variables. Bounds for
the optimisation variables are: −5m ≤ x ≤ 5m, −5m ≤ y ≤ 5m,
−10m s−1 ≤ v ≤ 10m s−1, −10 rad ≤ α ≤ 10 rad, −1m/s2 ≤ u1 ≤

1m/s2, −1 rad s−1 ≤ u2 ≤ 1 rad s−1, 0 s ≤ tf ≤ 15 s.
The algorithm was run with 10 agents for a total of 40000 func-

tion evaluations with standard settings, and the single level gradient
based refinement every 10 iterations. 10 solutions were kept into
the archive. 30 independent runs were made, in order to gather
some statistics about the algorithm. Figure 1 shows the Pareto front
of all the 30 independent runs of the algorithm. As it can be seen,
the problem has several local Pareto fronts. This was already stated
in [16], who reported the presence of multiple locally optimal solu-
tions for the single objective problem minimising tour time. The
algorithm seems to converge most of the time on a local Pareto
front that is not the global one, indicating that the local solutions
are misleading and not easy to bypass, at least with the given num-
ber of function evaluations. Of all the 30 runs, only 2 managed to
return entirely globally non dominated solutions. For future refer-
ence, the GD and IGD metrics of the Pareto fronts were computed,
as reported in Table 1. Since no previous reference Pareto front
is known for this problem, the reference Pareto front with which
the metrics were computed was generated by taking the most uni-
formly spread 10 solutions among the globally non-dominated set
using our archiving algorithm.

Figure 2 and 3 show the Pareto front and the trajectories com-
puted for one run which returned globally non-dominated solutions.
Lower time solutions require more energy, as expected.

The order in which the target locations are visited is the same
for all the trajectories, starting from P1 and proceeding to P2 and
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Mean Variance % <= 0.1
IGD 0.1709 0.0060 10%
GD 0.1722 0.0091 10%

Table 1: Statistical values of the metrics of the 30 Pareto
fronts

Figure 1: Pareto front for 30 independent runs on the mo-
torised Travelling Salesman Problem

Figure 2: Pareto front for a completely non-dominated sin-
gle run of the motorised Travelling Salesman Problem

P3. The solutions found have a very reasonable shape, although
lower time solutions follow longer curved trajectories while longer
time solutions have shorter quasi rectilinear trajectories.

To explain this counter-intuitive result it is useful to look at
Figure 5, which shows the time histories of the magnitude of the

Figure 3: Trajectories for themotorised Travelling Salesman
Problem

velocity and the corresponding control, the acceleration. As ex-
pected, the minimum time trajectories are the result of a bang-bang
control profile for the accelerations. In this case, the bang-bang
switch happens twice: a full acceleration is followed by a full decel-
eration, followed by another full acceleration and final deceleration.
This is due to the limitations in the steering rate: the maximum
steering rate is not sufficient to allow the vehicle to smoothly turn
and visit all three targets while also accelerating. Thus, in order
to reduce time, the optimiser found a solution which is overcom-
ing this limitation by reducing the velocity and thus reducing the
turning radius. Low energy solutions instead have a smooth lin-
ear profile, corresponding to a progressive deceleration. Since the
velocities are lower for these solutions, a smaller curvature radius
is achievable, resulting in rectilinear trajectories for most of the
interval connecting two targets.

Solution 10 can be compared with the solution found in the ref-
erence [16], which was solving the minimum time problem. The
solution obtained by this algorithm is strictly better than the best
solution reported in the reference. However it can be compared
with one of the minimum time solutions belonging to the first layer
of dominated solutions. Table 2 reports a comparison of the times
when each solution visits each target and the total mission time.
The difference in total mission between the reference and the "com-
parable" dominated solution is below 0.3% and can be attributed to
the fact that the DFET transcription with Bernstein polynomials
smooths the sharp discontinuities of bang-bang profiles, resulting
in a slight penalisation of the objective function [9]. It is expected
that with some iterations of mesh refinement, the bang-bang pro-
files of the solutions will be more sharp, thus decreasing the value
of the mission time and evantually reaching the same value of the
solution present in the literature. Solution 10 however is markedly
better than the reference solution, and is also significantly different
given that the trajectories computed by this run of the algorithm
are all smooth, while solutions reported in the literature have a cusp
around the target P2. The order in which the targets are visited is
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Figure 4: Time histories of velocity for the Travelling Sales-
man Problem. + indicate an encounter with a target

Figure 5: Time histories of acceleration for the Travelling
Salesman Problem. + indicate an encounter with a target

also different: P1 → P2 → P3 for the best solution found by the
current algorithm vs P3 → P2 → P1 for the best solution found by
the algorithm in the literature, and for the "comparable" dominated
solution.

An important fact is mentioned in reference [16]: multiple local
solutions exist even for a given order in which the targets are visited.
It was not specified how the different solutions were generated,
but the authors mentioned that different initial guesses had to be
provided to the NLP solver in order to obtain different solutions.
Since the approach proposed in this work is global and treats simul-
taneously both the discrete and the continuous variables, this kind
of exploration is performed automatically, and, as shown, is able

Table 2: Comparison of intermediate and final times be-
tween the reference solution, solution 10 on the Pareto front
of the selected run, and a "comparable" solution in a domi-
nated layer of another run

Solution T (P1) T (P2) T (P3) Tf
Reference 5.3830 (s) 3.1390 (s) 2.286 (s) 7.6166 (s)
Comparable 5.3958 (s) 3.1475 (s) 2.296 (s) 7.639 (s)
Solution 10 2.2443 (s) 3.4980 (s) 4.7518 (s) 6.9960 (s)

to return even better solutions than those reported in the litera-
ture without requiring the user to generate different initial guesses
for the NLP problem. Moreover, since the approach proposed in
the reference was based on a deterministic branch and bound, it
requires to potentially compute all the solutions at the leaf level
of the tree associated to the branch and bound. If the number of
targets increases, this number can become exceedingly large, re-
sulting in intractable problems. With the approach proposed here,
the maximum number of trials is specified a priori. Thus, even if
larger problems become more and more difficult, the approach here
proposed is still able to return a solution with a bounded number
of function evaluations and computational time.

4.2 Multi target debris removal
As a final test case, the algorithm is applied to the design of a space
mission to remove three debris. The debris are assumed to be 3
defunct satellites located on the Geostationary orbit. A spacecraft
is sent to apply a de-orbiting kit on each of those satellites. The
spacecraft is assumed to start from an equatorial orbit. Thus it is
convenient to express its dynamics using the full nonlinear equa-
tions of relative motion in Hill’s frame[11], restricted to a planar
motion:

Ûx = vx

Ûy = vy

Ûvx = 2 Ûf
(
vy − y

Ûrc
rc

)
+ x Ûf 2 +

µ

r2c
−
µ(rc + x)

r3d
+
uT cos(α)

m

Ûvy = −2 Ûf
(
vx − x

Ûrc
rc

)
+ y Ûf 2 −

µy

r3d
+
uT sin(α)

m

Ûm =
−uT

д0Isp

(12)

where x and y are the positions of the spacecraft relative to a refer-
ence point on the Geostationary orbit, vx and vy are the relative
velocities, Ûf is the rate of change of true anomaly of the Geosta-
tionary orbit, rc is the radius of the Geostationary orbit, rd is the
distance of the current position to the centre of the Earth and and
m is the mass of the spacecraft, which is controlled by an engine
with maximum thrust T and a specific impulse Isp . The thrust vec-
tor is expressed in terms of throttling u and direction α . д0 is the
gravitational acceleration at sea level, while µ is the gravitational
parameter of Earth.

The spacecraft has an initial mass of 1000 kg, a minimum mass
of 100 kg and is equipped with 3 de-orbiting kits, each with a mass
of 30 kg. The propulsion system is able to generate up to 10N of
thrust with a specific impulse of 300 s. The spacecraft starts from
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Figure 6: Pareto front for the multiple debris removal mis-
sion

an equatorial circular orbit with radius of 42 000 km, which is at a
safe distance from the target orbit. This corresponds in the selected
Hill’s frame to the following initial conditions:


x(0) = −164 km
y(0) = 0 km

vx (0) = 0m s−1

vy (0) = 5.9971m s−1

(13)

Since the reference frame is collocated on a point on the Geo-
stationary orbit, the targets have a fixed position in time. This
significantly simplifies the treatment of the boundary conditions,
which no longer have a periodic time dependency over time. In this
reference frame, they are assumed to be uniformly spread, form-
ing an angle with the reference point on the Geostationary orbit
of 30 deg, 180 deg and 300 deg. Since in this reference frame their
positions are constant, their velocities are 0m s−1.

The spacecraft has to rendez-vous and dock with all targets in
order to apply the de-orbit kit. The application of the de-orbiting
kit is assumed to take 5 h. The order in which targets are to be
visited is not specified a priori. The objectives are the minimisation
of the total mission time, and the maximisation of the final mass,
corresponding to the minimisation of propellent consumption:

min
tf ,u,µ

(J1, J2)
T =

(
tf ,−mf

)
(14)

The problem was formulated as a 3 phase problem, each phase
was discretised with 3 DFET elements of order 7, resulting in a prob-
lem with 551 variables. The upper and lower bounds for state and
control variables are: −126 492 km ≤ x ≤ 42 164 km, −84 328 km ≤

y ≤ 84 328 km, −20m s−1 ≤ vx ≤ 20m s−1, −20m s−1 ≤ vy ≤

20m s−1, 100 kg ≤ m ≤ 1000 kg, 0 ≤ u ≤ 1, −π rad ≤ α ≤ π rad,
0 d ≤ tf ≤ 40 d. The algorithm was run for 100000 function eval-
uations with standard settings, 10 agents storing 10 points on the
Pareto front.

Figure 7: Trajectories for the multiple debris removal mis-
sion in the relative Hill’s frame

Figure 6 and 7 show the Pareto front and the trajectories of
the spacecraft in the relative frame. A tradeoff between mission
time and final mass is present, as expected. Faster trajectories tend
to be closer to the centre of the circle, meaning that in order to
reduce mission time the optimiser exploited the relative rotation
rate between the two orbits. All targets are visited in the same
order. The epicycloidal shape of the trajectories means that the
trajectories are more eccentric, while more circular shaped arcs
mean that the corresponding trajectory is closer to circular.

5 CONCLUSIONS
This paper presented a new method for solving dynamic travelling
salesman problems in the form of Multi-Objctive Hybrid optimal
control problems. It is based on the coupling of the DFET tran-
scription with the MACS memetic multi-objective optimisation
algorithm. The resulting discretised problem is solved with a com-
bination of two approaches, a bi-level approach, which allows for
global exploration and a generation of a well spread set of solutions,
and a single-level approach, which guarantees local convergence.
A staged relaxation approach has been employed when the NLP
solver is invoked. The relaxed variables are then forced to assume
integer values with a simple set of smooth constraints. A special
set of constraints was proposed to deal with the choice of the tar-
gets in the Travelling Salesman problem. The approach was tested
against a problem found in the literature, and against a multiple
debris removal mission. For the first problem, the approach was able
to generate better solutions than those reported in the literature
without any user intervention. Future work will target more chal-
lenging space mission design scenarios, like multi gravity assisted
interplanetary trajectories.
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