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ABSTRACT

Genetic improvement uses automated search to find improved ver-
sions of existing software. Software can either be evolved with
general-purpose intentions or with a focus on a specific application
(e.g., to improve it’s efficiency for a particular class of problems).
Unfortunately, software specialisation to each problem application
is generally performed independently, fragmenting and slowing
down an already very time-consuming search process. We propose
to incorporate specialisation as an online mechanism of the general
search process, in an attempt to automatically devise application
classes, by benefiting from past execution history.
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1 INTRODUCTION

Genetic improvement (GI) [4, 7] uses automated search in order to
improve existing software. The main applications of GI work in-
clude automated program repair and optimisation of non-functional
properties such as running time, memory consumption, or software
size [4]. In most GI work, the objective is to evolve a single general-
purpose software variant. However, following the observation that
optimal performance for all possible inputs is generally intractable,
some work explicitly targets software specialisation [5, 6].
Unfortunately, software specialisation generally requires manual
identification of different sub-classes of applications and to evolve
the different specialised software independently, thus slowing down
the improvement process proportionally to the number of different
sub-classes of applications considered. Furthermore, classifying
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applications may involve costly feature computation, and feature
selection is by itself a complex machine learning problem [2]. Ad-
ditionally, it can happen that either a single evolved software fits
multiple application domains, or that one of the considered appli-
cation domains could have been divided further.

As an example, we consider Petke et al’s recent work [6]. They
ran three GI processes independently in order to specialise the
MiniSAT solver for three different downstream applications. We
make the following observations: Firstly, all three types of SAT
instances are compatible, and can be tackled using the non-evolved
version of MiniSAT. Secondly, it is non-obvious what sort of pa-
rameter settings and/or algorithmic changes should be made to
boost MiniSAT’s performance for the three different applications.
Finally, the authors concluded that while it can be expected that
some mutations are application-specific, other mutations might be
beneficial for all three application domains.

2 PROPOSAL

In the following, we propose an online approach that automatically
achieves the goal of software specialisation without the need for
assumptions regarding the different application scenarios nor the
need for feature identification, computation, or selection.

Following the MiniSAT example, we propose to run a single GI
process on the training set comprising the instances of all three
original applications. The search process would initially try to find
modifications beneficial (i.e., decreasing running time in this case)
to the entire training set, until some of the modifications can be
used to find a partitioning of the training set for which they are
statistically more relevant. Then, the search process would divide
the search between the different partitions to specialise between
the different subsets of applications. Additionally, such a process
would enable the discovery of groups of statistically indistinguish-
able instances, in terms of running time improvement, on which
substantial amount of training might have been otherwise wasted.
The new GI process could also propose degradation of functional
properties for specific applications (e.g., allowing specialisation to
fail unit tests irrelevant to the target application).

Our proposition highlights the following research questions:
RQ1 Can GI search processes be modified to simultaneously ac-

commodate for multiple target applications?
RQ2 How well can heterogeneity be detected during training?
RQ3 What is the cost of repartitioning the training set?
RQ4 How can adaptive specialisation approaches compare against
pre-separated independent search?

3 FORMALISM

Algorithm configuration (AC) and algorithm selection (AS) are
often seen as two instantiations of automated algorithm design [1].
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AC focuses on improving the performance of a given algorithm by
modifying the values of its parameters. As in most GI scenarios,
AC generally optimises a single general-purpose variant of the
target algorithm. AC is often formalised as an abstract optimisation
problem, as shown in Equation 1. Given a parameterised target
algorithm A, the space © of configurations of A, a distribution
of instances 9, a cost metric o : ® X 9D — R, and a statistical
population parameter E, optimising the aggregated performance of
the target algorithm A across all instances i € D.

(AC) { g[z(gg,i), i€ D]

AC is very similar to GI [3]; it can indeed be seen as a subset of GI
where the search is restricted to modifying a set of parameters [4].
GI can be formalised following Equation 1 by substituting © with
the space S of evolved software, and searching for s € S rather
than Ag. While analogous to the case of non-functional property
optimisation, the distribution D of instances corresponds to test
cases in the case of automated program repair.

On the other hand, AS focuses on understanding the relation
between algorithm performance and problem instance features.
AS can be formalised as shown in Equation 2, where we optimise
a mapping m : I — P between every instance i € 7 and a
corresponding algorithm in the portfolio P.

optimise
subject to

1)

optimise > o(m(i), i)
(AS) iel 2)
subjectto m:7 — P

In AC as in GI, software specialisation is performed by inde-
pendently targeting applications. This can be seen as a manual AS
approach in which the portfolio is obtained one instance at a time.

An example of a related hybridisation between AS and AC is
given by the Hydra algorithm [8], in which the mapping between
instances and algorithm is obtained by performing successive AC
search processes, but this time each final algorithm being compared
on every instance. Although specifically proposed for AC, Hydra’s
approach should also be compatible with GI and could reasonably
be adapted and compared with our approach.

The approach we propose is similar to Hydra’s, but instead of
using AC to populate an AS portfolio, we aim to identify and differ-
entiate applications during the GI search process. More specifically,
we want our approach to behave identically to standard GI ap-
proaches when confronted with single or homogeneous application
scenarios, but to be able to distinguish between different classes
when applied to mixed application scenarios. This approach can be
formalised as shown in Equation 3.

2 Elo(m(Py), i), i € Pi]
PrcD
m:PrCcDmrseS
UPr=D,i#j = 7),'07)_,'20
k

optimise

(GI+AS) (3

subject to

Starting from a single-class partitioning of P, = D, for which
the equation is equivalent to GI, we aim to progressively find a
better partitioning together with a mapping m that associates each
partition $j. with an evolved version of the initial software.

4 IMPLEMENTATION CONSIDERATIONS
The described approach is yet to be implemented and analysed.
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Firstly, none of the available GI search processes can simulta-
neously operate on multiple target applications, even if those are
known from the start of the search, the current only option being
to duplicate the search on each application independently. This
approach will then require a new, specifically made, search pro-
cess. The need to manage a portfolio of software variants however
suggests that population- and archive-based algorithms such as
multi-objective local search or genetic programming may be consid-
ered as potential candidates. Then, there is no evidence that during
the search there will be enough deviating data on the different
instances to accurately classify them into separate applications. An
unsatisfactory classification mechanism will fail to distinguish be-
tween instance classes, while a faulty one will needlessly create new
targets. We expect limiting the number of partitions to be necessary,
while no partitioning being found should simply mean a general-
purpose software will be evolved. Finally, it can be expected that
this mechanism will take some computational resources. Applying
it too often, or too thoroughly, will necessarily result in slowing
down an already computationally heavy search process. We claim,
however, that our approach will be more efficient than running
multiple independent GI processes for each individual application
domain. We will compare our approaches to validate this claim.

5 CONCLUSIONS

Software specialisation requires manual identification of the target
application domains. This must be achieved before any search-based
technique is applied, and requires either prior expert knowledge
or expensive instance feature analysis. We propose a novel ap-
proach, hybridising specialisation as an online mechanism of the GI
search process. This approach does not rely on expert knowledge
or instance feature selection, but rather on statistical differences in
performance as learned during the GI search process.
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